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Model Selection

When we have two nested models, we know how to compare

them: the likelihood ratio test.

When we have a short sequence of nested models, we can also

use the likelihood ratio test to compare each consecutive pair

of models. This violates the “do only one test” dogma, but is

mostly harmless when there are only a few models being com-

pared.

But what if the models are not nested or if there are thousands

or millions of models being compared?
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Model Selection (cont.)

This subject has received much theoretical attention in recent

years. It is still an area of active research. But some things seem

unlikely to change.

Rudimentary efforts at model selection, so-called forward and

backward selection procedures, although undeniably things to

do (TTD), have no theoretical justification. They are not guar-

anteed to do anything sensible.

Procedures that are justified theoretically evaluate a criterion

function for all models in the class of models under consideration.

They “select” the model with the smallest value of the criterion.
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Model Selection (cont.)

We will look at two such procedures involving the Akaike in-

formation criterion (AIC) and the Bayes information criterion

(BIC).

Suppose the log likelihood for model m is denoted lm, the MLE

for model m is denoted θm, the dimension of θm is pm, and the

sample size is n

AIC(m) = −2lm(θ̂m) + 2pm

BIC(m) = −2lm(θ̂m) + log(n)pm

It is important to understand that both m and θ are parameters,

so lm(θ) retains all terms in log fm,θ(y) that contain m or θ.
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Model Selection (cont.)

Suppose we want to select the best model (in some sense) from

a class M which contains a model msup that contains all models

in the class. For example, suppose we have a linear model with q

predictors and the class M consists of all linear models in which

the mean vector µ is a linear function of some subset of these q

predictors

µ = α +
∑
s∈S

βsxs

where S is a subset, possibly empty, of these predictors. Since

there are 2q subsets, there are 2q models in the class M. The

model msup is the one containing all q of the predictors.
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Model Selection (cont.)

Each model contains an intercept α, so msup has q + 1 parame-

ters.

A model with k predictors has k + 1 parameters, including the

intercept.

The pm in AIC or BIC is the number of parameters (including

the intercept).
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Model Selection (cont.)

There is so much discussion of this situation — the class M
consists of 2q models, each of which sets some of the coefficients

in the model msup to zero — in the literature that one might

think it is the only situation in which model selection arises.

This is not so. We know from our other examples, that even if

one starts with only one predictor xi it is easy to make up other

predictors, such as x2
i , x3

i , . . . in polynomials and sin(xi), cos(xi),

sin(2xi), cos(2xi), . . . in Fourier series.

So there are always infinitely many predictor variables that can

be considered. Moreover, it often makes no sense to consider all

possible subsets when these “made up” predictors are related.
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Model Selection (cont.)

Nevertheless, special software exists only for this 2q models case,

and it is the only case we will do examples for.

The R function regsubsets in the leaps package does this.

It uses the branch and bound algorithm to find the best model of

each size p (number of parameters) in a specified range. (With

optional arguments, it can find the best k models of each size,

for any k.)
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Model Selection (cont.)

Having found the best model of each size, what is the best of

all of them?

Maximum likelihood cannot be used for that, since it will always

pick the supermodel msup. (The maximum over a superset is

always larger.)

Minimum AIC and minimum BIC are two reasonable criteria that

have been developed. Each of these procedures selects the set

with the smallest value of the criterion.
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Model Selection (cont.)

Roughly speaking, AIC and BIC each “penalize” larger models.

AIC has the smaller penalty 2pm; BIC has the larger penalty

log(n)pm. AIC penalizes less and selects larger models; BIC

penalizes more and selects smaller models.

The logic for the penalization is different in the two cases. More

on that later.
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Model Selection (cont.)

Example “BIC is best” from the computer examples web pages.
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Model Selection (cont.)

An intercept is included in all models so each model has at least

one parameter. Possible numbers of parameters range from 1 to

26 (there are 25 predictor variables). The best model according

to the BIC criterion has p = 7 parameters (six predictors plus

intercept).
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Model Selection (cont.)

Example “BIC is best” from the computer examples web pages.
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Model Selection (cont.)

An intercept is included in all models so each model has at least

one parameter. Possible numbers of parameters range from 1 to

26 (there are 25 predictor variables). The best model according

to the AIC criterion has p = 9 parameters (eight predictors plus

intercept).

These data were simulated, and the simulation truth model (p =

6) was closer to the one selected by BIC (p = 7). AIC selected

a model that was too large (p = 9).
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Model Selection (cont.)

BIC has a consistency property. When the true unknown model

is one of the models under consideration and the sample size n

goes to infinity, BIC selects the correct model with probability

converging to one as n →∞.

In practice this means for this story to be approximately realis-

tic, the true unknown model must be one of the models under

consideration and must have p much smaller than n, hence only

a few nonzero parameters.

In contrast AIC does not provide consistent model selection.
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Model Selection (cont.)

This theoretical story, although much woofed about by statis-

ticians, is not realistic in real applications. In scientific data,

usually all predictors have some relation to the response, how-

ever weak. Moreover, many unmeasured predictors may also

have some relation to the response. Thus the true model never

has only a few nonzero parameters and never is in the class of

models under consideration.

