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Statistical Inference

Statistics is probability done backwards.

In probability theory we give you one probability model, also
called a probability distribution. Your job is to say something
about expectations, probabilities, quantiles, etc. for that distri-
bution. In short, given a probability model, describe data from
that model.

In theoretical statistics, we give you a statistical model, which is
a family of probability distributions, and we give you some data
assumed to have one of the distributions in the model. Your job
is to say something about which distribution that is. In short,
given a statistical model and data, infer which distribution in the
model is the one for the data.
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Statistical Models

A statistical model is a family of probability distributions.

A parametric statistical model is a family of probability distribu-

tions specified by a finite set of parameters. Examples: Ber(p),

N (µ, σ2), and the like.

A nonparametric statistical model is a family of probability dis-

tributions too big to be specified by a finite set of parameters.

Examples: all probability distributions on R, all continuous sym-

metric probability distributions on R, all probability distributions

on R having second moments, and the like.
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Statistical Models and Submodels

If M is a statistical model, it is a family of probability distribu-

tions.

A submodel of a statistical model M is a family of probability

distributions that is a subset of M.

If M is parametric, then we often specify it by giving the PMF

(if the distributions are discrete) or PDF (if the distributions are

continuous)

{ fθ : θ ∈ Θ }

where Θ is the parameter space of the model.
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Statistical Models and Submodels (cont.)

We can have models and submodels for nonparametric families

too.

All probability distributions on R is a statistical model.

All continuous and symmetric probability distributions on R is a

submodel of that.

All univariate normal distributions is a submodel of that.

The first two are nonparametric. The last is parametric.
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Statistical Models and Submodels (cont.)

Submodels of parametric families are often specified by fixing

the values of some parameters.

All univariate normal distributions is a statistical model.

All univariate normal distributions with known variance is a sub-

model of that. Its only unknown parameter is the mean. Its

parameter space is R.

All univariate normal distributions with known mean is a differ-

ent submodel. Its only unknown parameter is the variance. Its

parameter space is (0,∞).
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Statistical Models and Submodels (cont.)

Thus N (µ, σ2) does not, by itself, specify a statistical model. You

must say what the parameter space is. Alternatively, you must

say which parameters are considered known and which unknown.

The parameter space is the set of all possible values of the un-

known parameter.

If there are several unknown parameters, we think of them as

components of the unknown parameter vector, the set of all

possible values of the unknown parameter vector is the parameter

space.
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Parameters

The word “parameter” has two closely related meanings in statis-

tics.

• One of a finite set of variables that specifies a probability

distribution within a family. Examples: p for Ber(p), and µ

and σ2 for N (µ, σ2).

• A numerical quantity that can be specified for all probability

distributions in the family. Examples: mean, median, vari-

ance, upper quartile.
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Parameters (cont.)

The first applies only to parametric statistical models. The pa-

rameters are the parameters of the model. The second applies

to nonparametric statistical models too.

Every distribution has a median. If it is not unique, take any

unique definition, say G(1/2), where G is the quantile function.

Not every distribution has a mean. But if the family in question

is all distributions with first moments, then every distribution in

the family has a mean.
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Truth

The word “true” has a technical meaning in statistics. In the

phrase “true unknown parameter” or “true unknown distribu-

tion” it refers to the probability distribution of the data, which

is assumed (perhaps incorrectly) to be one of the distributions

in the statistical model under discussion.
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Statistics

The word “statistic” (singular) has a technical meaning in statis-

tics (plural, meaning the subject).

A statistic is a function of data only, not parameters. Hence

a statistic can be calculated from the data for a problem, even

though the true parameter values are unknown.

The sample mean Xn is a statistic, so is the sample variance S2
n,

and so is the sample median X̃n.
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Statistics (cont.)

All scalar-valued statistics are random variables, but not all ran-

dom variables are statistics. Example: (Xn − µ)/(Sn/
√
n) is a

random variable but not a statistic, because it contains the pa-

rameter µ.

Statistics can also be random vectors. Example: (Xn, S2
n) is a

two-dimensional vector statistic.
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Estimates

A statistic X is an estimate of the parameter θ if we say so.

The term “estimate” does not indicate that X has any partic-

ular properties. It only indicates our intention to use X to say

something about the true unknown value of the parameter θ.

There can be many different estimates of a parameter θ. The

sample mean Xn is an obvious estimate of the population mean

µ. The sample median X̃n is a less obvious estimate of µ. The

sample standard deviation Sn is a silly estimate of µ. The con-

stant random variable X always equal to 42 is another a silly

estimate of µ.
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Estimates (cont.)

We often indicate the connection between a statistic and the

parameter it estimates by putting a hat on the parameter. If θ

is a parameter, we denote the statistic θ̂ or θ̂n if we also want to

indicate the sample size.

The formal name for the symbol ˆ is “caret” but statisticians

always say “hat” and read θ̂ as “theta hat”.
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Estimates (cont.)

The conventions are now getting a bit confusing.

Capital lightface roman letters like X, Y , Z denote statistics.

Sometimes they are decorated by bars, wiggles, and subscripts,
like Xn and X̃n, but they are still statistics.

Parameters are denoted by greek letters like µ, σ, and θ, and, of
course, any function of a parameter is a parameter, like σ2.

Exception: we and nearly everybody else use p for the parameter
of the Ber(p), Bin(n, p), Geo(p), and NegBin(n, p) distributions,
perhaps because the greek letter with the “p” sound is π and it is
a frozen letter that always means the number 3.1415926535 . . .,
so we can’t use that.
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Estimates (cont.)

Whatever the reason for the exception, we do have the conven-

tion roman letters for statistics and greek letters for parameters

except for the exceptions.

Now we have a different convention. Greek letters with hats are

statistics not parameters.

θ is the parameter that the statistic θ̂n estimates.

µ is the parameter that the statistic µ̂n estimates.
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Theories of Statistics

There is more than one way to do statistics. We will learn two

ways: frequentist and Bayesian. There are other theories, but

we won’t touch them.
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Frequentist Statistics

The frequentist theory of probability can only define probabil-

ity for an infinite sequence of IID random variables X1, X2, . . . .

It defines the probability Pr(Xi ∈ A), which is the same for all

i because the Xi are identically distributed, as what the corre-

sponding expectation for the empirical distribution

Pn(A) =
1

n

n∑
i=1

IA(Xi)

converges to. We know

Pn(A)
P−→ Pr(Xi ∈ A)

by the LLN. But the frequentist theory tries to turn this into a

definition rather than a theorem.
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Frequentist Statistics (cont.)

The frequentist theory of probability has some appeal to philoso-

phers but no appeal to mathematicians. The attempt to make

a theorem so complicated we didn’t even prove it a fundamental

definition makes the frequentist theory so difficult that no one

uses it.

That’s why everyone uses the formalist theory: if we call it a

probability and it obeys the axioms for probability (5101, deck 2,

slides 2–4 and 132–141), then it is a probability.
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Frequentist Statistics (cont.)

The frequentist theory of statistics is completely different from
the frequentist theory of probability.

The frequentist theory of statistics uses sampling distributions.
If θ̂n is an estimate of a parameter θ, then we say (when we are
following the frequentist theory) that

• The true value of the parameter θ is an unknown constant.
It is not random.

• An estimate θ̂n of this parameter is a random variable and
the correct way to describe its randomness is its sampling
distribution.
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Frequentist Statistics (cont.)

The frequentist theory has a fundamental problem. It says the
correct way to describe the randomness of θ̂n is its sampling dis-
tribution, which depends on the parameter θ and perhaps other
parameters, the true values of which are unknown.

Thus we seem to be in an infinite regress. Suppose we want to
estimate the population mean µ using the sample mean µ̂n as an
estimate. When n is large, we know

µ̂n ≈ N
(
µ,
σ2

n

)
but we don’t know µ or σ2. We can estimate both, in fact, we
already said µ̂n estimates µ and we can find another estimate σ̂2

n
of σ2. But now we need to know about the variability of the
random vector (µ̂n, σ̂2

n).
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Frequentist Statistics (cont.)

Frequentist statistics is all about how to deal with this infinite
regress. Details follow over most of the semester.

Frequentist statistics has nothing whatsoever to do with the
frequentist theory of probability, although it is named for it and
has been confused with it by famous statisticians.

Frequentist statistics says sampling distributions are the correct
measure of uncertainty of estimators. Frequentist probability
says probabilities can only be defined with respect to infinite IID
sequences.

“Sampling distribution statistics” would be a better name than
“frequentist statistics” but you can’t change the way people talk.
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Bayesian Statistics

Bayesian statistics is name after its originator Thomas Bayes,
whose work was published posthumously in 1764.

It makes conditional probability the fundamental tool of infer-
ence. It takes probability theory as the correct description of all
uncertainty.

If we don’t know the true value of a parameter θ, then we are
uncertain about it, and the correct description of our knowledge
about it or lack thereof is a probability distribution.

What the frequentist calls a statistical model, the Bayesian calls
a conditional distribution. The frequentist writes fθ(x) for the
relevant PDF. The Bayesian writes f(x | θ) for the relevant PDF.
Data x and parameter θ are both random to the Bayesian.
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Bayes Rule

Before we see data, we have a distribution for θ that reflects our

knowledge about it. Say the PDF is g(θ). This is called the prior

distribution.

After we see data, we have a joint distribution (marginal times

conditional)

f(x | θ)g(θ)

and we can find the other conditional

f(θ | x) =
f(x | θ)g(θ)∫
f(x | θ)g(θ) dθ

that reflects our knowledge about θ after we see x. This is called

the posterior distribution.
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Bayes Rule (cont.)

The Bayes rule is also called the Bayes theorem, an overly fancy

name for some philosophical woof about a straightforward appli-

cation of the definition of conditional probability.

What is called Bayes rule is the process of finding the other

conditional. Given f(x | θ) and g(θ), find f(θ | x).
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Bayesian Statistics

When we are following the Bayesian theory

• The true value of the parameter θ is an unknown constant.

Therefore it is random.

• An estimate θ̂n of this parameter is not a random variable

after it is seen. The only randomness remaining is in the

posterior distribution.
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Frequentist versus Bayesian Statistics

The frequentist uses sampling distributions, the Bayesian does

not.

The Bayesian uses prior distributions, the frequentist does not.

The frequentist says θ̂n is random but θ is not.

The Bayesian says θ is random but θ̂n is not (after it is seen).
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Frequentist versus Bayesian Statistics (cont.)

Bayesian theory is more straightforward than frequentist statis-

tics. All Bayesian inference is application of Bayes rule. Fre-

quentist inference is fragmented. There are dozens of methods.

Bayesian theory is both more difficult and easier than frequen-

tist statistics. Very easy frequentist inferences are moderately

hard for the Bayesian. Very difficult or impossible frequentist

inferences are moderately hard for the Bayesian.
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Frequentist Statistics (cont.)

More on Bayes later. For the next several weeks we do frequen-

tist statistics only.

Until Bayes returns

• Statistics are random variables, their probability distributions

are called sampling distributions.

• Parameters are not random variables, they are unknown con-

stants.
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Nuisance Parameters

Some parameters are more important than others. Which pa-

rameters are more important depends on the context.

The technical jargon for the most important parameter or pa-

rameters is parameter of interest.

The technical jargon for the other parameter or parameters is

nuisance parameter.

When we are using Xn to estimate µ, we may also need deal

with the parameter σ2, but µ is the parameter of interest and σ2

is a nuisance parameter.
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Estimates (cont.)

Some estimates are better than others. One of the main themes
of frequentist statistics is the properties of estimates that make
one better than another.

Obviously silly estimates like the constant always equal to 42 are
obviously bad. We need theory to help choose among estimates
not obviously silly.

Suppose the statistical model under consideration is the family of
all probability distributions on R that are symmetric and have first
moments. The parameter of interest is the center of symmetry,
which is also the mean and also the median. Thus Xn and X̃n
are both obvious estimators of this parameter. Which is better?
According to what criteria? Under what conditions?
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Bias and Unbiasedness

If T is an estimator of a parameter θ, then we say T is unbiased

if

Eθ(T ) = θ, for all θ ∈ Θ

where Θ is the parameter space of the statistical model under

consideration.

The notation Eθ denotes the expectation operator for the distri-

bution with parameter value θ.

An estimate is unbiased if its expectation is the parameter it

estimates.
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Bias and Unbiasedness (cont.)

If an estimator is not unbiased, then it is biased.

