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Bayesian Inference

Now for something completely different.

Everything we have done up to now is frequentist statistics.
Bayesian statistics is very different.

Bayesians don’t do confidence intervals and hypothesis tests.
Bayesians don’t use sampling distributions of estimators. Modern
Bayesians aren’t even interested in point estimators.

So what do they do? Bayesians treat parameters as random
variables.

To a Bayesian probability is only way to describe uncertainty.
Things not known for certain — like values of parameters —
must be described by a probability distribution.
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Bayesian Inference (cont.)

Suppose you are uncertain about something. Then your uncer-

tainty is described by a probability distribution called your prior

distribution.

Suppose you obtain some data relevant to that thing. The data

changes your uncertainty, which is then described by a new prob-

ability distribution called your posterior distribution.

The posterior distribution reflects the information both in the

prior distribution and the data.

Most of Bayesian inference is about how to go from prior to

posterior.
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Bayesian Inference (cont.)

The way Bayesians go from prior to posterior is to use the laws

of conditional probability, sometimes called in this context Bayes

rule or Bayes theorem.

Suppose we have a PDF g for the prior distribution of the pa-

rameter θ, and suppose we obtain data x whose conditional PDF

given θ is f . Then the joint distribution of data and parameters

is conditional times marginal

f(x | θ)g(θ)

This may look strange because, up to this point in the course,

you have been brainwashed in the frequentist paradigm. Here

both x and θ are random variables.
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Bayesian Inference (cont.)

The correct posterior distribution, according to the Bayesian

paradigm, is the conditional distribution of θ given x, which is

joint divided by marginal

h(θ | x) =
f(x | θ)g(θ)∫
f(x | θ)g(θ) dθ

Often we do not need to do the integral. If we recognize that

θ 7→ f(x | θ)g(θ)

is, except for constants, the PDF of a brand name distribution,

then that distribution must be the posterior.
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Binomial Data, Beta Prior

Suppose the prior distribution for p is Beta(α1, α2) and the con-

ditional distribution of x given p is Bin(n, p). Then

f(x | p) =
(n
x

)
px(1− p)n−x

g(p) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1(1− p)α2−1

and

f(x | p)g(p) =
(n
x

)Γ(α1 + α2)

Γ(α1)Γ(α2)
· px+α1−1(1− p)n−x+α2−1

and this, considered as a function of p for fixed x is, except for

constants, the PDF of a Beta(x + α1, n − x + α2) distribution.

So that is the posterior.
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Binomial Data, Beta Prior (cont.)

A bit slower, for those for whom that was too fast. If we look

up the Beta(α1, α2) distribution in the brand name distributions

handout, we see the PDF

f(x) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
xα1−1(1− x)α2−1 0 < x < 1

We want g(p). To get that we must change f to g, which is

trivial, and x to p, which requires some care. That is how we

got

g(p) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1(1− p)α2−1

on the preceding slide.
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Binomial Data, Beta Prior (cont.)

Note that we don’t change x to p in f(x | p). There x is the

variable and p is the constant, because x is in front of the bar

and p is behind the bar. And that is just what we see for the

formula for the PDF of the Bin(n, p) distribution in the brand-

name distributions handout. There is nothing that needs to be

changed.
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Binomial Data, Beta Prior (cont.)

So if we get to

f(x | p)g(p) =
(n
x

)Γ(α1 + α2)

Γ(α1)Γ(α2)
· px+α1−1(1− p)n−x+α2−1

how do we recognize this as the PDF of a brand-name distribu-

tion, except for constants?

First, remember that p is the variable and x is fixed. In Bayesian

inference the parameter is always the variable for the prior or

posterior and the data are always fixed. The posterior is the

conditional distribution of the parameter or parameters given

the data.
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Binomial Data, Beta Prior (cont.)

Second, remember that p is a continuous variable, so we are

looking for the distribution of a continuous random variable!
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Binomial Data, Beta Prior (cont.)

Third, when we try to find something that looks like

px+α1−1(1− p)n−x+α2−1 (∗)
in the brand-name distributions handout, we find only the bino-
mial PMF and the beta PDF. From the second point we don’t
want a PMF. Hence the posterior, if brand-name, must be beta.
To find which beta, we need to match up

xα1−1(1− x)α2−1

(the non-constant part of the beta PDF in the brand-name dis-
tributions handout) with (∗). To do that we need to change x to
p, which is right because in the posterior p is the variable. And
we need to change the first parameter to x+α1 and the second
parameter to n−x+α2. That’s how we get Beta(x+α1, n−x+α2)
for the posterior.
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Bayesian Inference (cont.)

Simple. It is just a “find the other conditional” problem, which

we did when studying conditional probability first semester. But

there are a lot of ways to get confused and go wrong if you are

not careful.
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Bayesian Inference (cont.)

In Bayes rule, “constants” meaning anything that doesn’t de-

pend on the parameter are irrelevant. We can drop multiplica-

tive constants that do not depend on the parameter from f(x | θ)
obtaining the likelihood L(θ). We can also drop multiplicative

constants that do not depend on the parameter from g(θ) ob-

taining the unnormalized prior. Multiplying them together gives

the unnormalized posterior

likelihood× unnormalized prior = unnormalized posterior
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Bayesian Inference (cont.)

In our example we could have multiplied likelihood

px(1− p)n−x

times unnormalized prior

pα1−1(1− p)α2−1

to get unnormalized posterior

px(1− p)n−xpα1−1(1− p)α2−1 = px+α1−1(1− p)n−x+α2−1

which, as before, can be recognized as an unnormalized beta

PDF.
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Bayesian Inference (cont.)

It is convenient to have a name for the parameters of the prior

and posterior. If we call them parameters, then we get confused

because they play a different role from the parameters of the

distribution of the data.

The parameters of the distribution of the data, p in our example,

the Bayesian treats as random variables. They are the random

variables whose distributions are the prior and posterior.

The parameters of the prior, α1 and α2 in our example, the

Bayesian treats as known constants. They determine the par-

ticular prior distribution used for a particular problem. To avoid

confusion we call them hyperparameters.
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Bayesian Inference (cont.)

Parameters, meaning the parameters of the distribution of the

data and the variables of the prior and posterior are unknown

constants. The Bayesian treats them as random variables be-

cause probability theory is the correct description of uncertainty.

Hyperparameters, meaning the parameters of the prior and pos-

terior are known constants. The Bayesian treats them as non-

random variables because there is no uncertainty about their

values.

In our example, the hyperparameters of the prior are α1 and α2,

and the hyperparameters of the posterior are x+α1 and n−x+α2.
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Normal Data, Normal Prior

Suppose X1, . . ., Xn are N (µ, σ2), where µ is unknown and σ2 is
known. Suppose we are being Bayesian and our prior distribution
for µ is also normal, say N (µ0, σ

2
0). We cannot denote the hy-

perparameters µ0 and σ2
0 as µ and σ, because we would then get

them confused with the parameters µ and σ of the distribution
of the data.