In this situation, the BIC penalty is too strong. It always selects

small models which are never correct. AIC was developed to do

approximately the right thing in this situation.
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Model Selection (cont.)

Example “AIC is best” from the computer examples web pages.
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Model Selection (cont.)

An intercept is included in all models so each model has at least

one parameter. Possible numbers of parameters range from 1 to

26 (there are 25 predictor variables). The best model according

to the BIC criterion has p = 6 parameters (five predictors plus

intercept).
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Model Selection (cont.)

Example “AIC is best” from the computer examples web pages.

●

●

●

●

●
● ● ● ● ● ● ● ●

●
●

2 4 6 8 10 12 14 16

−
10

0
−

90
−

80
−

70
−

60
−

50

p

A
IC

19



Model Selection (cont.)

An intercept is included in all models so each model has at least

one parameter. Possible numbers of parameters range from 1 to

26 (there are 25 predictor variables). The best model according

to the AIC criterion has p = 10 parameters (nine predictors plus

intercept).

These data were simulated, and the simulation truth model

had nonzero regression coefficients for all 25 predictor variables.

Both BIC and AIC selected a model that was too small, but AIC

is always closer to correct in this situation, since it always selects

a larger model.
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Model Selection (cont.)

A slogan from one of my teachers (Werner Stutzle).

Regression is for prediction, not explanation.

When the true model is not even in the class of models under
consideration, it is clear that the model “selected” cannot be
true and cannot “explain” correctly. It can nevertheless predict
well.

This slogan correctly summarizes the statistical properties of
regression (LM and GLM). Most scientists are unhappy with it,
because they want explanation. The slogan is a reminder of the
unattainability of this desire.
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Kullback-Leibler Information

The Kullback-Leibler Information (KLI) of a distribution with

PDF/PMF f with respect to a distribution with PDF/PMF g is

λ(f) = −Eg

{
log

(
f(Y )

g(Y )

)}
Since exp(x) ≥ 1+ x, we have log(1+ x) ≤ x and log(y) ≤ y− 1.

Thus

λ(f) ≥ −Eg

{
f(Y )

g(Y )
− 1

}
= −

∫
f(y) dy +

∫
g(y) dy

= 0

Clearly λ(g) = 0.
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Kullback-Leibler Information (cont.)

Up to constants, KLI is negative expected log likelihood

Eg{l(θ)} = Eg{log fθ(Y ) + h(Y )} = Eg{log fθ(Y )}+ Eg{h(Y )}

and

−λ(θ) = Eg

{
log

(
fθ(Y )

g(Y )

)}
= Eg{log fθ(Y )} − Eg{log g(Y )}

and the terms that contain θ agree.

Thus KLI measures how far f is from g in the same sense that

log likelihood approximates.
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Misspecified Maximum Likelihood

We know that when the model is correct, maximum likelihood is

consistent, asymptotically normal, and efficient

θ̂n
P−→ θ0

and
√

n(θ̂n − θ0)
D−→ N

(
0, I(θ0)

−1
)

When the model is not correct, maximum likelihood is not con-

sistent. It cannot be since there is no θ that corresponds to the

true distribution of the data. In this case

θ̂n
P−→ θ∗

where θ∗ minimizes KLI with respect to the true distribution of

the data.
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Misspecified Maximum Likelihood

When the model is misspecified the log likelihood derivative iden-
tities no longer hold. Because θ∗ minimizes KLI, we do have

E{∇ln(θ
∗)} = 0

which plays the role of the usual first log likelihood derivative
identity in asymptotic theory. Fisher information can no longer
be defined two ways.

In(θ) = var{∇ln(θ)}
Jn(θ) = −E{∇2ln(θ)}

are no longer equal. Each plays part of the role Fisher infor-
mation plays in asymptotic theory. The resulting asymptotics
are

√
n(θ̂n − θ∗) D−→ N

(
0, J1(θ

∗)−1I1(θ
∗)J1(θ

∗)−1
)
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AIC revisited

The Akaike information criterion (AIC) was developed as an un-

biased estimate of twice KLI plus a constant (which does not

matter). The idea is that it gives the best estimate possible of

KLI that only depends on the log likelihood and pm.

Better estimates have been developed but they are much more

complicated. For example, the Takeuchi Information Criterion

(TIC)

TIC(m) = −2lm(θ̂m) + 2 tr
[
I1(θ

∗)J1(θ
∗)−1

]
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AIC revisited (cont.)

TIC does not assume any of the models under consideration are

actually correct. It merely tries to find which of the models under

consideration is closest to correct in the sense of KLI.

TIC(m) reduces to AIC(m) when model m is correct.
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BIC revisited

BIC was developed to approximate unnormalized Bayes factors.

Under the asymptotics of Bayesian estimation the within model

priors do not affect the asymptotics (deck 4, slides 88–90). That

is why BIC does not involve priors.
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