The bias of an estimator T of a parameter θ is

b(θ) = Eθ(T )− θ
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Bias and Unbiasedness (cont.)

Many people who have not had a course like this are overly

impressed with the concept of unbiasedness.

The concept is very simple. It is the only theoretical concept

simple enough to be introduced in elementary courses. It may be

the only theoretical concept a theoretically naive person knows.

It is badly named because in ordinary parlance “bias” is bad and

“unbiasedness” is good. One expects the same in statistics. But

statistical unbiasedness is not a particularly good property.
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Bias and Unbiasedness (cont.)

In theoretical statistics unbiasedness is a technical term that
allows us to state some theorems concisely. Later we will cover
a theorem (the Gauss-Markov theorem) that says the sample
mean Xn is the best linear unbiased estimator (BLUE) of the
population mean µ.

Theoretically naive people, on hearing about this theorem, often
think this means that Xn is best. Doesn’t the theorem say that?
The best estimator is Xn, which is linear and unbiased?

No. The theorem says that among all linear and unbiased esti-
mators, Xn is the best. The theorem says nothing about non-
linear or biased estimators. Some of them may be better than
Xn. Probably some are. Otherwise we could state and prove a
stronger theorem.
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Bias and Unbiasedness (cont.)

Also the Gauss-Markov theorem doesn’t say unbiasedness is a

good thing.

It assumes unbiasedness. It doesn’t conclude anything about

unbiasedness.

We are playing the theoretical game. If we make certain as-

sumptions, we can get certain conclusions. Here we assume

unbiasedness and linearity. If we don’t assume them, then we

don’t have a theorem.
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Bias and Unbiasedness (cont.)

Sometimes unbiasedness necessitates silliness.

Suppose θ is a parameter known to be nonnegative: the param-
eter space is [0,∞).

Suppose θ̂n is an unbiased estimator of θ.

Then we know

Eθ(θ̂n) = θ, θ ≥ 0.

If θ̂n is non-silly, then it should be nonnegative valued so every
estimate is a possible parameter value. But then

E0(θ̂n) = 0

implies θ̂n = 0 almost surely.
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Bias and Unbiasedness (cont.)

Usually the only way to make an estimator constant almost surely
is to make it constant period. But then it is silly.

An old friend of mine used to say “I’m ambidextrous, I do equally
poorly with both hands”.

The “principle” of unbiasedness is doing equally poorly on both
sides as a matter of “principle”. Stated that way, it is obviously
dumb.

If θ̂n is an unbiased estimator of a nonnegative parameter θ, then

T = θ̂nI[0,∞)(θ̂n)

is a better estimator. When θ̂n is nonnegative, the two estimators
agree. When θ̂n is negative, then T is zero and closer to the true
unknown value of θ.
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Mean Square Error

The mean square error (MSE) of an estimator T of a parameter

θ is

mseθ(T ) = Eθ{(T − θ)2}

The mean square error formula (5101, deck 2, slides 33-36) says

mseθ(T ) = varθ(T ) + b(θ)2

where b(θ) is the bias. In short

mean square error = variance + bias2
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Mean Square Error (cont.)

MSE is one sensible measure of goodness of an estimator. We

will use it a lot.

MSE is another reason why unbiasedness in not necessarily good.

Often there is a bias-variance trade-off. You can make bias small

only by increasing variance and vice versa. The only way you can

make bias zero is to make variance very large or even infinite.

That’s not a good trade.

More on the bias-variance trade-off near the end of the semester.
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Mean Square Error (cont.)

We already have two estimators of the population variance σ2

and now we add another

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2

Vn =
1

n

n∑
i=1

(Xi −Xn)2

Wn =
1

n+ 1

n∑
i=1

(Xi −Xn)2

S2
n is the obvious unbiased estimator. Vn is the variance of the

empirical distribution and has nice properties because of that.

Wn minimizes MSE if the data are IID normal (homework prob-

lem).
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Mean Square Error (cont.)

The unbiased estimator is not best if MSE is the criterion (Wn

is best).

This is because of bias-variance trade-off. You need some bias

to reduce the variance sufficiently to get the smallest MSE.
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Mean Square Error (cont.)

Every function of a parameter is a parameter.

It is not true that every function of an unbiased estimator is

unbiased (you can’t take nonlinear functions out of expectations,

5101, deck 2, slide 5–9).
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Mean Square Error (cont.)

S2
n is an unbiased estimator of σ2.

Sn is a biased estimator of σ.

var(Sn) = E(S2
n)− E(Sn)2

implies

E(Sn)2 = σ2 − var(Sn)

so Sn could only be unbiased if it had variance zero, which would

imply it is almost surely constant. But we can’t make it constant

unless we know the value of the parameter, in which case we

don’t need to estimate it.
44



Consistency

A statistic θ̂n is a consistent estimator of a parameter θ if

θ̂n
P−→ θ, as n→∞

The sample mean is a consistent estimate of the population

mean.

The sample median is a consistent estimate of the population

median.

The sample variance S2
n is a consistent estimate of the popula-

tion variance σ2.

The empirical variance Vn is also a consistent estimate of the

population variance σ2.
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Consistency (cont.)

Consistency is a very weak property. Really silly estimators like

the estimator always equal to 42 are not consistent (unless the

true unknown parameter value just happens to be 42).

It is hard to justify using an inconsistent estimator for anything,

but just because an estimator is consistent doesn’t make it good.
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Consistency and Asymptotically Normal

A statistic θ̂n is a consistent and asymptotically normal (CAN)

estimator of a parameter θ if

√
n(θ̂n − θ)

D−→ N (0, τ2), as n→∞

for some constant τ2 that doesn’t necessarily have anything to

do with the population variance.

The constant τ2 is called the asymptotic variance of the CAN

estimator θ̂n.
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Consistency and Asymptotically Normal (cont.)

The sample mean Xn is a CAN estimate of the population mean

µ. Its asymptotic variance is the population variance σ2.

The sample median is a CAN estimate of the population me-

dian m. Its asymptotic variance is 1/[4f(m)2], where f is the

population PDF.

The sample variance S2
n is a CAN estimate of the population

variance σ2. Its asymptotic variance is µ4 − σ4, where µ4 is the

population fourth central moment.

All already done.
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Asymptotic Relative Efficiency

The asymptotic relative efficiency (ARE) of two CAN estimators

of the same parameter is the ratio of their asymptotic variances.

This is a sensible measure of goodness of an estimator, because

if τ2 is the asymptotic variance of θ̂n, this means

θ̂n ≈ N
(
θ,
τ2

n

)

The actual variance for sample size n is approximately τ2/n.
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Asymptotic Relative Efficiency

So suppose we have two CAN estimators of the same parameter
but different asymptotic variances τ2

1 and τ2
2 and different sample

sizes n1 and n2.

Arrange so that the actual variances are approximately equal

τ2
1

n1
≈
τ2

2

n2

Then

τ2
1

τ2
2

≈
n1

n2

The ARE is approximately the ratio of sample sizes need to get
the same accuracy, because variance measures the spread-out-
ness of the sampling distribution of an estimator.
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Asymptotic Relative Efficiency (cont.)

If cost of data is proportional to sample size (which figures),

then ARE is the correct measure of relative cost to get the

same accuracy.

When stating an ARE, it is unclear which is better just from the

number. Is 2.73 the ARE τ2
1/τ

2
2 or the ARE τ2

2/τ
2
1 ? For clarity

state not only the number but also which estimator is better.

The one with the smaller asymptotic variance is better.
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Asymptotic Relative Efficiency (cont.)

For a symmetric population distribution having second moments,

the sample mean and the sample median are both CAN estima-

tors of the center of symmetry, which is also the mean and the

median.

We use ARE to compare them.

The ARE depends on the population distribution.
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Asymptotic Relative Efficiency (cont.)

Suppose the population distribution is N (µ, σ2).

The sample mean is a CAN estimator of µ. Its asymptotic vari-

ance is σ2.

The sample median is a CAN estimator of µ. Its asymptotic

variance is

1

4f(µ)2
=

1

4 ·
(

1√
2πσ

)2 =
πσ2

2

Since σ2 < πσ2/2, the sample mean is the better estimator. The

ARE is π/2 or 2/π, depending on which you put on top.
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Asymptotic Relative Efficiency (cont.)

When the population is normal, the sample mean is a better

estimator of µ than the sample median. The ARE is either

π

2
= 1.570796

or
2

π
= 0.6366198
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Asymptotic Relative Efficiency (cont.)

Suppose the population distribution is Laplace(µ, σ2) using the

parametrization on the brand name distributions handout.

The sample mean is a CAN estimator of µ. Its asymptotic vari-

ance is σ2.

The sample median is a CAN estimator of µ. Its asymptotic

variance is

1

4f(µ)2
=

1

4 ·
(√

2
2σ

)2 =
σ2

2

Since σ2 > σ2/2, the sample median is the better estimator. The

ARE is 1/2 or 2, depending on which you put on top.
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Asymptotic Relative Efficiency (cont.)

When the population is Laplace, also called double exponential,

the sample median is a better estimator of µ than the sample

mean. The ARE is either 2 or 1/2.
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Asymptotic Relative Efficiency (cont.)

We have already seen enough to see that which estimator is

better depends on the population distribution.

Sometimes the mean is better (for example, when the population

is normal), and sometimes the median is better (for example,

when the population is Laplace).

You have to calculate the ARE for each population distribution

you want to know about.
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Method of Moments

The method of moments is a catchphrase for the following style
of estimation. We already know

• Every empirical ordinary or central moment of order k is a
consistent estimator of the corresponding population mo-
ment, assuming that population moments of order k exist
(deck 1, slides 90–94).

• Every empirical ordinary or central moment of order k is a
CAN estimator of the corresponding population moment, as-
suming that population moments of order 2k exist (deck 1,
slides 82–89 and 95–100).

These empirical moments are jointly consistent or jointly CAN,
although we didn’t prove this.
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Method of Moments (cont.)

Apply the continuous mapping theorem to the first and the mul-

tivariate delta method to the second, obtaining

• Every continuous function of empirical ordinary or central

moments of order k or less is a consistent estimator of the

same function of the corresponding population moments, as-

suming that population moments of order k exist.

• Every differentiable function of empirical ordinary or central

moments of order k or less is a CAN estimator of the same

function of the corresponding population moments, assuming

that population moments of order 2k exist.
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Method of Moments (cont.)

Thus the method of moments goes as follows. If there are p

unknown parameters, choose p moments, evaluate them, this

gives p equations giving moments as a function of parameters.

Solve these equations for the parameters, so one has p equations

giving parameters as a function of moments. Plug in empiri-

cal moments for population moments. This gives estimates of

the parameters as a function of empirical moments. Derive the

asymptotic distribution of the estimators using the delta method.
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Method of Moments (cont.)

Our first example is trivial. Suppose X1, X2, . . . are IID Poi(µ).
Find a method of moments estimator for µ. Since there is one
parameter, we need one equation, and the obvious one uses the
first ordinary moment

Eµ(X) = µ

which says the parameter µ is the identity function of the first
ordinary moment µ. Hence the method of moments estimator is

µ̂n = Xn

And, of course, we already know its asymptotic distribution

Xn ≈ N
(
µ,
µ

n

)
because the population variance is also µ for the Poisson distri-
bution.
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Method of Moments (cont.)

Nothing about the method of moments tells us which moments
to use. For this Poisson example, we could have used the second
central moment

varµ(X) = µ

which says the parameter µ is the identity function of the second
central moment µ. Hence the method of moments estimator is

µ̂n = Vn

And, of course, we already know its asymptotic distribution

Vn ≈ N
(
µ,
µ4 − µ2

n

)
where µ4 is the fourth central moment for the Poisson distribu-
tion.
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Method of Moments (cont.)

But why would anyone use µ̂n = Vn when µ̂n = Xn is much

simpler?

We see that there can be many different method of moments

estimators for a given problem. But we usually say “the” method

of moments estimator, meaning the simplest and most obvious.
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Method of Moments (cont.)

Suppose X1, X2, . . . are IID Exp(λ). Find a method of moments

estimator of λ. Since there is one parameter, we need one equa-

tion, and the obvious one uses the first ordinary moment

Eλ(X) =
1

λ

Solving for λ gives

λ =
1

Eλ(X)

Hence the method of moments estimator is

λ̂n =
1

Xn
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Method of Moments (cont.)