The likelihood is

Ln(µ) = exp

(
−
n(x̄n − µ)2

2σ2

)
(Deck 3, Slide 11). The PDF of the unnormalized prior is

g(µ) = exp

(
−

(µ− µ0)
2

2σ2
0

)
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Normal Data, Normal Prior (cont.)

It simplifies the math if we introduce

λ =
1

σ2
and λ0 =

1

σ2
0

(reciprocal variance is called precision so λ and λ0 are precision

parameters) so

Ln(µ) = exp
(
−n2λ(x̄n − µ)2

)
g(µ) = exp

(
−1

2λ0(µ− µ0)
2
)

Ln(µ)g(µ) = exp
(
−n2λ(x̄n − µ)2 − 1

2λ0(µ− µ0)
2
)
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A Lemma

The function

x 7→ exp
(
ax2 + bx+ c

)
(∗∗)

having domain the whole real line is an unnormalized PDF if

and only if a < 0, in which case is the unnormalized PDF of the

normal distribution with mean, variance, and precision

µ = −
b

2a

σ2 = −
1

2a
λ = −2a
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A Lemma (cont.)

If a ≥ 0, then (∗∗) does not go to zero as x goes to plus or minus

infinity, hence the integral of (∗∗) does not exist and it cannot

be normalized to make a PDF (5101, Deck 4, Slides 8 ff.)
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A Lemma (cont.)

If a < 0, then we can equate (∗∗) to the unnormalized PDF of a

normal distribution

exp
(
ax2 + bx+ c

)
= d exp

(
−

(x− µ)2

2σ2

)
where d > 0 is arbitrary. Taking logs we get

ax2 + bx+ c = −
(x− µ)2

2σ2
+ log(d)

= −
x2

2σ2
+
xµ

σ2
−

µ2

2σ2
+ log(d)

(∗∗∗)
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A Lemma (cont.)

The only way (∗∗∗) can hold for all real x is if the coefficients of

x2 and x match on both sides

a = −
1

2σ2

b =
µ

σ2

and solving for µ and σ2 gives the assertion of the lemma.
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Normal Data, Normal Prior (cont.)

Returning to the problem where we had unnormalized posterior

exp
(
−n2λ(x̄n − µ)2 − 1

2λ0(µ− µ0)
2
)

= exp
(
−1

2nλµ
2 + nλx̄nµ− 1

2nλx̄
2
n − 1

2λ0µ
2λ0µ0µ− 1

2λ0µ
2
0

)
exp

([
−1

2nλ−
1
2λ0

]
µ2 + [nλx̄n + λ0µ0]µ− 1

2nλx̄
2
n − 1

2λ0µ
2
0

)
and we see we have the situation described by the lemma with

a = −
nλ+ λ0

2
b = nλx̄n + λ0µ0
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Normal Data, Normal Prior (cont.)

Hence by the lemma, the posterior is normal with hyperparame-

ters

µ1 = −
b

2a

=
nλx̄n + λ0µ0

nλ+ λ0
λ1 = −2a

= nλ+ λ0

We give the hyperparameters of the posterior subscripts 1 to

distinguish then from hyperparameters of the prior (subscripts

0) and parameters of the data distribution (no subscripts).
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Bayesian Inference (cont.)

Unlike most of the notational conventions we use, this one (about

subscripts of parameters and hyperparameters) is not widely

used, but there is no widely used convention.
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Toy Example

Suppose x has the distribution with PDF

f(x | θ) =
1 + 2θx

1 + θ
, 0 < x < 1

where θ > −1/2 is the parameter. Suppose our prior distribution

for θ is uniform on the interval (0, 2). Then the posterior is

also concentrated on the interval (0, 2) and the unnormalized

posterior is

1 + 2θx

1 + θ

thought of a function of θ for fixed x.
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Toy Example (cont.)

According to Mathematica, the normalized posterior PDF is

h(θ | x) =
1 + 2θx

(1 + θ)(2x(2− log(3)) + log(3))

27



Conjugate Priors

Given a data distribution f(x | θ), a family of distributions is said

to be conjugate to the given distribution if whenever the prior

is in the conjugate family, so is the posterior, regardless of the

observed value of the data.

Trivially, the family of all distributions is always conjugate.

Our first example showed that, if the data distribution is bino-

mial, then the conjugate family of distributions is beta.

Our second example showed that, if the data distribution is nor-

mal with known variance, then the conjugate family of distribu-

tions is normal.
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Conjugate Priors (cont.)

How could we discover that binomial and beta are conjugate?

Consider the likelihood for arbitrary data and sample size

Ln(p) = px(1− p)n−x

If multiplied by another likelihood of the same family but different

data and sample size, do we get the same form back? Yes!

px1(1− p)n1−x1px2(1− p)n2−x2 = px3(1− p)n3−x3

where

x3 = x1 + x2

n3 = n1 + n2
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Conjugate Priors (cont.)

Hence, if the prior looks like the likelihood, then the posterior

will too.

Thus we have discovered the conjugate family of priors. We only

have to recognize

p 7→ px(1− p)n−x

as an unnormalized beta distribution.
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Conjugate Priors (cont.)

Note that beta with integer-valued parameters is also a conjugate

family of priors in this case. But usually we are uninterested in

having the smallest conjugate family. When we discover that a

brand-name family is conjugate, we are happy to have the full

family available for prior distributions.
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Conjugate Priors (cont.)

Suppose the data are IID Exp(λ). What is the brand-name con-

jugate prior distribution? The likelihood is

Ln(λ) = λn exp

−λ n∑
i=1

xi

 = λn exp(−λx̄n)

If we combine two likelihoods for two independent samples we

get

λn exp(−λnx̄n)× λn exp(−λnȳn) = λn exp
(
−λn(x̄n + ȳn)

)
where x̄n and ȳn are the means for the two samples. This has

the same form as the log likelihood for one sample.
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Conjugate Priors (cont.)

Hence, if the prior looks like the likelihood, then the posterior

will too. We only have to recognize

g(λ) = λn exp(−λx̄n)

as the form

xsomething exp(−something else · x)

of the gamma distribution. Thus Γ(α, λ) is the conjugate family.
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Improper Priors

A subjective Bayesian is a person who really buys the Bayesian

philosophy. Probability is the only correct measure of uncer-

tainty, and this means that people have probability distributions

in their heads that describe any quantities they are uncertain

about. In any situation one must make one’s best effort to get

the correct prior distribution out of the head of the relevant user

and into Bayes rule.

Many people, however, are happy to use the Bayesian paradigm

while being much less fussy about priors. As we shall see, when

the sample size is large, the likelihood outweighs the prior in

determining the posterior. So, when the sample size is large, the

prior is not crucial.
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Improper Priors (cont.)

Such people are willing to use priors chosen for mathematical

convenience rather than their accurate representation of uncer-

tainty.

They often use priors that are very spread out to represent ex-

treme uncertainty. Such priors are called “vague” or “diffuse”

even though these terms have no precise mathematical defini-

tion.