We have already worked out its asymptotic distribution (5101,

deck 7, slides 56–58)

λ̂n ≈ N
(
λ,
λ2

n

)

65



Method of Moments (cont.)

Suppose X1, X2, . . . are IID Gam(α, λ). Find method of moments
estimators of α and λ. Since there are two parameters, we need
two equations, and the obvious ones are

Eα,λ(X) =
α

λ

varα,λ(X) =
α

λ2

It is not always easy to solve simultaneous nonlinear equations,
but here

α =
Eα,λ(X)2

varα,λ(X)

λ =
Eα,λ(X)

varα,λ(X)
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Method of Moments (cont.)

Hence the method of moments estimators for the two-parameter
gamma statistical model (two-parameter meaning both parame-
ters unknown) are

α̂n =
X

2
n

Vn

λ̂n =
Xn

Vn
or (

α̂n
λ̂n

)
= g(α̂n, λ̂n)

where

g(u, v) =

(
u2/v
u/v

)
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Method of Moments (cont.)

To find the joint asymptotic normal distribution of these estima-

tors, start with the known asymptotic normal distribution of the

empirical moments (deck 1, slide 101)(
Xn

Vn

)
≈ N

(
µ,

M

n

)
where

µ =

(
α/λ

α/λ2

)
and

M =

(
µ2 µ3
µ3 µ4 − µ2

2

)

where we know µ2 = α/λ2 but need to work out µ3 and µ4.
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Method of Moments (cont.)

Using the theorem for the gamma distribution and the gamma

function recursion formula (both on brand name distributions

handout), we know

Eα,λ(Xk) =
Γ(α+ k)

Γ(α)λk

=
α(α+ 1) · · · (α+ k − 1)

λk

(5101, deck 3, slides 140–141).

69



Method of Moments (cont.)

µ3 = E

{(
X −

α

λ

)3
}

= E(X3)−
3E(X2)α

λ
+

3E(X)α2

λ2
−
α3

λ3

=
α(α+ 1)(α+ 2)

λ3
−

3α2(α+ 1)

λ3
+

3α3

λ3
−
α3

λ3

=
2α

λ3
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Method of Moments (cont.)

µ4 = E

{(
X −

α

λ

)4
}

= E(X4)−
4E(X3)α

λ
+

6E(X2)α2

λ2
−

4E(X)α3

λ3
+
α4

λ4

=
α(α+ 1)(α+ 2)(α+ 3)

λ4
−

4α2(α+ 1)(α+ 2)

λ4

+
6α3(α+ 1)

λ4
−

4α4

λ4
+
α4

λ4

=
3α(α+ 2)

λ4
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Method of Moments (cont.)

Hence the asymptotic variance matrix is

M =

(
µ2 µ3
µ3 µ4 − µ2

2

)

=

(
α/λ2 2α/λ3

2α/λ3 2α(α+ 3)/λ4

)
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Method of Moments (cont.)

Now we are ready to apply the multivariate delta method (5101,

deck 7, slide 100–101) with the change-of-parameter

g(u, v) =

(
u2/v
u/v

)
which has derivative matrix

∇g(u, v) =

(
2u/v −u2/v2

1/v −u/v2

)
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Method of Moments (cont.)

So

g

(
α

λ
,
α

λ2

)
=

(
α
λ

)
and

∇g
(
α

λ
,
α

λ2

)
=

(
2λ −λ2

λ2/α −λ3/α

)
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Method of Moments (cont.)

Hence (finally!) the asymptotic variance of the method of mo-

ments estimators for the two-parameter gamma distribution is

(5101, deck 7, slide 100–101)(
2λ −λ2

λ2/α −λ3/α

)(
α/λ2 2α/λ3

2α/λ3 2α(α+ 3)/λ4

)(
2λ λ2/α

−λ2 −λ3/α

)

=

(
0 −2α(α+ 1)/λ2

−1 −2(α+ 2)/λ

)(
2λ λ2/α

−λ2 −λ3/α

)

=

(
2α(α+ 1) 2(α+ 1)λ
2(α+ 1)λ (2α+ 3)λ2/α

)
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Method of Moments (cont.)

In summary,(
α̂n
λ̂n

)
≈ N

[(
α
λ

)
,
1

n

(
2α(α+ 1) 2(α+ 1)λ
2(α+ 1)λ (2α+ 3)λ2/α

)]
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Error Bars

Long before statistics became a subject with its own academic

departments, scientists used error bars on plots to show variabil-

ity of estimators.

Now academic statisticians would say these are approximate,

large n, or asymptotic confidence intervals. We will give an

official definition of confidence intervals, which was formulated

in the 1930’s by J. Neyman and E. S. Pearson. But scientists

had been using error bars for 200 years before that.
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Plug-In

Suppose we have a CAN estimator

θ̂n ≈ N
(
θ,
τ2

n

)
This says the estimator θ̂n differs from the parameter it estimates
θ by about τ/

√
n on average. More precisely, the asymptotic

normal distribution puts probability

Rweb> pnorm(2) - pnorm(-2)

[1] 0.9544997

within two standard deviations of the mean, so, when n is large,

Pr

(
|θ̂n − θ| ≤

2τ
√
n

)
≈ 0.9544997
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Plug-In (cont.)

Statisticians are usually fussier. Since

Rweb> - qnorm(0.05 / 2)

[1] 1.959964

statisticians teach students to say

Pr

(
|θ̂n − θ| ≤

1.959964τ
√
n

)
≈ 0.95

but it really doesn’t matter. Either statement is only approxi-

mate.
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Plug-In (cont.)

Now we are faced with the infinite regress problem. We want

error bars for θ, which we don’t know. But we also don’t know

any parameters, so we don’t know the asymptotic variance τ2

either. We could estimate that, but then what? An interval for

τ2 that requires its asymptotic variance, which we don’t know

either? And so forth, ad infinitum?

Fortunately, there is a simple technique, the plug-in principle,

that saves the day.
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Plug-In (cont.)

We have a CAN estimator

√
n(θ̂n − θ)

D−→ Y

where

Y ∼ N (0, τ2)

Suppose we also have a consistent estimator of the asymptotic

variance

τ̂2
n

P−→ τ2

81



Plug-In (cont.)

Combine using Slutsky’s theorem

θ̂n − θ
τ̂n/
√
n

D−→
Y

τ

A linear function of a normal is normal, so Y/τ is normal with

parameters

E(Y )

τ
= 0

var(Y )

τ2
= 1

Thus

θ̂n − θ
τ̂n/
√
n

D−→ N (0,1)
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Plug-In (cont.)

The “plug-in” of τ̂n for τ — of a consistent estimator of the

asymptotic variance for the asymptotic variance — eliminates

the nuisance parameter and eliminates the infinite regress.

Now only the parameter of interest is unknown, and we can make

error bars based on

Pr

(
|θ̂n − θ| ≤

2τ̂n√
n

)
≈ 0.9544997

or

Pr

(
|θ̂n − θ| ≤

1.959964τ̂n√
n

)
≈ 0.95
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Error Bars with Plug-In

The usual woof says the error bars have endpoints

θ̂n ± 2
τ̂n√
n

or

θ̂n ± 1.96
τ̂n√
n

if one is being fussy. Statisticians call the intervals with these

endpoints approximate (large n, asymptotic) 95% confidence in-

tervals for θ.
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Confidence Intervals

More generally, statisticians allow any probability. If zα denotes

the 1− α quantile of the standard normal distribution, then

Pr

(∣∣∣∣∣ θ̂n − θτ̂n/
√
n

∣∣∣∣∣ ≤ zα/2

)
≈ 1− α

and the interval with endpoints

θ̂n ± zα/2
τ̂n√
n

is called the asymptotic confidence interval for θ with coverage

probability 1− α or with confidence level 100(1− α)%.
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Confidence Intervals (cont.)

We have now arrived at one of the two key concepts of fre-

quentist statistical inference: confidence intervals and hypoth-

esis tests. To be precise, we have arrived at a special case of

confidence intervals. There is more to be said on the subject.

Before getting to that, a few stories.
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Confidence Intervals (cont.)

A statistician, Lincoln Moses, had a slogan “use error bars”. He

said that if he only got that one idea across in intro stats courses,

he succeeded.

Then he went to Washington as an official in the Carter admin-

istration. When we came back to Stanford, he had a new slogan

“use data”.

92.3% of all statistics are made up. Especially in politics. Espe-

cially in the mainstream media. Or people just tell stories.
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Confidence Intervals (cont.)

The worst mistake in statistics. Don’t use data, just tell stories.

Wrong! Anecdotes are not data.

The second worst mistake in statistics. Don’t use error bars.

Confuse the sample and the population. Confuse statistics and

parameters. Wrong! Sample quantities are only estimates, not

truth.

The third worst mistake in statistics. Ignore confidence levels.

Wrong! It’s called a 95% confidence interval because it misses

5% of the time.
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Confidence Intervals (cont.)

A confidence region is a random subset of the parameter space

— random because it is a function of the data — that has a

stated probability of covering the true unknown parameter value.

If R is the region, then

Prθ(θ ∈ R) = 1− α, for all θ ∈ Θ

where Θ is the parameter space and 1−α is the stated coverage

probability.

A confidence interval is the special case where the parameter

is one-dimensional and the set R is always an interval, in which

case it can be described by giving two statistics, which are the

endpoints of the interval.
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Confidence Intervals (cont.)

Those who like to be fussily philosophical take time out for phi-

losophy at this point. If you are a hard-core frequentist, you

stress that Prθ(θ ∈ R) does not treat θ as a random variable.

That’s what Bayesians do, and frequentists are not Bayesians.

The random thingummy in Prθ(θ ∈ R) is the region R.

Some fussbudgets will even say it is wrong to say this is the

“probability that θ is in R” — instead one must always say

the “probability that R contains θ” — even though logically the

statements are equivalent. In other words, it is not enough to

say what you mean, you must say it in a way that shows your

identification with the frequentists.
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Confidence Intervals (cont.)

Confidence regions are little used and we will say no more about

them. We have an official definition

Prθ(θ ∈ R) = 1− α, for all θ ∈ Θ

but have no idea how to achieve this in general. Arranging exact

equality for all θ ranges from the very difficult to the impossible.

The best one can hope for in most applications is only approxi-

mate coverage (replace = with ≈) as we did in the large-sample

intervals, which are the only ones we have done so far.
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Confidence Intervals (cont.)

For discrete data, exact confidence intervals are impossible for

a very simple reason. Consider the binomial distribution with

sample size n.

There are only n + 1 possible data values: 0, 1, . . ., n. Hence

there are only n + 1 possible intervals one can make that are

functions of the data. Let Rx denote the confidence interval for

data x. The coverage probability is

Prp(p ∈ R) = Ep{IR(p)} =
n∑

k=0

(n
k

)
pk(1− p)n−kIRk(p)

Clearly, this piecewise polynomial function of p cannot be con-

stant (equal to 1− α for all p such that 0 < p < 1).
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Confidence Intervals (cont.)

When exact coverage is impossible, one could hope for conser-

vative coverage

Prθ(θ ∈ R) ≥ 1− α, for all θ ∈ Θ

However, this is rarely done. Conservative confidence intervals

for the binomial distribution do exist (Clopper-Pearson intervals),

but many people argue that they are too conservative, hence

more misleading than approximate intervals. So conservative

confidence intervals are rarely used for the binomial distribution

and never used AFAIK for any other distribution.

We will say no more about conservative intervals. We will either

achieve exact coverage or be content with approximate coverage.
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Pivotal Quantities

A random variable is called pivotal if, firstly, it is a function only

of data and the parameter of interest (not a function of nuisance

parameters) and, secondly, its distribution does not depend on

any parameters.

The most important example is the t pivotal quantity. If the

data are IID normal, then

Xn − µ
Sn/
√
n
∼ t(n− 1)

(deck 1, slide 76). If µ is the parameter of interest, then the

left-hand side contains only data and the parameter of interest

and does not contain the nuisance parameter σ2. The right hand

side, the sampling distribution, contains no parameters.
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Pivotal Quantities (cont.)

A random variable is called asymptotically pivotal if, firstly, it

is a function only of data and the parameter of interest (not a

function of nuisance parameters) and, secondly, its asymptotic

distribution does not depend on any parameters.

The most important examples are those obtained using the plug-

in principle

θ̂n − θ
τ̂n/
√
n
≈ N (0,1)

(slide 82). If θ is the parameter of interest, then the left-hand

side contains only data and the parameter of interest and does

not contain the nuisance parameter τ2. The right hand side, the

asymptotic sampling distribution, contains no parameters.
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Pivotal Quantities (cont.)