In the limit as the priors are spread out more and more one gets

so-called improper priors.
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Improper Priors (cont.)

Consider our N (µ0,1/λ0) priors we used for µ when the data are

normal with unknown mean µ and known variance.

What happens if we let λ0 decrease to zero so the prior variance

goes to infinity? The limit is clearly not a probability distribution.

But let us take limits on unnormalized PDF

lim
λ0↓0

exp
(
−1

2λ0(µ− µ0)
2
)
= 1

The limiting unnormalized prior something-or-other (we can’t

call it a probability distribution) is constant

g(µ) = 1, −∞ < µ < +∞
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Improper Priors (cont.)

What happens if we try to use this improper g in Bayes rule? It
works!

Likelihood times unnormalized improper prior is just the likeli-
hood, because the improper prior is equal to one, so we have

Ln(µ)g(µ) = exp
(
−n2λ(x̄n − µ)2

)
and this thought of as a function of µ for fixed data is propor-
tional to a N

(
x̄n,1/(nλ)

)
distribution.

Or, bringing back σ2 = 1/λ as the known variance

µ ∼ N
(
x̄n,

σ2

n

)
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Improper Priors (cont.)

Interestingly, the Bayesian with this improper prior agrees with

the frequentist.

The MLE is µ̂n = x̄n and we know the exact sampling distribution

of the MLE is

µ̂n ∼ N
(
µ,
σ2

n

)

where µ is the true unknown parameter value (recall σ2 is known).

To make a confidence interval, the frequentist would use the

pivotal quantity

µ̂n − µ ∼ N
(
0,
σ2

n

)
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Improper Priors (cont.)

So the Bayesian and the frequentist, who are in violent disagree-

ment about which of µ and µ̂n is random — the Bayesian says µ̂n
is just a number, hence non-random, after the data have been

seen and µ, being unknown, is random, since probability is the

proper description of uncertainty, whereas the frequentist treats

µ̂n as random and µ as constant — agree about the distribution

of µ̂n − µ.
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Improper Priors (cont.)

Also interesting is that although the limiting process we used

to derive this improper prior makes no sense, the same limiting

process applied to posteriors does make sense

N
(
nλx̄n + λ0µ0

nλ+ λ0
,

1

nλ+ λ0

)
→ N

(
x̄n,

1

nλ

)
, as λ0 ↓ 0
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Improper Priors (cont.)

So how do we make a general methodology out of this?

We started with a limiting argument that makes no sense and

arrived at posterior distributions that do make sense.

Let us call an improper prior any nonnegative function on the

parameter space whose integral does not exist. We run it though

Bayes rule just like a proper prior.

However, we are not really using the laws of conditional proba-

bility because an improper prior is not a PDF (because it doesn’t

integrate). We are using the form but not the content. Some

people say we are using the formal Bayes rule.
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Improper Priors (cont.)

There is no guarantee that

likelihood× improper prior = unnormalized posterior

results in anything that can be normalized. If the right-hand

side integrates, then we get a proper posterior after normaliza-

tion. If the right-hand does not integrate, then we get complete

nonsense.

You have to be careful when using improper priors that the an-

swer makes sense. Probability theory doesn’t guarantee that,

because improper priors are not probability distributions.
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Improper Priors (cont.)

Improper priors are very questionable.

• Subjective Bayesians think they are nonsense. They do not
correctly describe the uncertainty of anyone.

• Everyone has to be careful using them, because they don’t
always yield proper posteriors. Everyone agrees improper
posteriors are nonsense.

• Because the joint distribution of data and parameters is also
improper, paradoxes arise. These can be puzzling.

However they are widely used and need to be understood.
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Improper Priors (cont.)

For binomial data we know that beta is the conjugate family and

likelihood times unnormalized prior is

px+α1−1(1− p)n−x+α2−1

which is an unnormalized Beta(x+α1, n−x+α2) PDF (slide 14).

The posterior makes sense whenever

x+ α1 > 0

n− x+ α2 > 0

hence for some negative values of α1 and α2.

But the prior is only proper for α1 > 0 and α2 > 0.
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Improper Priors (cont.)

Our inference looks the same either way

Data Distribution Bin(n, p)
Prior Distribution Beta(α1, α2)
Posterior Distribution Beta(x+ α1, n− x+ α2)

but when either α1 or α2 is nonpositive, we say we are using an

improper prior.
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Objective Bayesian Inference

The subjective, personalistic aspect of Bayesian inference both-

ers many people. Hence many attempts have been made to

formulate “objective” priors, which are supposed to be priors

that many people can agree on, at least in certain situations.

Objective Bayesian inference doesn’t really exist, because no pro-

posed “objective” priors achieve wide agreement.
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Flat Priors

One obvious “default” prior is flat (constant), which seems to

give no preference to any parameter value over any other. If the

parameter space is unbounded, then the flat prior is improper.

One problem with flat priors is that they are only flat for one

parameterization.
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Change of Parameter

Recall the change-of-variable formulas. Univariate: if x = h(y),

then

fY (y) = fX[h(y)] · |h′(y)|

Multivariate: if x = h(y), then

fY (y) = fX[h(y)] · |det(∇h(y))|

(5101, Deck 3, Slides 124–125). When you do a change-of-

variable you pick up a “Jacobian” term.

This holds for change-of-parameter for Bayesians, because pa-

rameters are random variables.
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Change of Parameter

If we use a flat prior for θ, then the prior for ψ = θ2 uses the

transformation θ = h(ψ) with

h(x) = x1/2

h′(x) = 1
2x
−1/2

so

gΨ(ψ) = gΘ[h(ψ)] · 12ψ
−1/2 = 1 ·

1

2
√
ψ

And similarly for any other transformation.

You can be flat on one parameter, but not on any other. On

which parameter should you be flat?
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Jeffreys Priors

If flat priors are not “objective,” what could be?

Jeffreys introduced the following idea. If I(θ) is Fisher informa-

tion for a data model with one parameter, then the prior with

PDF

g(θ) ∝
√
I(θ)

(where ∝ means proportional to) is objective in the sense that

any change-of-parameter yields the Jeffreys prior for that param-

eter.

If the parameter space is unbounded, then the Jeffreys prior is

usually improper.
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Jeffreys Priors (cont.)

If we use the Jeffreys prior for θ, then the corresponding prior for

a new parameter ψ related to θ by θ = h(ψ) is by the change-of-

variable theorem

gΨ(ψ) = gΘ[h(ψ)] · |h′(ψ)|

∝
√
IΘ[h(ψ)] · |h′(ψ)|

The relationship for Fisher information is

IΨ(ψ) = IΘ[h(ψ)] · h′(ψ)2

(Deck 3, Slide 101). Hence the change-of-variable theorem gives

gΨ(ψ) ∝
√
IΨ(ψ)

which is the Jeffreys prior for ψ.
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Jeffreys Priors (cont.)

The Jeffreys prior for a model with parameter vector θ and Fisher

information matrix I(θ) is

g(θ) ∝
√

det
(
I(θ)

)
and this has the same property as in the one-parameter case:

each change-of-parameter yields the Jeffreys prior for that pa-

rameter.
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Jeffreys Priors (cont.)

Suppose the data X are Bin(n, p). The Fisher information is

In(p) =
n

p(1− p)

(Deck 3, Slide 51) so the Jeffreys prior is

g(p) ∝ p−1/2(1− p)−1/2

which is a proper prior.
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Jeffreys Priors (cont.)

Suppose the data X1, . . ., Xn are IID Exp(λ). The Fisher infor-

mation is

In(λ) =
n

λ2

(Deck 3, Slide 51) so the Jeffreys prior is

g(p) ∝
1

λ

which is an improper prior.
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Jeffreys Priors (cont.)

Suppose the data X1, . . ., Xn are IID N (µ, ν). The Fisher infor-

mation matrix is

In(µ, ν) =

(
n/ν 0
0 n/(2ν2)

)
(Deck 3, Slide 89) so the Jeffreys prior is

g(µ, ν) ∝ ν−3/2

which is an improper prior.
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Two-Parameter Normal

The likelihood for the two-parameter normal data distribution

with parameters the mean µ and precision λ = 1/σ2 is

Ln(µ, λ) = λn/2 exp

(
−
nvnλ

2
−
nλ(x̄n − µ)2

2

)
(Deck 3, Slides 10 and 80).

We seek a brand name conjugate prior family. This is no brand

name bivariate distribution, so we seek a factorization

joint = conditional×marginal

in which the marginal and conditional are brand name.
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Two-Parameter Normal (cont.)

Finding the conjugate prior is equivalent to finding the posterior
for a flat prior.

For fixed ν, we note that the likelihood is “e to a quadratic” in
µ hence the posterior conditional for µ given ν that is normal.
The normalizing constant is

1/
√

2πσ2 ∝ λ1/2

Hence we can factor the likelihood = unnormalized posterior into
unnormalized marginal× unnormalized conditional as

λ(n−1)/2 exp
(
−
nvnλ

2

)
× λ1/2 exp

(
−
nλ(x̄n − µ)2

2

)
and we recognize the marginal for λ as gamma.

57



Two-Parameter Normal (cont.)

We generalize this allowing arbitrary hyperparameters for the

conjugate prior

λ ∼ Gam(α0, β0)

µ | λ ∼ N (γ0, δ
−1
0 λ−1)

the first is the marginal for λ and the second is the conditional

for µ given λ. Note that µ and λ are dependent because the

conditional depends on λ.

There are four hyperparameters: α0, β0, γ0, and δ0.

This is called the normal-gamma family of (bivariate) distribu-

tions.
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Two-Parameter Normal (cont.)

Check how this conjugate family works.

Suppose X1, . . ., Xn are IID N (µ, λ−1) and we use a normal-

gamma prior. The likelihood is

λn/2 exp
(
−1

2nvnλ−
1
2nλ(x̄n − µ)2

)
and the unnormalized prior is

λα0−1 exp
(
−β0λ

)
· λ1/2 exp

(
−1

2δ0λ(µ− γ0)
2
)

Hence the unnormalized posterior is

λα0+n/2−1/2 exp
(
−β0λ− 1

2δ0λ(µ− γ0)
2 − 1

2nvnλ−
1
2nλ(x̄n − µ)2

)
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Two-Parameter Normal (cont.)

We claim this is an unnormalized normal-gamma PDF with hy-

perparameters α1, β1, γ1 and δ1. It is obvious that the “λ to a

power” part matches up with

α1 = α0 + n/2
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Two-Parameter Normal (cont.)

It remains to match up the coefficients of λ, λµ, and λµ2 in the
exponent to determine the other three hyperparameters.

−β1λ−1
2δ1λ(µ−γ1)

2 = −β0λ−1
2δ0λ(µ−γ0)

2−1
2nvnλ−

1
2nλ(x̄n−µ)

2

So

−β1 − 1
2δ1γ

2
1 = −β0 − 1

2nvn −
1
2δ0γ

2
0 − 1

2nx̄
2
n

δ1γ1 = δ0γ0 + nx̄n

−1
2δ1 = −1

2δ0 −
1
2n

Hence

δ1 = δ0 + n

γ1 =
δ0γ0 + nx̄n

δ0 + n
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Two-Parameter Normal (cont.)

And the last hyperparameter comes from

−β1 − 1
2δ1γ

2
1 = −β0 − 1

2nvn −
1
2δ0γ

2
0 − 1

2nx̄
2
n

so

β1 = β0 + 1
2n(vn + x̄2n) + 1

2δ0γ
2
0 − 1

2δ1γ
2
1

= β0 + 1
2n(vn + x̄2n) + 1

2δ0γ
2
0 − 1

2
(δ0γ0 + nx̄n)2

δ0 + n

= β0 + 1
2nvn +

(δ0γ
2
0 + nx̄2n)(δ0 + n)− (δ0γ0 + nx̄n)2

2(δ0 + n)

= β0 +
n

2

(
vn +

δ0(x̄n − γ0)
2

δ0 + n

)
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Two-Parameter Normal (cont.)

And that finishes the proof of the following theorem. The

normal-gamma family is conjugate to the two-parameter nor-

mal. If the prior is normal-gamma with hyperparameters α0, β0,

γ0, and δ0, then the posterior is normal-gamma with hyperpa-

rameters

α1 = α0 +
n

2

β1 = β0 +
n

2

(
vn +

δ0(x̄n − γ0)
2

δ0 + n

)

γ1 =
γ0δ0 + nx̄n

δ0 + n

δ1 = δ0 + n
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Two-Parameter Normal (cont.)

We are also interested in the other factorization of the normal-

gamma conjugate family: marginal for µ and conditional for λ

given µ. The unnormalized joint distribution is

λα−1 exp
(
−βλ

)
· λ1/2 exp

(
−1

2δλ(µ− γ)2
)

Considered as a function of λ for fixed µ, this is proportional to

a Gam(a, b) distribution with hyperparameters

a = α+ 1/2

b = β + 1
2δ(µ− γ)2
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Two-Parameter Normal (cont.)

The normalized PDF for this conditional is

1

Γ(α+ 1/2)
(β + 1

2δ(µ− γ)2)α+1/2

× λα+1/2−1 exp
(
−
(
β + 1

2δ(µ− γ)2
)
λ
)

We conclude the unnormalized marginal for µ must be

(β + 1
2δ(µ− γ)2)−(α+1/2)
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Two-Parameter Normal (cont.)

This marginal is not obviously a brand-name distribution, but

we claim it is a location-scale transformation of a t distribution

with noninteger degrees of freedom. Dropping constants, the

unnormalized PDF of the t distribution with ν degrees of freedom

is

(ν + x2)−(ν+1)/2

(brand name distributions handout). If we change the variable

to µ = a+ bx, so x = (µ− a)/b, we get[
ν +

(
µ− a

b

)2
]−(ν+1)/2

∝ [νb2 + (µ− a)2]−(ν+1)/2
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Two-Parameter Normal (cont.)