Sometimes pivotal quantities are called exact to distinguish them

from asymptotically pivotal quantities. Strictly speaking, the

“exact” is redundant. The term “pivotal quantity” means exact

pivotal quantity if the adverb “asymptotically” is not attached.

Just like we used asymptotically pivotal quantities to make ap-

proximate confidence intervals, we use exact pivotal quantities

to make exact confidence intervals.
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Exact Confidence Intervals

Let tα denote the 1 − α quantile of the t(n − 1) distribution.

Although this is not indicated by the notation, it does depend

on the degrees of freedom.

Since

Pr

(∣∣∣∣∣Xn − µ
Sn/
√
n

∣∣∣∣∣ ≤ tα/2

)
= 1− α

the interval with endpoints

Xn ± tα/2
Sn√
n

is said to be an exact confidence interval for the population mean

with coverage probability 1−α or confidence level 100(1−α)%.

97



Exact Confidence Intervals (cont.)

The number tα/2 is called a critical value.

Rweb> qt(1 - 0.05 / 2, 9)

[1] 2.262157

Rweb> qt(1 - 0.05 / 2, 19)

[1] 2.093024

Rweb> qt(1 - 0.05 / 2, 99)

[1] 1.984217

are t critical values for 95% confidence and n = 10, 20, and 100,
respectively. As n→∞ they converge to

Rweb> qnorm(1 - 0.05 / 2)

[1] 1.959964
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Exact Confidence Intervals (cont.)

Rweb> qt(1 - 0.1 / 2, 9)

[1] 1.833113

Rweb> qt(1 - 0.1 / 2, 19)

[1] 1.729133

Rweb> qt(1 - 0.1 / 2, 99)

[1] 1.660391

are t critical values for 90% confidence and n = 10, 20, and 100,

respectively. As n→∞ they converge to

Rweb> qnorm(1 - 0.1 / 2)

[1] 1.644854
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Exact Confidence Intervals (cont.)

The probability 1− α is called the coverage probability in theo-
retical statistics. In applied statistics, it is always converted to a
percentage and called the confidence level.

This is the only place percentages are used except in intro stats
courses, where some textbook authors think converting prob-
abilities to percentages is helpful rather than confusing — or
perhaps those authors think conversion to percentages is a skill
students in intro stats courses still need to practice. Converting
probabilities to percentages is always confusing IMHO, especially
in intro stats courses.

The phrase “95% confidence interval” is so widely used there
is no avoiding the percentage there. But don’t use percentages
anywhere else.
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Exact Confidence Intervals (cont.)

A member of my own department actually said to me that these

exact t confidence intervals have no valid application because

they assume exact normality of the data and no data are ever

exactly normal. (His research area is probability not statistics,

and he doesn’t do applied statistics.)

His point is correct as far as it goes. No data are exactly normal.

But the t confidence intervals do the right thing when n is large

and make a sensible correction when n is small. There is no

other method for making such a sensible correction when n is

small. Therefore, even if not really “exact” they are still the

most sensible thing to do in this situation.
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Asymptotic Nonparametric Distribution Free

A method is said to be asymptotically nonparametric distribution

free if firstly, it works for a nonparametric statistical model (a

class of distributions too large to parametrize with a finite set

of parameters) and, secondly, it gives asymptotic approximation

that does not depend on unknown parameters.
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Asymptotic Nonparametric Distribution Free (cont.)

Our main examples so far are the asymptotic confidence intervals

based on plug-in. Consider the specific interval

Xn ± zα/2
Sn√
n

for the population mean. This is asymptotically nonparametric

distribution free because it works for a nonparametric statistical

model, all distributions having second moments, and the asymp-

totic distribution

Xn − µ
Sn/
√
n

D−→ N (0,1)

does not depend on unknown parameters.
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Asymptotic Nonparametric Distribution Free (cont.)

The “exact” t confidence intervals are also asymptotically non-

parametric distribution free because

t(n− 1)→ N (0,1), as n→∞

hence

tα/2 → zα/2, as n→∞

Thus the t confidence intervals are asymptotically equivalent to

the plug-in intervals.
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Exact Confidence Intervals (cont.)

The fact that t confidence intervals are asymptotically nonpara-

metric distribution free is the first part of our defense of them

for practical applications. The second part of our defense is that

t critical values are always larger than the normal critical values

for the same coverage probability.

When I was a freshman in college, we did some “quantitative

analysis” in intro chemistry. We measured the iron content in a

little vial of sand we were given. The instructions said to calcu-

late the average and standard deviation of n = 2 measurements

and report X ± 2Sn/
√
n as the confidence interval (the chemists

didn’t teach us about t distributions).
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Exact Confidence Intervals (cont.)

If I had known about t distributions back then, I should have

used the t critical value

Rweb> qt(1 - 0.05 / 2, 1)

[1] 12.70620

Clearly, n = 2 is not “large” so the interval Xn± 2Sn/
√

2, which

has only asymptotic, large n, justification, is indefensible. The

interval Xn ± 12.7Sn/
√

2, being much wider has a much larger

coverage probability, which even if not exactly 0.95 will be a lot

closer to 0.95 than that of the indefensible interval.
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Exact Confidence Intervals (cont.)

Nevertheless, t intervals do not work well unless the population

distribution is approximately normal — at least roughly symmet-

ric, unimodal, and light tailed.

Our defense of them is weak. Nonparametric methods (covered

later) are better.
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Exact Confidence Intervals (cont.)

Assuming the data are IID normal, we can also make confidence

intervals for the unknown true population variance σ2 based on

the other pivotal quantity on slide 76

(n− 1)S2
n

σ2
∼ chi2(n− 1)

Let χ2
β denote the 1− β quantile of the chi2(n− 1) distribution.

Although this is not indicated by the notation, it does depend

on the degrees of freedom. Then

Pr

(
χ2

1−α+β <
(n− 1)S2

n

σ2
< χ2

β

)
= 1− α
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Exact Confidence Intervals (cont.)

Hence

(n− 1)S2
n

χ2
β

< σ2 <
(n− 1)S2

n

χ2
1−α+β

is an exact 1 − α confidence interval for σ2 assuming the data
are IID normal. The case β = α/2 gives equal tailed intervals.

If n = 10 and α = 0.05, the critical values χ2
α/2 and χ2

1−α/2 are
found by

Rweb> qchisq(0.05 / 2, 9)

[1] 2.700389

Rweb> qchisq(1 - 0.05 / 2, 9)

[1] 19.02277
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Exact Confidence Intervals (cont.)

These “exact” confidence intervals for the population variance
are not asymptotically nonparametric distribution free. They
depend critically on the assumption of normality. From the large
degree of freedom approximation for the chi-square distribution

chi2(n) ≈ N (n,2n), when n is large

we get

(n− 1)S2
n

σ2
≈ N (n,2n)

but this cannot agree with the nonparametric asymptotics

S2
n ≈ N

(
σ2,

µ4 − σ4

n

)
because one contains the population forth central moment µ4
and the other doesn’t.
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Exact Confidence Intervals (cont.)

Another criticism of intervals based on the chi-square distribution

is that there is no particular reason to use equal tailed intervals.

If the reference distribution is symmetric, then equal-tailed make

sense. But not otherwise.
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Pivotal Quantities Revisited

There is no single best pivotal quantity for a given application.

Consider the binomial distribution. We know there can be no

exact confidence interval. The obvious method of moments es-

timator is p̂n = X/n, where X ∼ Bin(n, p) is the data. The CLT

says
√
n(p̂n − p)

D−→ N
(
0, p(1− p)

)
Since the right-hand side contains parameters, we need to es-

timate the asymptotic variance, and the obvious estimator is

p̂n(1− p̂n). Thus the plug-in principle gives

p̂n − p√
p̂n(1− p̂n)/n

D−→ N (0,1)
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Pivotal Quantities Revisited (cont.)

This gives

p̂n ± zα/2

√
p̂n(1− p̂n)

n

for the 100(1− α)% asymptotic confidence interval for p.

But we could also use the continuous mapping theorem to obtain

another asymptotic pivotal quantity

p̂n − p√
p(1− p)/n

D−→ N (0,1)
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Pivotal Quantities Revisited (cont.)

The corresponding confidence interval is the set of p that satisfy

the inequality ∣∣∣∣∣∣∣
p̂n − p√
p(1− p)/n

∣∣∣∣∣∣∣ ≤ zα/2

To find that we square both sides and clear the denominator,

obtaining

n(p̂n − p)2 ≤ z2
α/2p(1− p)

or

np̂2
n − 2npp̂n + np2 ≤ z2

α/2p− z
2
α/2p

2
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Pivotal Quantities Revisited (cont.)

or

(n+ z2
α/2)p2 − (2np̂n + z2

α/2)p+ np̂2
n ≤ 0

The left-hand side is a quadratic function with positive coefficient

for the leading term. Hence it goes to ∞ as p goes to ±∞.

Thus the desired interval has endpoints that are the roots of the

quadratic equation

(n+ z2
α/2)p2 − (2np̂n + z2

α/2)p+ np̂2
n = 0
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Pivotal Quantities Revisited (cont.)

These endpoints are

2np̂n + z2
α/2 ±

√
(2np̂n + z2

α/2)2 − 4(n+ z2
α/2)np̂2

n

2(n+ z2
α/2)

2np̂n + z2
α/2 ±

√
4np̂nz2

α/2 + z4
α/2 − 4z2

α/2np̂
2
n

2(n+ z2
α/2)

=
p̂n +

z2
α/2

2n
± zα/2

√√√√p̂n(1− p̂n)

n
+
z2
α/2

4n21 +
z2
α/2

n


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Pivotal Quantities Revisited (cont.)

Yet another asymptotically pivotal quantity is suggested by the

variance stabilizing transformation for the binomial distribution

g(p) = asin(2p− 1)

which gives the asymptotically pivotal quantity

√
n
(
g(p̂n)− g(p)

) D−→ N (0,1)

(5101, deck 7, slide 67).
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Pivotal Quantities Revisited (cont.)

If we define a new parameter

θ = asin(2p− 1)

and its estimator

θ̂n = asin(2p̂n − 1)

we get

θ̂n ± zα/2
1
√
n

as an asymptotic 100(1− α)% confidence interval for θ.
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Pivotal Quantities Revisited (cont.)

If g is an invertible function, and (L,R) is a confidence interval

for g(p) for any parameter p, then(
g−1(L), g−1(R)

)
is the corresponding confidence interval for p if g is increasing,

and (
g−1(R), g−1(L)

)
is the corresponding confidence interval for p if g is decreasing.
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Pivotal Quantities Revisited (cont.)

In this case

θ = asin(2p− 1)

solved for p is

p =
1 + sin(θ)

2
so

g−1(θ) =
1 + sin(θ)

2
so

1 + sin(θ̂n ± zα/2/
√
n)

2

are the endpoints of an asymptotic 100(1 − α)% confidence in-
terval for p.
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Pivotal Quantities Revisited (cont.)

So now we have three equally good asymptotic confidence in-
tervals for the parameter of the binomial distribution — equally
good as far as asymptotics can tell us.

Which should we use? No theory tells us how these work in
practice, when n hasn’t gone to infinity. We can simulate various
cases and see how each of the intervals works in each simulation.
People have done that and concluded that the interval

p̂n +
z2
α/2

2n
± zα/2

√√√√p̂n(1− p̂n)

n
+
z2
α/2

4n21 +
z2
α/2

n


is the best of the three.
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Pivotal Quantities Revisited (cont.)

Let’s try them out. The first is done by

Rweb> n <- 100

Rweb> x <- 4

Rweb> phat <- x / n

Rweb> phat + c(-1, 1) * qnorm(0.975) * sqrt(phat * (1 - phat) / n)

[1] 0.001592707 0.078407293

122



Pivotal Quantities Revisited (cont.)

With x and n defined as before, the second is done by

Rweb> prop.test(x, n, correct = FALSE)

1-sample proportions test without continuity correction

data: x out of n, null probability 0.5

X-squared = 84.64, df = 1, p-value < 2.2e-16

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.01566330 0.09837071

sample estimates:

p

0.04
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Pivotal Quantities Revisited (cont.)

With x and n defined as before, the third is done by

Rweb> thetahat <- asin(2 * phat - 1)

Rweb> (1 + sin(thetahat + c(-1, 1) * qnorm(0.975) / sqrt(n))) / 2

[1] 0.01064524 0.08696897
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Pivotal Quantities Revisited (cont.)