So to identify the marginal we much match up

[νb2 + (µ− a)2]−(ν+1)/2

and

(β + 1
2δ(µ− γ)2)−(α+1/2) ∝ [2β/δ+ (µ− γ)2]−(α+1/2)

and these do match up with

ν = 2α

a = γ

b =

√
β

αδ

And that finishes the proof of the following theorem. The other
factorization of the normal-gamma family is gamma-t-location-
scale.

67



Two-Parameter Normal (cont.)

If

λ ∼ Gam(α, β)

µ | λ ∼ N (γ, δ−1λ−1)

then

(µ− γ)/d ∼ t(ν)

λ | µ ∼ Gam(a, b)

where

a = α+ 1
2

b = β + 1
2δ(µ− γ)2

ν = 2α

d =

√
β

αδ
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Two-Parameter Normal (cont.)

Thus the Bayesian also gets t distributions. They are marginal

posteriors of µ for normal data when conjugate priors are used.
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Two-Parameter Normal (cont.)

The unnormalized normal-gamma prior is

λα0−1 exp
(
−β0λ

)
· λ1/2 exp

(
−1

2δ0λ(µ− γ0)
2
)

Set β0 = δ0 = 0 and we get the improper prior

g(µ, λ) = λα0−1/2
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Two-Parameter Normal (cont.)

The Jeffreys prior for the two-parameter normal with parameters

µ and ν = 1/λ is

g(µ, ν) ∝ ν−3/2

(slide 55). The change-of-variable to µ and λ gives Jacobian∣∣∣∣∣det

(
1 0
0 ∂ν/∂λ

)∣∣∣∣∣ =
∣∣∣∣∣det

(
1 0
0 −1/λ2

)∣∣∣∣∣ = λ−2

Hence the Jeffreys prior for µ and λ is

g(µ, λ) =
(
1

λ

)−3/2
· λ−2 = λ3/2 · λ−2 = λ−1/2

This matches up with what we had on the preceding slide if we

take α0 = 0.
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Two-Parameter Normal (cont.)

The Jeffreys prior has α0 = β0 = δ0. Then γ0 is irrelevant.

This produces the posterior with hyperparameters

α1 =
n

2

β1 =
nvn

2
γ1 = x̄n

δ1 = n
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Two-Parameter Normal (cont.)

The marginal posterior for λ is

Gam(α1, β1) = Gam
(
n

2
,
nvn

2

)
The marginal posterior for µ is

(µ− γ1)/d ∼ t(ν)

where γ1 = x̄n and

d =

√
β1
α1δ1

=

√√√√ nvn/2

n/2 · n
=
√
vn

n

and ν = 2α1 = n.
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Two-Parameter Normal (cont.)

In summary the Bayesian using the Jeffreys prior gets

λ ∼ Gam
(
n

2
,
nvn

2

)
µ− x̄n√
vn/n

∼ t(n)
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Two-Parameter Normal (cont.)

Alternatively, setting α0 = −1/2 and β0 = δ0 = 0 gives

α1 =
n− 1

2

β1 =
nvn

2
=

(n− 1)s2n
2

γ1 = x̄n

δ1 = n

d =

√
β1
α1δ1

=

√√√√ nvn/2

(n− 1)/2 · n
=

sn√
n

where s2n = nvn/(n− 1) is the usual sample variance.
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Two-Parameter Normal (cont.)

So the Bayesian with this improper prior almost agrees with the

frequentist. The marginal posteriors are

λ ∼ Gam

(
n− 1

2
,
(n− 1)s2n

2

)
µ− x̄n

sn/
√
n
∼ t(n− 1)

or

µ− x̄n

sn/
√
n
∼ t(n− 1)

(n− 1)s2nλ ∼ chi2(n− 1)

But there is no reason for the Bayesian to choose α0 = −1/2

except to match the frequentist.
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Bayesian Point Estimates

Bayesians have little interest in point estimates of parameters.

To them a parameter is a random variable, and what is important

is its distribution. A point estimate is a meager bit of information

as compared, for example, to a plot of the posterior density.

Frequentists too have little interest in point estimates except as

tools for constructing tests and confidence intervals.

However, Bayesian point estimates are something you are ex-

pected to know about if you have taken a course like this.
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Bayesian Point Estimates (cont.)

Bayesian point estimates are properties of the posterior distri-

bution. The three point estimates that are widely used are the

posterior mean, the posterior median, and the posterior mode.

We already know what the mean and median of a distribution

are.

A mode of a continuous distribution is a local maximum of the

PDF. The distribution is unimodal if it has one mode, bimodal

if two, and multimodal if more than one.

When we say the mode (rather than a mode) in reference to a

multimodal distribution, we mean the highest mode.
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Bayesian Point Estimates (cont.)

Finding the modes of a distribution is somewhat like maximum

likelihood, except one differentiates with respect to the variable

rather than with respect to the parameter. For a Bayesian,

however, the variable is the parameter. So it is just like maximum

likelihood except that instead of maximizing

Ln(θ)

one maximizes

Ln(θ)g(θ)

or one can maximize

log
[
Ln(θ)g(θ)

]
= ln(θ) + log g(θ)

(log likelihood + log prior).
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Bayesian Point Estimates (cont.)

Suppose the data x is Bin(n, p) and we use the conjugate prior

Beta(α1, α2), so the posterior is Beta(x+α1, n−x+α2) (slide 6).

Looking up the mean of a beta distribution on the brand name

distributions handout, we see the posterior mean is

E(p | x) =
x+ α1

n+ α1 + α2
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Bayesian Point Estimates (cont.)

The posterior median has no simple expression. We can calculate

it using the R expression

qbeta(0.5, x + alpha1, n - x + alpha2)

assuming x, n, alpha1, and alpha2 have been defined.
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Bayesian Point Estimates (cont.)

The posterior mode is the maximizer of

h(p | x) = px+α1−1(1− p)n−x+α2−1

or of

logh(p | x) = (x+ α1 − 1) log(p) + (n− x+ α2 − 1) log(1− p)

which has derivative

d

dp
logh(p | x) =

x+ α1 − 1

p
−
n− x+ α2 − 1

1− p

setting this equal to zero and solving for p gives

x+ α1 − 1

n+ α1 + α2 − 2

for the posterior mode.
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Bayesian Point Estimates (cont.)

The formula
x+ α1 − 1

n+ α1 + α2 − 2

is only valid if it gives a number between zero and one. If x+α1 <

1 then the posterior PDF goes to infinity as p ↓ 0. If n−x+α2 < 1

then the posterior PDF goes to infinity as p ↑ 1.
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Bayesian Point Estimates (cont.)

Suppose α1 = α2 = 1/2, x = 0, and n = 10.

Rweb:> alpha1 <- alpha2 <- 1 / 2

Rweb:> x <- 0

Rweb:> n <- 10

Rweb:> (x + alpha1) / (n + alpha1 + alpha2)

[1] 0.04545455

Rweb:> qbeta(0.5, x + alpha1, n - x + alpha1)

[1] 0.02194017

Rweb:> (x + alpha1 - 1) / (n + alpha1 + alpha2 - 2)

[1] -0.05555556

Posterior mean: 0.045. Posterior median: 0.022. Posterior
mode: 0.
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Bayesian Point Estimates (cont.)

Suppose α1 = α2 = 1/2, x = 2, and n = 10.

Rweb:> alpha1 <- alpha2 <- 1 / 2

Rweb:> x <- 2

Rweb:> n <- 10

Rweb:> (x + alpha1) / (n + alpha1 + alpha2)

[1] 0.2272727

Rweb:> qbeta(0.5, x + alpha1, n - x + alpha1)

[1] 0.2103736

Rweb:> (x + alpha1 - 1) / (n + alpha1 + alpha2 - 2)

[1] 0.1666667

Posterior mean: 0.227. Posterior median: 0.210. Posterior
mode: 0.167.
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Bayesian Point Estimates (cont.)

In one case, the calculations are trivial. If the posterior distribu-

tion is symmetric and unimodal, for example normal or t-location-

scale, then the posterior mean, median, mode, and center of

symmetry are equal.

When we have normal data and use the normal-gamma prior,

the posterior mean, median, and mode is

γ1 =
γ0δ0 + nx̄n

δ0 + n
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Bayesian Point Estimates (cont.)

The posterior mean and median are often woofed about using

decision-theoretic terminology. The posterior mean is the Bayes

estimator that minimizes squared error loss. The posterior me-

dian is the Bayes estimator that minimizes absolute error loss.

The posterior mode is the Bayes estimator that minimizes the

loss

t 7→ E{1− I(−ε,ε)(t− θ) | data}

when ε is infinitesimal.
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Bayesian Asymptotics

Bayesian asymptotics are a curious mix of Bayesian and frequen-

tist reasoning.

Like the frequentist we assume there is a true unknown param-

eter value θ0 and X1, X2, . . . IID from the distribution having

parameter value θ0. Like the Bayes we calculate posterior dis-

tributions

hn(θ) = h(θ | x1, . . . , xn) ∝ Ln(θ)g(θ)

and look a posterior distributions of θ for larger and larger sample

sizes.
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Bayesian Asymptotics (cont.)

Bayesian asymptotic analysis is similar to frequentist analysis but

more complicated. We omit the proof and just give the results.

If the prior PDF is continuous and strictly positive at θ0, and all

the frequentist conditions for asymptotics of maximum likelihood

are satisfied and some extra assumptions about the tails of the

posterior are small enough, the the Bayesian agrees with the

frequentist
√
n(θ̂n − θ) ≈ N

(
0, In(θ̂n)

−1
)

Of course, the Bayesian and frequentist disagree about what is

random on the left-hand side. The Bayesian says θ and the

frequentist says θ̂n. But they agree about the asymptotic distri-

bution.
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Bayesian Asymptotics (cont.)

Several important points here.

As the sample size gets large, the influence of the prior diminishes

(so long as the prior PDF is continuous and positive near the

true parameter value).

The Bayesian and frequentist disagree about philosophical woof.

They don’t exactly agree about inferences, but they do approx-

imately agree when the sample size is large.
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Bayesian Credible Intervals

Not surprisingly, when a Bayesian makes an interval estimate, it

is based on the posterior.

Many Bayesians do not like to call such things “confidence inter-

vals” because that names a frequentist notion. Hence the name

“credible intervals” which is clearly something else.

One way to make credible intervals is to find the marginal poste-

rior distribution for the parameter of interest and find its α/2 and

1− α/2 quantiles. The interval between them is a 100(1− α)%

Bayesian credible interval for the parameter of interest called the

equal tailed interval.
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Bayesian Credible Intervals (cont.)

Another way to make credible intervals is to find the marginal
posterior distribution h(θ | x) for the parameter of interest and
find the level set

Aγ = { θ ∈ Θ : h(θ | x) > γ }

that has the required probability∫
Aγ
h(θ | x) dθ = 1− α

Aγ is a 100(1−α)% Bayesian credible region, not necessarily an
interval, for the parameter of interest called the highest posterior
density region (HPD region).

These are not easily done, even with a computer. See computer
examples web pages for example.
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Bayesian Credible Intervals (cont.)

Equal tailed intervals transform by invariance under monotone

change of parameter. If (a, b) is an equal tailed Bayesian credible

interval for θ and θ = h(ψ), where h is an increasing function,

then
(
h(a), h(b)

)
is an equal tailed Bayesian credible interval for

ψ with the same confidence level.

The analogous fact does not hold for highest posterior density

regions because the change-of-parameter involves a Jacobian.

Despite the fact that HPD regions do not transform sensibly

under change-of-parameter, they seem to be preferred by most

Bayesians.
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Bayesian Hypothesis Tests

Not surprisingly, when a Bayesian does a hypothesis test, it is

based on the posterior.

To a Bayesian, a hypothesis is an event, a subset of the sample

space. Remember that after the data are seen, the Bayesian

considers only the parameter random. So the parameter space

and the sample space are the same thing to the Bayesian.

The Bayesian compares hypotheses by comparing their posterior

probabilities.

All but the simplest such tests must be done by computer.
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Bayesian Hypothesis Tests (cont.)

Suppose the data x are Bin(n, p) and the prior is Beta(α1, α2),
so the posterior is Beta(x+ α1, n− x+ α2).

Suppose the hypotheses in question are

H0 : p > 1/2

H1 : p ≤ 1/2

We can calculate the probabilities of these two hypotheses by
the the R expressions

pbeta(0.5, x + alpha1, n - x + alpha2)

pbeta(0.5, x + alpha1, n - x + alpha2, lower.tail = FALSE)

assuming x, n, alpha1, and alpha2 have been defined.
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Bayesian Hypothesis Tests

Rweb:> alpha1 <- alpha2 <- 1 / 2

Rweb:> x <- 2

Rweb:> n <- 10

Rweb:> pbeta(0.5, x + alpha1, n - x + alpha2)

[1] 0.9739634

Rweb:> pbeta(0.5, x + alpha1, n - x + alpha2, lower.tail = FALSE)

[1] 0.02603661

96



Bayesian Hypothesis Tests (cont.)

Bayes tests get weirder when the hypotheses have different di-

mensions.

In principle, there is no reason why a prior distribution has to be

continuous. It can have degenerate parts that put probability on

sets a continuous distribution would give probability zero. But

many users find this weird. Hence the following scheme, which

is equivalent, but doesn’t sound as strange.
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Bayes Factors

Let M be a finite or countable set of models. For each model
m ∈M we have the prior probability of the model h(m). It does
not matter if this prior on models is unnormalized.