The three asymptotic 95% confidence intervals

(0.0016,0.0784)

(0.0157,0.0984)

(0.0106,0.0870)

do not differ by much numerically, but their actual achieved cov-

erage probabilities may differ a lot (only a simulation study can

tell that).

There is no one right way to do a confidence interval.
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Two-Sample Confidence Intervals

Often we don’t want a confidence interval for a parameter but

for the difference of parameter values for two samples.

These come in two forms: paired comparisons and two indepen-

dent samples.
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Paired Comparisons

In paired comparisons, the data come in pairs. The pairs are
assumed IID, but the two components of each pair are not as-
sumed independent. In fact paired comparison procedures work
best if the pairs are highly positively correlated. This is often
arranged by making the components of each pair two measure-
ments on the same individual (before and after, left and right,
treatment and control, etc.)

All paired comparison procedures use a simple trick. If the pairs
are (Xi, Yi), i = 1, . . ., n, then form the differences

Zi = Xi − Yi
which are IID. Analyze the Zi. This is a one-sample procedure
just like the one-sample procedures we have already done.
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Two Independent Samples

If X1, . . ., Xm are IID and Y1, . . ., Yn are IID and both samples
are independent of each other. Then

E(Xm − Y n) = µX − µY

var(Xm − Y n) =
σ2
X

m
+
σ2
Y

n
where µX and µY denote the means of the Xi and Yi, respectively,
and similarly for the variances.

From this it seems reasonable that

Xm − Y n ≈ N
(
µX − µY ,

σ2
X

m
+
σ2
Y

n

)
when m and n are large. This is true, although with two different
sample sizes m and n, we don’t have the tools to prove it.
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Two Independent Samples

From this result the asymptotically pivotal quantity resulting

from plug-in is

(Xm − Y n)− (µX − µY )√
S2
X,m
m +

S2
Y,n
n

D−→ N (0,1)

where S2
X,m and S2

Y,n are sample variances for the two samples.

This gives

Xm − Y n ± zα/2

√√√√S2
X,m

m
+
S2
Y,n

n

as an asymptotic 100(1− α)% confidence interval for µX − µY .
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Two Independent Samples (cont.)

Things become considerably more complicated if we want an

exact confidence interval in the case of two independent samples.

We must assume each of the two independent samples are IID

normal. Then we know

(Xm − Y n)− (µX − µY )√
σ2
X
m +

σ2
Y
n

∼ N (0,1)

(m− 1)S2
X,m

σ2
X

+
(n− 1)S2

Y,n

σ2
Y

∼ chi2(m+ n− 2)

and these pivotal quantities are independent.
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Two Independent Samples (cont.)

But when we try to make a t random variable out of them

T =

(Xm−Y n)−(µX−µY )√
σ2
X
m +

σ2
Y
n√√√√√ (m−1)S2

X,m

σ2
X

+
(n−1)S2

Y,n

σ2
Y

m+n−2

∼ t(m+ n− 2)

the nuisance parameters don’t cancel unless we assume σX = σY .
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Two Independent Samples (cont.)

So assume σX = σY . Then

T =

(Xm−Y n)−(µX−µY )√
1
m+1

n√
(m−1)S2

X,m+(n−1)S2
Y,n

m+n−2

∼ t(m+ n− 2)

is a pivotal quantity if µX − µY is the parameter of interest.

And we can use it to make an exact confidence interval for this

parameter.
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Two Independent Samples (cont.)

To clean up the math, most intro stats books introduce

S2
pooled =

(m− 1)S2
X,m + (n− 1)S2

Y,n

m+ n− 2

Then

T =
(Xm − Y n)− (µX − µY )

Spooled

√
1
m + 1

n

and

Xm − Y n ± tα/2Spooled

√
1

m
+

1

n

is an exact 100(1− α)% confidence interval for µX − µY , where

the t critical value uses m+ n− 2 degrees of freedom.
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Two Independent Samples (cont.)

Criticism: not only does this “exact” interval suffer all the prob-

lems of the one-sample “exact” procedure — each independent

sample must be exactly IID normal for this procedure to be exact

— it also suffers from the additional assumption that the two

population variances are exactly equal.

The assumption σX = σY is unverifiable in small samples and un-

necessary in large samples, because the large-sample procedure

does not need it.
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Two Independent Samples (cont.)

The “exact” two-sample procedure is not asymptotically equiv-
alent to the large-sample procedure because they use different
estimates of the variance of Xm − Y n. The “exact” procedure
uses S2

pooled(1/m + 1/n), and the large-sample procedure uses
S2
X/m+ S2

Y /n.

Hence the “exact” procedure is not asymptotically nonparamet-
ric distribution free for the family of all distributions with second
moments. The exact confidence interval for the difference of
means is only asymptotically nonparametric distribution free un-
der the additional assumption σX = σY . The exact confidence
interval for the variance is only asymptotically nonparametric
distribution free under the additional assumption µ4 = 3σ4. But
these “assumptions” are never valid in real applications.
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Two Independent Samples (cont.)

Recognizing the problems with the “exact” procedure, textbooks
have recently — only in the last 20 years — stopped recom-
mending it. Instead, an approximate but much better procedure
invented by Welch about 50 years ago is now recommended.

The idea is to use the asymptotic pivotal quantity

T =
(Xm − Y n)− (µX − µY )√

S2
X,m
m +

S2
Y,n
n

≈ N (0,1)

but get a better approximation to its sampling distribution.

We still assume each sample is IID normal. Then

(Xm − Y n)− (µX − µY )√
σ2
X
m +

σ2
Y
n

∼ N (0,1) (∗)
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Two Independent Samples (cont.)

And we see that T is the quotient of (∗) and√√√√√√
S2
X,m
m +

S2
Y,n
n

σ2
X
m +

σ2
Y
n

(∗∗)

And we know that (∗) and (∗∗) are independent random variables.

Assumption: (∗∗) is the square root of a chi-square ran-
dom variable divided by its degrees of freedom.

If this assumption held, then T would have a t distribution. But
it does not hold. We assume it holds approximately. Then what
t distribution do we get for the approximation?
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Two Independent Samples (cont.)

Welch decided to match moments. If Y ∼ chi2(ν), then

E(Y ) = ν

var(Y ) = 2ν

Hence

E

(
Y

ν

)
= 1

var
(
Y

ν

)
=

2

ν
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Lemma

From

(n− 1)S2
n

σ2
∼ chi2(n− 1)

we derive

var

(
(n− 1)S2

n

σ2

)
=

(n− 1)2 var(S2
n)

σ4
= 2(n− 1)

hence

var(S2
n) =

2σ4

n− 1
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Two Independent Samples (cont.)

So what are the corresponding moments of the square of (∗∗)?

E


S2
X,m
m +

S2
Y,n
n

σ2
X
m +

σ2
Y
n

 = 1

var


S2
X,m
m +

S2
Y,n
n

σ2
X
m +

σ2
Y
n

 =

var(S2
X,m)

m2 +
var(S2

Y,n)

n2(
σ2
X
m +

σ2
Y
n

)2

=

2σ4
X

m2(m−1)
+

2σ4
Y

n2(n−1)(
σ2
X
m +

σ2
Y
n

)2
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Two Independent Samples (cont.)

Hence if (∗∗) were the square root of a chi-square divided by

its degrees of freedom ν and consequently T would be t(ν) dis-

tributed, then ν would satisfy

2

ν
=

2σ4
X

m2(m−1)
+

2σ4
Y

n2(n−1)(
σ2
X
m +

σ2
Y
n

)2

so

ν =

(
σ2
X
m +

σ2
Y
n

)2

1
m−1 ·

(
σ2
X
m

)2
+ 1

n−1 ·
(
σ2
Y
n

)2
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Two Independent Samples (cont.)

Since ν is a function of the nuisance parameters, we do not know
its value. Thus we estimate it

ν̂ =

(
S2
X,m
m +

S2
Y,n
n

)2

1
m−1 ·

(
S2
X,m
m

)2

+ 1
n−1 ·

(
S2
Y,n
n

)2

This gives Welch’s approximate 100(1−α)% confidence interval
for µX − µY

Xm − Y n ± tα/2

√√√√S2
X,m

m
+
S2
Y,n

n

where the t critical value uses the t distribution with ν̂ degrees
of freedom.
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Two Independent Samples (cont.)

R has a function that makes t confidence intervals

Rweb> x <- c(7.7, 8.5, 8.9, 9.7, 10.9, 11.4, 12.6)

Rweb> t.test(x)

One Sample t-test

data: x

t = 15.0611, df = 6, p-value = 5.4e-06

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

8.33945 11.57484

sample estimates:

mean of x

9.957143
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Two Independent Samples (cont.)

Rweb> x <- c(7.7, 8.5, 8.9, 9.7, 10.9, 11.4, 12.6)

Rweb> y <- c(12.1, 13.0, 16.5, 17.9, 21.9)

Rweb> t.test(x, y, var.equal = TRUE)

Two Sample t-test

data: x and y

t = -3.7978, df = 10, p-value = 0.003499

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-10.032446 -2.613268

sample estimates:

mean of x mean of y

9.957143 16.280000
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Two Independent Samples (cont.)

Rweb> x <- c(7.7, 8.5, 8.9, 9.7, 10.9, 11.4, 12.6)

Rweb> y <- c(12.1, 13.0, 16.5, 17.9, 21.9)

Rweb> t.test(x, y)

Welch Two Sample t-test

data: x and y

t = -3.3504, df = 5.13, p-value = 0.01954

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-11.137153 -1.508561

sample estimates:

mean of x mean of y

9.957143 16.280000
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Two Independent Samples (cont.)

Compare. The “exact” 95% confidence interval for µX − µY
that assumes exact normality of both populations and equality

of population variances σ2
X = σ2

Y

(−10.03,−2.61)

and the approximate 95% confidence interval for µX − µY that

also assumes exact normality of both populations

(−11.14,−1.51)

Not a huge difference, but the later is more defensible because

it does not assume σ2
X = σ2

Y .
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Hypothesis Tests

Often confidence intervals do not do exactly what is wanted.
There are two related reasons for this.

Sometimes the size of an effect is not interesting, only the exis-
tence of the effect. In the U. S. A. a drug may be approved for
marketing if it is safe and effective. The size of the treatment
effect is irrelevant.

Sometimes the size of the effect depends on the details of the
particular experiment and would not generalize to other situa-
tions. A phenomenon is hypothesized. An experiment is designed
to study it. If the experiment shows that the phenomenon exists,
then that generalizes to other situations, but the effect size seen
does not generalize.
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Hypothesis Tests (cont.)

To relate these considerations to statistics, we need to turn these

statements about existence of effects and phenomena into state-

ments about a statistical model.

This is often a hard step for scientists, even ones who know

better. Scientists want to talk about reality not about statistical

models. But statistics only applies to statistical models.

A “statement about a statistical model” is called a statistical

hypothesis, and formally statistical tests are called tests of sta-

tistical hypotheses (the plural of hypothesis is hypotheses, the

last syllable pronounced like “seas”).
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Hypothesis Tests (cont.)

A statistical hypothesis asserts that the true unknown distribu-

tion lies in a submodel of the statistical model under considera-

tion.

If the model under consideration has parameter space Θ, then

a statistical hypothesis asserts that the true unknown parameter

value lies in a subset Θi of Θ.

A hypothesis test considers two hypotheses, conventionally called

the null hypothesis and the alternative hypothesis. As state-

ments they are conventionally denoted H0 and H1. As subsets

of the parameter space, they are conventionally denoted Θ0 and

Θ1.
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Hypothesis Tests (cont.)

Time out from theory for a concrete example.

We have two independent samples, X1, . . ., Xm and Y1, . . ., Yn,

which are control and treatment, respectively, in a medical ex-

periment. Suppose we are willing to assume that both samples

are IID normal. The question of scientific interest is whether the

treatment has an effect. We turn this into a question about sta-

tistical models: whether µX is less than µY . Thus our statistical

hypotheses can be

H0 : µX ≥ µY
H1 : µX < µY
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Hypothesis Tests (cont.)

It turns out, although this is not obvious, that

H0 : µX = µY

H1 : µX < µY

determine the same hypothesis test and do so more simply. Thus

we start with these.

We base the test on Welch’s approximate pivotal quantity

(Xm − Y n)− (µX − µY )√
S2
X,m
m +

S2
Y,n
n

≈ t(ν̂)

where ν̂ is given on slide 142.
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Hypothesis Tests (cont.)

Under H0 this approximate pivotal quantity does not contain
parameters, hence is a statistic

T =
Xm − Y n√
S2
X,m
m +

S2
Y,n
n

which is called the test statistic.

Under H0 the test statistic has sampling distribution centered
at zero. Under H1 the test statistic has sampling distribution
centered at some negative number. Thus large negative values
of T are evidence in favor of H1.

Under H0 we know approximately the distribution of T . Under
H1 we do not, because it depends on µX, µY , σ2

X and σ2
Y . Thus

we base the probability calculation we do on H0.
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Hypothesis Tests (cont.)

The P -value of the test is

Pr(T ≤ t)

where t is the observed value of the test statistic, considered to
be nonrandom, and T is the test statistic considered as a random
variable, and where the probability is calculated under H0.

Under H1, the observed value t is likely to be large and negative,
hence far out in the tail of the distribution of T under H0. Hence
the P -value should be small when H1 is true, but should be large
(near 1/2) when H0 is true.

Thus small P -values are evidence in favor of H1 and large P -
values are evidence in favor of H0.
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Hypothesis Tests (cont.)

Rweb> x <- c(7.7, 8.5, 8.9, 9.7, 10.9, 11.4, 12.6)

Rweb> y <- c(12.1, 13.0, 16.5, 17.9, 21.9)

Rweb> t.test(x, y, alternative = "less")

Welch Two Sample t-test

data: x and y

t = -3.3504, df = 5.13, p-value = 0.009769

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf -2.541343

sample estimates:

mean of x mean of y

9.957143 16.280000

154



Hypothesis Tests (cont.)

From the on-line help obtained by the command help(t.test) in
the “Arguments” section

alternative: a character string specifying the alternative

hypothesis, must be one of ’"two.sided"’ (default),

’"greater"’ or ’"less"’. You can specify just the

initial letter.

and from the “Details” section

’alternative = "greater"’ is the alternative that

’x’ has a larger mean than ’y’.

Hence alternative = "greater" specifies H1 : µX > µY so we
want alternative = "less", which specifies H1 : µX < µY .
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Hypothesis Tests (cont.)

The statistical analysis ends with the report of the P -value, usu-

ally tersely

Welch two-sample t-test, t = −3.35, P = 0.0098

The scientific analysis then resumes. Since the P -value is small,

this is evidence in favor of H1. The scientific interpretation of

this is that the treatment effect does exist.
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Hypothesis Tests (cont.)

Because the P -value could be smaller, the evidence could be

stronger, hence the evidence is not absolutely conclusive.

But we can say — assuming the data are IID normal in each

sample and the samples are independent — that either H1 is

true or a rather unusual event has occurred, since the event

T ≤ t occurs with probability 0.0098 when H0 is true.
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Hypothesis Tests (cont.)

Had the evidence come out differently, say P = 0.098, this would

be much weaker evidence in favor of H1.

We can still say that either H1 is true or a somewhat unusual

event has occurred, since the event T ≤ t occurs with probability

0.098 when H0 is true, but roughly one time out of ten is not

very unusual.
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Hypothesis Tests (cont.)

You don’t have to talk to many people about statistics before

noticing that the number 0.05 is held in quasi-religious awe by

many. If P ≤ 0.05 the result is declared to be “statistically

significant” and treated with great respect.

The number 0.05 is clearly arbitrary, considered a round number

because people have five fingers. Computers, which count in

binary, would consider 1/16 or 1/32 round numbers but would

not consider 0.05 = 1/20 a round number.

Anyone who considers P = 0.051 and P = 0.049 radically differ-

ent understands neither science nor statistics.

159



Hypothesis Tests (cont.)

Yet many scientists, including journal editors and referees, do

seem to act as if they consider P = 0.051 and P = 0.049 radically

different.

This is partly the result of bad statistics teaching, and partly the

very human wish for a definite conclusion — asking statistics for

what it cannot deliver.

People want a sharp dividing line. Either the experiment demon-

strates the effect or it doesn’t. But statistics only deals in prob-

abilities. The smaller the P -value the stronger the evidence in

favor of the alternative hypothesis, but there is no P -value that

absolutely establishes the truth of H1.
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Hypothesis Tests (cont.)

Some journals have explicitly stated that papers must say P <

0.05 to be publishable. It is widely believed that most journals

do likewise.

This leads to the following quip

Statistics is the branch of applied mathematics that al-

lows one to do twenty bad experiments and get one paper

in Nature.
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Hypothesis Tests (cont.)

The more you think about this joke, the more disturbing it is.

Many small studies are done. Some have P < 0.05 by chance

alone. If only those papers are published, then all published

papers about one issue point in the same direction. But this

is entirely due to the publication process and has nothing to do

with scientific reality.

Refusal to publish papers saying P > 0.05 is refusal to publish

contrary evidence. Nothing could be more unscientific.
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Hypothesis Tests (cont.)

This is only beginning to be recognized. Habits are hard to
change, even among scientists.

The study of published literature, the attempt to synthesize the
results of many studies, is called meta-analysis. In meta-analysis,
the tendency to publish only papers saying P < 0.05 is called the
file drawer problem. If all the studies with P > 0.05 remain in
file drawers rather than being published, then the meta-analyst
must treat them as missing data.

Many studies with P -values only slightly below 0.05 are actually
fairly strong contrary evidence (against H1), because P -values
should follow a continuous distribution so unpublished P -values
slightly above 0.05 must also have been common.
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Hypothesis Tests (cont.)

In some areas, every experiment started is recorded in a registry.

Thus meta-analysts know the total number of experiments and

can conclude that the unpublished ones did not favor the alter-

native hypothesis.

But this is still uncommon.
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Hypothesis Tests (cont.)

We now return to the formal theory.

In general Θ0 and Θ1 can be any two disjoint subsets of the

parameter space.

When Θ0 is a singleton set (contains exactly one point), the null

hypothesis is said to be simple.

If the test is based on a test statistic, the alternative hypothesis

plays no role other than motivating the choice of test statistic.
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Hypothesis Tests (cont.)

In formal theory we usually assume that large values of the test

statistic favor H1. Then for a simple null hypothesis

H0 : θ = θ0

the P -value is

Prθ0
(T ≥ t)

In practice, we often allow the test statistic to not have this

form. Then the theory needs to be adjusted correspondingly.
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One-Tailed and Two-Tailed Tests

In tests where the hypotheses involve a single parameter θ, and

the distribution of the test statistic T is symmetric about zero

under H0, we distinguish three kinds of tests.

Upper-Tailed Tests

The hypotheses are

H0 : θ = θ0

H1 : θ > θ0

and the P -value is

Prθ0
(T ≥ t)
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One-Tailed and Two-Tailed Tests (cont.)

Lower-Tailed Tests

The hypotheses are

H0 : θ = θ0

H1 : θ < θ0

and the P -value is

Prθ0
(T ≤ t)
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One-Tailed and Two-Tailed Tests (cont.)

Two-Tailed Tests

The hypotheses are

H0 : θ = θ0

H1 : θ 6= θ0

and the P -value is

Prθ0
(|T | ≥ |t|) = Prθ0

(T ≤ −|t|or T ≥ |t|)
= 2 Prθ0

(T ≤ −|t|)
= 2 Prθ0

(T ≥ |t|)
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One-Tailed and Two-Tailed Tests (cont.)

(Still assuming the distribution of T is symmetric about zero

under H0) the P -values for the one-tailed tests always add to

one, so one is less than 1/2 and the other greater than 1/2. At

most one can give a statistically significant result.

The P -value for the two-tailed test is always twice the P -value

for the one-tailed that is less than 1/2.

Hence the P -value for two-tailed test usually looks less significant

than the P -value for a one-tailed test.
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The Dogma of Hypothesis Tests

Do only one test per data set.

Not just report only one test, do only one test.

Moreover the test to be done is chosen before the data are

observed.

This dogma is often violated but unrestricted multiple testing

without correction makes statistics like playing tennis without a

net — an entirely meaningless exercise. More on this later.
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One-Tailed and Two-Tailed Tests (cont.)

According to the dogma, a one-tailed test is valid if you

• choose which tail before the data are collected, and,

• if P > 1/2, then that is the end. No more statistics is done.

The data are thrown in the trash. Nothing is published.
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One-Tailed and Two-Tailed Tests (cont.)

Whether a one-tailed test is valid is a scientific question not a

statistical one.

A one-tailed test is valid if readers can believe the analysis was

done according to the dogma. If readers suspect that the exper-

iment would have been published regardless of which alternative

the evidence had favored, then that is tantamount to a suspicion

that the one-tailed test is invalid.
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One-Tailed and Two-Tailed Tests (cont.)

Sometimes it is clear that a one-tailed test is valid. If the alter-
natives are treatment better than control and treatment worse
than control, then there is no question that the latter would not
have lead to publication.

Sometimes it is clear that a one-tailed test is not valid. If the
alternatives are men better than women and women better than
men, then there is a fair question that the either would have lead
to publication.

Sometimes it is unclear. Readers have to make up their own
minds.

When a reader thinks a one-tailed test invalid, the reader can
convert it to a two-tailed test by doubling the P -value.
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One-Tailed and Two-Tailed Tests (cont.)

There is a pernicious connection between worship of the number

0.05 and one-tailed test. A scientist straining to obtain P < 0.05

will sometimes switch from two-tailed to one-tailed — thereby

cutting the P -value in half — to obtain P < 0.05.

This is bogus. I call it “honest cheating” because there is no

fraud (if it is clearly stated that a one-tailed test was done).

The bogosity is clear to expert readers, who mentally double the

P -value. Naive readers are fooled.
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Decision Theory

The theory of statistical decisions is a large subject, and we will
only look at a little part. When applied to hypothesis tests, it
gives a different view.

The point of a hypothesis test is to decide in favor of H0 or H1.
The result is one of two decisions, conventionally called

• accept H0 or reject H1 (both mean the same)

• reject H0 or accept H1 (both mean the same)

In the decision-theoretic mode, the result of a test is just reported
in these terms. No P -value is reported, hence no indication of
the strength of evidence.
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Decision Theory (cont.)

If no P -value is reported, then how is the test done?

A level of significance α is chosen.

• If P < α, then the test decides “reject H0”.

• If P ≥ α, then the test decides “accept H0”.

It is clear that the decision theoretic view simply provides less

information to readers. Instead of giving the actual P -value, it

is only reported whether the P -value is above or below α.
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Decision Theory (cont.)

Ideally, the significance level α should be chosen carefully and

reflect the costs and probabilities of false positive and false neg-

ative decisions.

In practice α = 0.05 is usually thoughtlessly chosen.

Since the decision-theoretic mode provides less information and

isn’t usually done properly anyway, many recent textbooks say it

should not be used: always report the P -value, never report only

a decision.
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Decision Theory (cont.)

So why hasn’t the decision-theoretic mode gone away?

The decision-theoretic mode makes for much simpler theory. P -

values can be hard to define in complicated situations when there

is no obvious choice of test statistic.

If one knows how to do a test for any α between zero and one,

then for any given data the test will accept H0 when α is small

and reject H0 when α is large, and the P -value can be defined

as the number that separates these two regions. The P -value is

the infimum of α for which the test rejects H0 or the supremum

of α for which the test accepts H0.
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Decision Theory (cont.)

There is also a bad reason why textbooks still teach the decision-

theoretic mode. It was there first. P -values came later. Text-

books are often decades behind current trends. Many teachers

are decades out of date. Many referees and editors of journals

are decades out of date on many things. They are, of course,

expert in their areas, but they may not be experts in statistics.
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One-Tailed and Two-Tailed Tests (cont.)

When there is a compound null hypothesis, it is not clear how

to define the P -value. One definition is

sup
θ∈Θ0

Prθ(T ≥ t)

Now the P -value is no longer a probability.

The corresponding decision-theoretic view is

sup
θ∈Θ0

Prθ(reject H0) ≤ α

however the decision “reject H0” is determined.
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One-Tailed and Two-Tailed Tests (cont.)

Consider a one-tailed test based on the exact or asymptotic piv-

otal quantity

θ̂n − θ
τ̂n/
√
n

and compound null hypothesis

H0 : θ ≤ θ0

H1 : θ > θ0

We claim the test having the test statistic

T =
θ̂n − θ0

τ̂n/
√
n

and P -value Prθ0
(T ≥ t) is valid.
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One-Tailed and Two-Tailed Tests (cont.)