Each model m has a parameter space Θm and a prior

g(θ | m), θ ∈ Θm

The spaces Θm can and usually do have different dimensions.
That’s the point. These within model priors must be normalized
proper priors. The calculations to follow make no sense if these
priors are unnormalized or improper.

Each model m has a data distribution

f(x | θ,m)

which may be a PDF or PMF.
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Bayes Factors (cont.)

The unnormalized posterior for everything, models and parame-
ters within models, is

f(x | θ,m)g(θ | m)h(m)

To obtain the conditional distribution of x given m, we must
integrate out the nuisance parameters θ

q(x | m) =
∫
Θm

f(x | θ,m)g(θ | m)h(m) dθ

= h(m)
∫
Θm

f(x | θ,m)g(θ | m) dθ

These are the unnormalized posterior probabilities of the models.
The normalized probabilities are

p(m | x) =
q(x | m)∑

m∈M q(x | m)
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Bayes Factors (cont.)

It is considered useful to define

b(x | m) =
∫
Θm

f(x | θ,m)g(θ | m) dθ

so

q(x | m) = b(x | m)h(m)

Then the ratio of posterior probabilities of models m1 and m2 is

p(m1 | x)
p(m2 | x)

=
q(x | m1)

q(x | m2)
=
b(x | m1)

b(x | m2)
·
h(m1)

h(m2)

This ratio is called the posterior odds of the models (a ratio of
probabilities is called an odds) of these models.

The prior odds is

h(m1)

h(m2)
100



Bayes Factors (cont.)

The term we have not yet named in

p(m1 | x)
p(m2 | x)

=
b(x | m1)

b(x | m2)
·
h(m1)

h(m2)

is called the Bayes factor

b(x | m1)

b(x | m2)

the ratio of posterior odds to prior odds.

The prior odds tells how the prior compares the probability of

the models. The Bayes factor tells us how the data shifts that

comparison going from prior to posterior via Bayes rule.
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Bayes Factors (cont.)

Suppose the data x are Bin(n, p) and the models (hypotheses)

in question are

m1 : p = 1/2

m2 : p 6= 1/2

The model m1 is concentrated at one point p = 1/2, hence has

no nuisance parameter. Hence g(θ | m1) = 1. Suppose we use

the within model prior Beta(α1, α2) for model m2.

Then

b(x | m1) = f(x | 1/2) =
(n
x

) (1

2

)x (
1−

1

2

)n−x
=
(n
x

) (1

2

)n
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Bayes Factors (cont.)

And

b(x | m2) =
∫ 1

0
f(x | p)g(p | m2) dp

=
∫ 1

0

(n
x

) 1

B(α1, α2)
px+α1−1(1− p)n−x+α2−1 dp

=
(n
x

)B(x+ α1, n− x+ α2)

B(α1, α2)

where

B(α1, α2) =
Γ(α1)Γ(α2)

Γ(α1 + α2)

by the theorem for the beta distribution (brand name distribu-

tions handout).
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Bayes Factors (cont.)

Rweb:> alpha1 <- alpha2 <- 1 / 2

Rweb:> x <- 2

Rweb:> n <- 10

Rweb:> p0 <- 1 / 2

Rweb:> b1 <- dbinom(x, n, p0)

Rweb:> b2 <- choose(n, x) * beta(x + alpha1, n - x + alpha2) /

+ beta(alpha1, alpha2)

Rweb:> ##### Bayes factor

Rweb:> b1 / b2

[1] 0.5967366

Rweb:> ##### frequentist P-value

Rweb:> 2 * pbinom(x, n, p0)

[1] 0.109375
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Bayes Factors (cont.)

For comparison, we calculated not only the Bayes factor 0.597

but also the frequentist P -value 0.109. Bayes factors and P -

values are sort of comparable, but as can be seen are not identi-

cal. In fact, it is a theorem that in situations like this the Bayes

factor is always larger than the P -value, at least asymptotically.

This makes Bayesian tests more conservative, less likely to reject

the null hypothesis, than frequentists.

Either the frequentists are too optimistic or the Bayesians are

too conservative, or perhaps both. The jury is still out on that.
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Bayes Factors (cont.)

Now we try two-sample procedures. The data are Xi distributed

Bin(ni, pi) for i = 1, 2. We start with the two-tailed test with

models

m1 : p1 = p2

m2 : p1 6= p2

Suppose for model 2 we use independent priors on the parameters

with pi distributed Beta(α1, α2). Then

b(x | m2) =
2∏
i=1

∫ 1

0

(ni
xi

) 1

B(α1, α2)
pxi+α1−1(1− pi)

ni−xi+α2−1 dpi

=
2∏
i=1

(ni
xi

)B(xi + α1, ni − xi + α2)

B(α1, α2)
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Bayes Factors (cont.)

It is not obvious how to choose the within model prior for model

m1. Here is one idea. Consider the unnormalized joint prior for

model m2

p
α1−1
1 (1− p1)

α2−1p
α1−1
2 (1− p2)

α2−1

and set p1 = p2 obtaining

p2α1−2(1− p)2α2−2

This is the restriction of the unnormalized PDF for the prior for

m2 to the support of m1. We recognize that as an unnormalized

Beta(2α1 − 1,2α2 − 1) prior. However, this doesn’t work if α1 ≤
1/2 or α2 ≤ 1/2, because the result is improper. So it doesn’t

work for the Jeffreys prior.
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Bayes Factors (cont.)

Uncertain about what prior to use for m2, call it Beta(α3, α4)

Using this prior for m1 we get

b(x | m1) =
∫ 1

0

(n1

x1

)(n2

x2

) 1

B(α3, α4)

px1+x2+α3−1(1− p)n1+n2−x1−x2+α4−1 dp

=
(n1

x1

)(n2

x2

)B(x1 + x2 + α3, n1 + n2 − x1 − x2 + α4)

B(α3, α4)
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Bayes Factors (cont.)

Now consider the one-tailed test for the same data with models

m1 : p1 ≥ p2

m2 : p1 < p2

Using Beta(α1, α2) for both parameters

b(x | mj) =∫∫
mj

2∏
i=1

(ni
xi

) 1

B(α1, α2)
pxi+α1−1(1− pi)

ni−xi+α2−1 dp1 dp2

but we cannot do the integrals except by simulation.
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Bayes Factors (cont.)

We simulate from the posterior we would use if we weren’t doing

tests p1 and p2 are independent and pi is Beta(xi+α1, ni−xi+α2).

We rewrite the integrals on the preceding page as expectations

b(x | mj) = Pr(mj | x1, x2)
2∏
i=1

(ni
xi

)B(xi + α1, ni − xi + α2)

B(α1, α2)
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Ordinary Monte Carlo

The “Monte Carlo method” refers to the theory and practice of

learning about probability distributions by simulation rather than

calculus. In ordinary Monte Carlo (OMC) we use IID simulations

from the distribution of interest. Suppose X1, X2, . . . are IID

simulations from some distribution, and suppose we want to

know an expectation

µ = E{g(Xi)}.

Then the law of large numbers (LLN) then says

µ̂n =
1

n

n∑
i=1

g(Xi)

converges in probability to µ.
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Ordinary Monte Carlo (cont.)

The central limit theorem (CLT) says

√
n(µ̂n − µ)

D−→ N (0, σ2)

where

σ2 = var{g(Xi)}

which can be estimated by the empirical variance

σ̂2
n =

1

n

n∑
i=1

(
g(Xi)− µ̂n

)2
An asymptotic 95% confidence interval for µ is

µ̂n ± 1.96
σ̂n√
n
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Ordinary Monte Carlo (cont.)

The theory of OMC is just the theory of frequentist statistical

inference. The only differences are that

• the “data” X1, . . ., Xn are computer simulations rather than

measurements on objects in the real world,

• the “sample size” n is the number of computer simulations

rather than the size of some real world data, and

• the unknown parameter µ is in principle completely known,

given by some integral, which we are unable to do.
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Ordinary Monte Carlo (cont.)

Everything works just the same when the data X1, X2, . . ., which

are computer simulations are vectors. But the functions of in-

terest g(X1), g(X2), . . . are scalars.

OMC works great, but is very hard to do when Xi is vector.

Hence Markov chain Monte Carlo (MCMC).
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Markov Chain Monte Carlo

A Markov chain is a dependent sequence of random variables
X1, X2, . . . or random vector X1, X2, . . . having the property
that the future is independent of the past given the present: the
conditional distribution of Xn+1 given X1, . . ., Xn depends only
on Xn.

The Markov chain has stationary transition probabilities if the
conditional distribution of Xn+1 given Xn is the same for all n.
Every Markov chain used in MCMC has this property.

The joint distribution of X1, . . ., Xn is determined by the initial
distribution of the Markov chain — marginal distribution of X1
— and the transition probabilities — the conditional distributions
of Xn+1 given Xn.
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Markov Chain Monte Carlo (cont.)

A scalar functional of a Markov chain X1, X2, . . . is a time series
g(X1), g(X2), . . ., where g is a scalar-valued function on the state
space of the Markov chain.

An initial distribution of a Markov chain is called stationary or
invariant or equilibrium if the resulting Markov chain is a sta-
tionary stochastic process, in which case any scalar functional
is a stationary time series (5101, deck 2, slides 101–109). This
means the joint distribution of the k-tuple

(Xi+1,Xi+2, . . . ,Xi+k)

is the same for all i, and that this holds for all positive integers
k. Similarly, the joint distribution of the k-tuple(

g(Xi+1), g(Xi+2), . . . , g(Xi+k)
)

is the same for all i and k and all real-valued functions g.
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Markov Chain Monte Carlo (cont.)

A Markov chain is stationary if its initial distribution is stationary.

This is different from having stationary transition probabilities.

All chains used in MCMC have stationary transition probabilities.

None are exactly stationary.
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Markov Chain Monte Carlo (cont.)

To be (exactly) stationary, must start the chain with simulation

from the equilibrium (invariant, stationary) distribution. Can

never do that except in toy problems.

If chain is stationary, then every iterate Xi has the same marginal

distribution, which is the equilibrium distribution.

If chain is not stationary but has a unique equilibrium distribution,

which includes chains used in MCMC, then the marginal distri-

bution Xi converges to the equilibrium distribution as i→∞.
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Markov Chain Monte Carlo (cont.)

Suppose X1, X2, . . . are simulation from a Markov chain having

a unique equilibrium distribution, and suppose we want to know

an expectation

µ = Eequilib{g(X)},

where the subscript “equilib” refers to this unique equilibrium

distribution. Then the law of large numbers (LLN) for Markov

chains then says

µ̂n =
1

n

n∑
i=1

g(Xi)

converges in probability to µ.
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Markov Chain Monte Carlo (cont.)

The central limit theorem (CLT) for Markov chains says

√
n(µ̂n − µ)

D−→ N (0, σ2)

where

σ2 = varstationary{g(Xi)}+ 2
∞∑
k=1

covstationary{g(Xi), g(Xi+k)}

which can be estimated in various ways, where the subscript
“stationary” refers the stationary chain whose initial distribution
is the unique equilibrium distribution.

Although the iterates of the Markov chain are neither indepen-
dent nor identically distributed — the chain converges to equi-
librium but never gets there — the CLT still holds if the infinite
sum defining σ2 is finite and chain is reversible.

120



Markov Chain Monte Carlo (cont.)

All chains used in MCMC can be made reversible (a term we

don’t define). All the chains produced by the R function metrop

in the contributed package mcmc, which are the only ones we show

in the handout, are reversible.

Verifying the infinite sum is finite is theoretically possible for

some simple applications, but generally so hard that it cannot

be done. Nevertheless, we expect the CLT to hold in practice and

it does seem to whenever enough simulation is done to check.
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Batch Means

In order to make MCMC practical, need a method to estimate

the variance σ2 in the CLT, then can proceed just like in OMC.

If σ̂2
n is a consistent estimate of σ2, then an asymptotic 95%

confidence interval for µ is

µ̂n ± 1.96
σ̂n√
n

The method of batch means estimates the asymptotic variance

for a stationary time series.
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Batch Means (cont.)

Markov chain CLT says

µ̂n ≈ N
(
µ,
σ2

n

)

Suppose b evenly divides n and we form the means

µ̂b,k =
1

b

bk+b∑
i=bk+1

g(Xi)

for k = 1, . . ., m = n/b. Each of these “batch means” satisfies

µ̂k,b ≈ N
(
µ,
σ2

b

)
if b is sufficiently large.
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Batch Means (cont.)

Thus empirical variance of the sequence of batch means

1

m

m∑
k=1

(µ̂b,k − µ̂n)
2

estimates σ2/b. And b/n times this estimates σ2/n, the asymp-

totic variance of µ̂n.
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Metropolis Algorithm

Suppose we are interested in a continuous random vector having

unnormalized PDF h. This means

h(x) ≥ 0, x ∈ Rd

and ∫
h(x) dx <∞

(this being a d-dimensional integral).

Here is how to simulate one step of a Markov chain having equi-

librium distribution having unnormalized PDF h.
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Metropolis Algorithm (cont.)

Suppose the current state of the Markov chain is Xn. Then the

next step of the Markov chain Xn+1 is simulated as follows.

• Simulate Yn having a N (0,M) distribution.

• Calculate

r =
h(Xn + Yn)

h(Xn)

• Simulate Un having a Unif(0,1) distribution.

• If Un < r, set Xn+1 = Xn + Yn. Otherwise set Xn+1 = Xn.
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Metropolis Algorithm (cont.)

Only thing that can be adjusted and must be adjusted is “pro-

posal” variance matrix M.

For simplicity, handout uses M = τ2I, where I is identity matrix.

Then only one constant τ to adjust.

Now go to handout.
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