We must show that

Prθ(T ≥ t) ≤ Prθ0
(T ≥ t), θ < θ0

If the true unknown parameter value is θ, then

θ̂n − θ
τ̂n/
√
n

=
θ̂n − θ0

τ̂n/
√
n

+
θ0 − θ
τ̂n/
√
n

= T +
θ0 − θ
τ̂n/
√
n

has the same distribution as T does when the true unknown
parameter value is θ0. Hence

Prθ

(
T +

θ0 − θ
τ̂n/
√
n
≥ s

)
= Prθ0

(T ≥ s)

or

Prθ(T ≥ t) = Prθ0

(
T ≥ t+

θ0 − θ
τ̂n/
√
n

)
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One-Tailed and Two-Tailed Tests (cont.)

We assume τ̂n > 0, which makes sense since it is an estimate of

standard deviation, then if H0 is true (so θ ≤ θ0)

θ0 − θ
τ̂n/
√
n
≥ 0

and

Prθ(T ≥ t) = Prθ0

(
T ≥ t+

θ0 − θ
τ̂n/
√
n

)
≤ Prθ0

(T ≥ t)
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One-Tailed and Two-Tailed Tests (cont.)

In conclusion: the test with P -value

Prθ0
(T ≥ t)

is valid for either

H0 : θ = θ0

H1 : θ > θ0

or

H0 : θ ≤ θ0

H1 : θ > θ0

whether the null hypothesis is an equality or inequality is irrele-

vant. And similarly for the other one-tailed test.
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Power

Everything we have said about hypothesis tests so far is only

about validity. Is the test defensible?

A different issue is power, which is, roughly, how probable is it

that the test will do what is wanted.

More precisely, the power of a test is the probability that it will

accept H1 when H1 is true. Since H1 is always a composite

hypothesis, the power is always a function of the true unknown

parameter value θ. It also depends on the sample size.

Since the issue is about accepting H1, this inherently takes the

decision-theoretic viewpoint.
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Power (cont.)

The power of a hypothesis is useful in planning an experiment or

getting funding for an experiment. Most grant proposals include

power calculations. What would be the point of funding an

experiment that probably won’t detect anything anyway because

the planned sample size is too small?

In order to do a power calculation we need to specify certain

values for the parameters and the sample size.

Hence a power calculation is hypothetical. It assumes certain

values of the parameters, which must be made up.
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Power (cont.)

Power calculations are simplest when the reference distribution
(the distribution of the test statistic under H0, either exact or
approximate) is normal. We start there, considering again the
situation on slides 182–184. The asymptotically pivotal quantity
is

θ̂n − θ
τ̂n/
√
n
≈ N (0,1)

the test statistic is

T =
θ̂n − θ0

τ̂n/
√
n

and we found out

Prθ(T ≥ t) = Prθ0

(
T ≥ t+

θ0 − θ
τ̂n/
√
n

)
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Power (cont.)

In

Prθ(T ≥ t) = Prθ0

(
T ≥ t+

θ0 − θ
τ̂n/
√
n

)
the plug-in does not help, since we do not know the sampling

distribution of τ̂n (we only know that it is a consistent estimator

of the nuisance parameter τ). So we write

Prθ(T ≥ t) ≈ Prθ0

(
T ≥ t+

θ0 − θ
τ/
√
n

)
undoing the plug-in.
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Power (cont.)

Recall that the calculation on slides 182–184 was for an upper-

tailed test. Thus the alternatives of interest are for θ > θ0.

Hence we rewrite this equation again

Prθ(T ≥ zα) ≈ Prθ0

(
T ≥ zα −

θ − θ0

τ/
√
n

)
replacing t by zα and θ0 − θ by −(θ − θ0). This, considered as a

function of θ is the power function of the upper-tailed test. It

depends on the hypothetical value of the nuisance parameter τ

and the sample size. Alternatively, we could consider it a function

of the standardized treatment effect (θ − θ0)/τ and the sample

size.
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Power (cont.)
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Power curves for upper-tailed z test and α = 0.05: solid line is
n = 200, dashed line is n = 100, dotted line is n = 50.
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Power (cont.)

• Power increases from α to 1 as standardized effect (θ−θ0)/τ

increases from zero to infinity.

• Power increases from α to 1 as sample size increases from

zero to infinity.

The first is not under control of the experimenters. The effect

size is what it is, and although hypothetical in the power calcu-

lation, should be realistic. The second is under control of the

experimenters. The sample size should be chosen so that the

power will be reasonably large.
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Power (cont.)

Two-tailed tests are similar

Prθ(|T | ≥ zα/2)

≈ Prθ0

(
T ≥ zα/2 −

θ − θ0

τ/
√
n

)
+ Prθ0

(
T ≤ −zα/2 −

θ − θ0

τ/
√
n

)
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Power (cont.)
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Power curves for two-tailed z test and α = 0.05: solid line is
n = 200, dashed line is n = 100, dotted line is n = 50.
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Power (cont.)

Power calculations are more complicated when the reference dis-

tribution is not normal. When the reference distribution is t, F ,

or chi-square, then the distribution under the alternative hypoth-

esis is so-called noncentral t, F , or chi-square, respectively. And

these are new distributions, not on the brand name distributions

handout.

R can calculate for these distributions. The R functions pt, pf,

and pchisq have a noncentrality parameter argument ncp that

when supplied calculates using the noncentral distribution.

We will only look at noncentral t here.
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Power (cont.)

If Z is standard normal and Y is chi2(ν) and Z and Y are inde-

pendent, then

T =
Z√
Y/ν

has the t(ν) distribution. Now we define

T =
Z + δ√
Y/ν

to have the noncentral t distribution with degrees of freedom ν

and noncentrality parameter δ, denoted t(ν, δ).
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Power (cont.)

Now we repeat our derivation of the power curve, this time for

t tests. The asymptotically pivotal quantity is

Xn − µ
Sn/
√
n
∼ t(n− 1)

This is of the form Z/
√
Y/ν where ν = n− 1 and

Z =
Xn − µ
σ/
√
n

Y =
(n− 1)S2

n

σ2
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Power (cont.)

The test statistic is

Xn − µ0

Sn/
√
n

When the true unknown parameter value is µ, the numerator of

the T

Z =
Xn − µ0

σ/
√
n

is normal but not standard normal, since

E(Z) =
µ− µ0

σ/
√
n

var(Z) = 1
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Power (cont.)

Thus

Z = Z∗+
µ− µ0

σ/
√
n

where Z∗ is standard normal and T has the t(n−1, δ) distribution

with

δ =
µ− µ0

σ/
√
n
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Power (cont.)
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Power curves for upper-tailed t test and α = 0.05: solid line is
n = 20, dashed line is n = 10, dotted line is n = 5.
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Power (cont.)
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Power curves for two-tailed t test and α = 0.05: solid line is
n = 20, dashed line is n = 10, dotted line is n = 5.

201



Power (cont.)

Qualitatively, we have the same behavior; the power increases

from α to 1 as either the standardized effect size increases or the

sample size increases. The power curves look much the same

whether the normal distribution or the noncentral t distribution

is used.

The details of the calculations differ. See computer examples

web page.
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Correction for Multiple Testing

One way to correct for multiple testing is to consider the multiple
tests one combined test and control the level of the combined
test, which is called the familywise error rate (FWER). Again
the decision-theoretic viewpoint makes the theory simpler.

Let us say the combined test rejects H0 if any one of the separate
tests rejects its own particular H0. Then

Pr(combined test rejects H0) = Pr

 k⋃
j=1

test j rejects its H0


≤

k∑
j=1

Pr(test j rejects its H0)

by subadditivity of probability (5101 deck 2, slide 138).
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Correction for Multiple Testing (cont.)

Hence if we make

Pr(test j rejects its H0) =
α

k
, for all j

then the combined test will have significance level less than or

equal to α.

The P -value of the combined test is then the smallest α for which

the combined test rejects H0, which is k times the smallest α for

which one of the multiple tests rejects. Hence the P -value for

the combined test formed from k multiple tests is just k times

the smallest P -value for any of the multiple tests.

This is known as Bonferroni correction.
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Correction for Multiple Testing (cont.)

A P -value P = 0.01 looks highly statistically significant before

we find out that k = 6 tests were done, and the Bonferroni

corrected P -value is P = 0.06.

Many scientists do not like Bonferroni correction, because it

makes P < 0.05 much harder to obtain. Also they complain

that Bonferroni is too conservative. It just provides a bound,

not an exact correction.

Thus multiple testing without correction is often done. But it

should not be.
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Duality of Tests and Confidence Intervals

If we take the decision-theoretic view of hypothesis tests, then

there is a duality between exact 100(1−α)% two-sided confidence

intervals for a parameter θ and tests of the hypotheses

H0 : θ = θ0

H1 : θ 6= θ0

having significance level α.

The test accepts H0 if and only if the confidence interval contains

θ0.

The confidence interval consists of all real numbers θ0 for which

the test accepts H0.
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Correction for Multiple Testing (cont.)

One application of the duality of tests and confidence intervals

is that the dogma clearly applies to confidence intervals too.

Do only one confidence interval. Otherwise you must correct to

obtain simultaneous coverage.

The Bonferroni correction for confidence intervals uses confi-

dence level 100(1− α/k)% for each of k intervals.

If one does not do such correction, then it must be clearly stated

that the stated confidence level is not for simultaneous coverage.
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Sign Test and Related Procedures

So far we have the asymptotic normal distribution of the sample
median

X̃n ≈ N
(
µ,

1

4nf(µ)2

)
where µ is the population median and f is the PDF of the true
unknown distribution of the data.

If we assume an IID normal sample, then the asymptotic variance
is πσ2/2n so a 100(1−α)% confidence interval for the population
median using the plug-in principle would be

X̃n ± zα/2Sn

√
π

2n
But now we seek a nonparametric procedure that does not as-
sume any particular parametric model for the data.
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Sign Test and Related Procedures (cont.)

We start with a hypothesis test. Suppose X1, X2, . . ., Xn are

IID from a continuous distribution having population median θ.

We consider one-tailed and two-tailed tests with null hypothesis

H0 : θ = θ0

and test statistic

T =
n∑
i=1

I(θ0,∞)(Xi)

(the number of Xi greater than θ0). Under H0, the distribution

of T is Bin(n,1/2).
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Sign Test and Related Procedures (cont.)

Knowing the distribution of the test statistic under H0, we make

P -values in the usual way.

Pr(T ≥ t) is the P -value of the upper-tailed test.

Pr(T ≤ t) is the P -value of the lower-tailed test.

If t ≥ n/2, then Pr(T ≤ n − tor T ≥ t) is the P -value of the

two-tailed test.

If t ≤ n/2, then Pr(T ≤ tor T ≥ n − t) is the P -value of the

two-tailed test.
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Sign Test and Related Procedures (cont.)

The only thing that is a bit tricky is the distribution of the test

statistic is symmetric but the center of symmetry is n/2 rather

than zero.

Hence |T | is not a sensible test statistic for the two-tailed test.

Rather, we reject H0 when |T − n/2| is large.
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Sign Test and Related Procedures (cont.)

Another thing that is different from procedures with a continuous
test statistic is that, in the decision-theoretic view, only a few
significance levels are exactly achievable. If n = 10, then

Rweb> round(pbinom(0:4, 10, 1 / 2), 5)

[1] 0.00098 0.01074 0.05469 0.17188 0.37695

are the only numbers below 1/2 that can be either P -values or
significance levels of one-tailed tests, and

Rweb> round(2 * pbinom(0:3, 10, 1 / 2), 5)

[1] 0.00195 0.02148 0.10937 0.34375

are the only numbers below 1/2 that can be either P -values or
significance levels of two-tailed tests.
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Sign Test and Related Procedures (cont.)

As usual let X(1), X(2), . . ., X(n) denote the order statistics for

the sample.

Select α < 1 and k ≥ 0 such that Pr(T ≤ k) = α/2. Then

X(k+1) < θ < X(n−k) is an exact 100(1−α)% confidence interval

for the population median.

Proof on following slide.
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Sign Test and Related Procedures (cont.)

The sign test accepts H0 : θ = θ0 at level α when k < T < n− k.

This is the same as saying at least k + 1 of the data points are

below θ0 and at least k+ 1 of the data points are above θ0. And

this is the same as saying X(k+1) < θ0 < X(n−k).

Only the last bit is tricky. At least k + 1 of the data points are

above θ0 if and only if the k + 1 largest of the order statistics

are above θ0, and these are

X(n−i), i = 0, . . . , k
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Sign Test and Related Procedures (cont.)

Given a nested family of confidence intervals, one for each α,

like t confidence intervals or these intervals associated with the

sign test, the point estimate arrived at by making α nearly one-

half so the interval shrinks to nearly zero length is called the

Hodges-Lehmann estimator associated with the procedure.

For the t confidence intervals, the Hodges-Lehmann estimator is

the sample mean.

For the confidence intervals associated with the sign test, the

Hodges-Lehmann estimator is the sample median.
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Sign Test and Related Procedures (cont.)

Thus procedures come in trios: hypothesis test, confidence in-

terval, and point estimate. If we have a test about a location

parameter, then we also have the confidence interval dual to the

test, and we also have the Hodges-Lehmann estimator obtained

from the confidence interval.
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Fuzzy Tests and Confidence Intervals

It is both a theoretical and a practical nuisance that the discrete-

ness of the distribution of the test statistic under H0 means only

a few significance levels or confidence levels are possible. And

the conventional 0.05 significance level or 95% confidence level

cannot be chosen.

This means procedures based on a discrete test statistic are not

comparable to those with a continuous test statistic.

To make them comparable, the notion of randomized tests was

invented.
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Fuzzy Tests and Confidence Intervals (cont.)

Suppose first we are doing a lower-tailed sign test. The conven-

tional P -value is Pr(T ≤ t). The randomized test has P -value

that is uniformly distributed on the interval(
Pr(T < t),Pr(T ≤ t)

)
Note that the randomness in the P -value is artificial. It is not

related to the randomness in the random sample. Rather it is

introduced by the statistician as a mathematical trick.

All probability calculations involve both kinds of randomness:

artificial and from random sampling.
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Fuzzy Tests and Confidence Intervals (cont.)

For any α between Pr(T < k) and Pr(T ≤ k), the probability that

P < α so the test rejects H0 is

Pr(T < k) + Pr(T = k) ·
α− Pr(T < k)

Pr(T ≤ k)− Pr(T < k)
= α

so the significance level of the test is α.
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Fuzzy Tests and Confidence Intervals (cont.)

Two statisticians can analyze the same data using the same
randomized test procedure and get different results due to the
artificial randomization.

This property is so absurd that randomized procedures are never
used in actual applications. Fuzzy P -values were introduced to
fix this problem.

Fuzzy procedures are the same as randomized procedures except
that the randomization is not done only described. The P -value
is reported to be a random variable uniformly distributed on the
interval (

Pr(T < t),Pr(T ≤ t)
)

that is, rather than a single number, the interval is reported.
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Fuzzy Tests and Confidence Intervals (cont.)

Fuzzy P -values are comparable to ordinary P -values for proce-

dures having a continuous distribution of the test statistic under

H0.

Consider a sign test with sample size n = 10. We saw that the

possible P -values for the nonrandomized test were

Rweb> round(pbinom(0:4, 10, 1 / 2), 5)

[1] 0.00098 0.01074 0.05469 0.17188 0.37695
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Fuzzy Tests and Confidence Intervals (cont.)

If one observes t = 2, then one reports P = 0.055. Not statisti-

cally significant according to worshipers of the number 0.05.

But the next smallest possible P -value is P = 0.011 correspond-

ing to t = 1. So this is not analogous to a t-test. Intuitions that

that come from experience with t-tests are not transferable.

For the fuzzy test, if one observes t = 2, then one reports P is

uniformly distributed on the interval (0.011,0.055). It is mostly

below 0.05, hence this result is more analogous to a t-test with

P < 0.05 than one with P > 0.05.
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Fuzzy Tests and Confidence Intervals (cont.)

Another way to interpret the fuzzy P -value is to consider what

the randomized test would do if it were done. If the fuzzy P -

value is uniformly distributed on the interval (0.011,0.055), then

a randomized test would reject H0 at level α = 0.05 if P < α,

which happens with probability

0.05− 0.011

0.055− 0.011
= 0.886

Thus if many statisticians did the randomized test for this same

data, not all would reject H0 but 88.6% of them would.

These data are more statistically significant than the conven-

tional P = 0.055 suggests.
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Fuzzy Tests and Confidence Intervals (cont.)

For a two-tailed sign test, the fuzzy P -value is uniform on the

interval (
2 Pr(T < t),2 Pr(T ≤ t)

)
in case t < n/2 and uniform on the interval(

2 Pr(T ≥ t),2 Pr(T > t)
)

in case t > n/2 and uniform on the interval(
Pr(T 6= n/2),1

)
in case t = n/2.
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Fuzzy Tests and Confidence Intervals (cont.)

The corresponding fuzzy or randomized confidence intervals find

k such that

Pr(T < k) ≤
α

2
≤ Pr(T ≤ k)

the randomized confidence interval is X(k+1) < θ < X(n−k) with

probability

p =
α− Pr(T < k)

Pr(T ≤ k)− Pr(T < k)

and is X(k) < θ < X(n−k+1) with probability 1 − p, where by

convention X(0) = −∞ and X(n+1) = +∞.

The fuzzy confidence interval reports the two intervals and their

probabilities p and 1− p.
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Signed Rank Test and Related Procedures

Suppose X1, X2, . . ., Xn are IID from a continuous symmetric
distribution having population center of symmetry θ. We con-
sider one-tailed and two-tailed tests with null hypothesis

H0 : θ = θ0

Let

Yi = |Xi − θ0|

and let Ri be the rank of Yi in the sorted order, that is, Yi = Y(Ri)
.

Let Zi be Ri times the sign of Xi − θ0. The Zi are called the
signed ranks.

Because of the assumption of continuity, no ties are possible
among the Xi, either with each other or with θ0. The ranks and
signs are unambiguously determined with probability one.
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Signed Rank Test and Related Procedures (cont.)

Let

T =
n∑
i=1

ZiI(0,∞)(Zi)

(the sum of the positive signed ranks). Under H0, the distribu-

tion of T is called the distribution of the signed rank statistic,

calculated by the R functions psignrank, qsignrank, etc.

When H0 is true, conditional on the values of the Yi, the signs

of the Zi are IID and + and − are equally probable. This makes

the distribution of T symmetric about the midpoint of its range.

The smallest possible value is zero, the largest possible value is

n(n+ 1)/2, and the midpoint is n(n+ 1)/4.
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Signed Rank Test and Related Procedures (cont.)

Knowing the distribution of the test statistic under H0, we make

P -values in the usual way. This slide is an exact copy of slide 210

except that N = n(n+ 1)/2 replaces n.

Pr(T ≥ t) is the P -value of the upper-tailed test.

Pr(T ≤ t) is the P -value of the lower-tailed test.

If t ≥ N/2, then Pr(T ≤ N − tor T ≥ t) is the P -value of the

two-tailed test.

If t ≤ N/2, then Pr(T ≤ tor T ≥ N − t) is the P -value of the

two-tailed test.
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Signed Rank Test and Related Procedures (cont.)

The only thing that is a bit tricky is the distribution of the test

statistic is symmetric but the center of symmetry is n(n + 1)/4

rather than zero.

Hence |T | is not a sensible test statistic for the two-tailed test.

Rather, we reject H0 when |T − n(n+ 1)/4| is large.
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Signed Rank Test and Related Procedures (cont.)

As with the sign test, in the decision-theoretic view, only a few

significance levels are exactly achievable. However, more are

achievable than for a sign test with the same sample size. If

n = 10, then

Rweb> round(psignrank(0:15, 10), 5)

[1] 0.00098 0.00195 0.00293 0.00488 0.00684 0.00977 0.01367

[8] 0.01855 0.02441 0.03223 0.04199 0.05273 0.06543 0.08008

[15] 0.09668 0.11621

are the only numbers below 0.12 that can be either P -values or

significance levels of one-tailed tests.

230



Signed Rank Test and Related Procedures (cont.)

Similarly,

Rweb> round(2 * psignrank(0:11, 10), 5)

[1] 0.00195 0.00391 0.00586 0.00977 0.01367 0.01953 0.02734

[8] 0.03711 0.04883 0.06445 0.08398 0.10547

are the only numbers below 0.12 that can be either P -values or

significance levels of two-tailed tests.
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Signed Rank Test and Related Procedures (cont.)

To find the confidence interval dual to the signed rank test, we

need to define the Walsh averages, which are the n(n + 1)/2

numbers
Xi +Xj

2
, i ≤ j

In case i = j, the Walsh average is just Xi. Otherwise, it is the

number halfway between Xi and Xj. There are n Walsh averages

of the first kind and n(n− 1)/2 of the second kind.

Claim: the test statistic T is equal to the number of Walsh

averages greater than θ0, call that T ∗.
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Signed Rank Test and Related Procedures (cont.)

The proof uses mathematical induction. Consider the data fixed,
just a set of numbers. Because of the continuity assumption all
of the Walsh averages are different with probability one.

If θ0 is greater than all of the data points, then all of the signed
ranks are negative and all of the Walsh averages are less than
θ0. Hence T = T ∗ = 0. That is the base of the induction.

As θ0 moves from above all Walsh averages to below them,
neither T nor T ∗ changes except when θ0 passes a Walsh average,
in which case both increase by one. That is the induction step.

When we have proved the induction step, that proves T = T ∗

regardless of the value of θ0.
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Signed Rank Test and Related Procedures (cont.)

Clearly T ∗ increases by one each time θ0 passes a Walsh average
going from above to below. We only need verify that the same
goes for T .

Induction step at Walsh average W = Xi. For θ0 near Xi we
have Ri = 1. As θ0 moves from above Xi to below it, Zi changes
from − to +. None of the other Zj change. Hence T increases
by one.

Induction step at Walsh average W = (Xi+Xj)/2. Say Xi < Xj.
For θ0 near W we have Ri and Rj with consecutive ranks because
Rj −W ≈ W − Ri. As θ0 moves from above W to below it, Rj
and Ri swap values and Rj increases by one. Since Zj > 0 and
Zi < 0, this increases T ∗ by one.
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Signed Rank Test and Related Procedures (cont.)

Let W(1), W(2), . . ., W(N) denote the order statistics of the Walsh

averages, where N = n(n+ 1)/2.

Select α < 1 and k ≥ 0 such that Pr(T ≤ k) = α/2. Then

W(k+1) < θ < W(N−k) is an exact 100(1−α)% confidence interval

for the population center of symmetry.

The proof is exactly like the proof for the confidence interval

associated with the sign test: Walsh averages replace the data,

psignrank replaces pbinom, and N = n(n + 1)/2 replaces n, but

everything else remains the same.
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Signed Rank Test and Related Procedures (cont.)

The Hodges-Lehmann estimator associated with the signed rank

test is the median of the Walsh averages.

There are fuzzy hypothesis tests and confidence intervals for the

signed rank test done by the fuzzyRankTests package. We won’t

spend time on them because they are very similar to the ones

for the sign test.
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Asymptotic Relative Efficiency Revisited

Asymptotic relative efficiency (ARE) for hypothesis tests and

confidence intervals is defined to be the same as the ARE for

the corresponding point estimators.

We know that the ARE of the sample median versus the sample

mean as point estimators (and consequently the ARE of the

sign test versus the t test) can vary from zero to infinity. For

distributions not having second moments the sample median and

the sign test are infinitely better than the sample mean and the

t test. For continuous distributions having PDF equal to zero at

the median, the reverse holds: the sample median and the sign

test are infinitely worse than the sample mean and the t test.
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Asymptotic Relative Efficiency Revisited (cont.)

We shall see (deck 3) that when the population distribution is

exactly normal, the sample mean and the t test are the best of

all possible procedures.

How much do we lose in this case if we use the sign test or the

signed rank test and their related confidence intervals and point

estimators?
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Asymptotic Relative Efficiency Revisited (cont.)

We calculated (slide 53) that, if the population distribution is

normal, then the ARE of the sample median relative to the sam-

ple mean is 2/π ≈ 0.6366. So we lose a lot.

It can be shown (but we won’t) that, if the population is nor-

mal, then the ARE of the median of the sample Walsh averages

relative to the sample mean is

12
(∫ ∞
−∞

f(x)2 dx

)2
=

3

π
≈ 0.955

where f is the PDF of the standard normal distribution. So we

lose very little.
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