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Empirical Distributions

The empirical distribution associated with a vector of numbers

x = (x1, . . . , xn) is the probability distribution with expectation

operator

En{g(X)} =
1

n

n∑
i=1

g(xi)

This is the same distribution that arises in finite population sam-

pling. Suppose we have a population of size n whose members

have values x1, . . ., xn of a particular measurement. The value

of that measurement for a randomly drawn individual from this

population has a probability distribution that is this empirical

distribution.

2



The Mean of the Empirical Distribution

In the special case where g(X) = X, we get the mean of the

empirical distribution

En(X) =
1

n

n∑
i=1

xi

which is more commonly denoted x̄n.

Those who have had another statistics course will recognize this

as the formula of the population mean, if x1, . . ., xn is considered

a finite population from which we sample, or as the formula of

the sample mean, if x1, . . ., xn is considered a sample from a

specified population.
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The Variance of the Empirical Distribution

The variance of any distribution is the expected squared deviation

from the mean of that same distribution. The variance of the

empirical distribution is

varn(X) = En

{
[X − En(X)]2

}
= En

{
[X −Xn]

2
}

=
1

n

n∑
i=1

(xi − x̄n)
2

The only oddity is the use of the notation x̄n rather than µ for

the mean.
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The Variance of the Empirical Distribution (cont.)

As with any probability distribution we have

varn(X) = En(X
2)− En(X)2

or

varn(X) =

1

n

n∑
i=1

x2
i

− x̄2
n
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The Mean Square Error Formula

More generally, we know that for any real number a and any

random variable X having mean µ

E{(X − a)2} = var(X) + (µ− a)2

and we called the left-hand side mse(a), the “mean square error”

of a as a prediction of X (5101 Slides 32 and 33, Deck 2).
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The Mean Square Error Formula (cont.)

The same holds for the empirical distribution

En{(X − a)2} = varn(X) + (x̄n − a)2
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Characterization of the Mean

The mean square error formula shows that for any random vari-

able X the real number a that is the “best prediction” in the

sense of minimizing the mean square error mse(a) is a = µ.

In short, the mean is the best prediction in the sense of mini-

mizing mean square error (5101 Slide 35, Deck 2).
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Characterization of the Mean (cont.)

The same applies to the empirical distribution. The real number

a that minimizes

En{(X − a)2} =
1

n

n∑
i=1

(xi − a)2

is the mean of the empirical distribution x̄n.
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Probability is a Special Case of Expectation

For any random variable X and any set A

Pr(X ∈ A) = E{IA(X)}

If P is the probability measure of the distribution of X, then

P (A) = E{IA(X)}, for any event A

(5101 Slide 63, Deck 1).
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Probability is a Special Case of Expectation (cont.)

The same applies to the empirical distribution. The probability

measure Pn associated with the empirical distribution is defined

by

Pn(A) = En{IA(X)}

=
1

n

n∑
i=1

IA(xi)

=
card{ i : xi ∈ A }

n

where card(B) denotes the cardinality of the set B (the number

of elements it contains).
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Probability is a Special Case of Expectation (cont.)

In particular, for any real number x

Pn({x}) =
card{ i : xi = x }

n

One is tempted to say that the empirical distribution puts prob-

ability 1/n at each of the points x1, . . ., xn, but this is correct

only if the points x1, . . ., xn are distinct.

The statement that is always correct is the one above. The

empirical distribution defines the probability of the point x to be

1/n times the number of i such that xi = x.
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Empirical Distribution Function

In particular, the distribution function (DF) of the empirical dis-

tribution is defined by

Fn(x) = Pn(X ≤ x)

=
1

n

n∑
i=1

I(−∞,x](xi)

=
card{ i : xi ≤ x }

n
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Order Statistics

If

x1, x2, . . . , xn

are any real numbers, then we use the notation

x(1), x(2), . . . , x(n) (∗)

for the same numbers put in sorted order so x(1) is the least and

x(n) the greatest.

Parentheses around the subscripts denotes sorted order.

These numbers (∗) are called the order statistics.
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Quantiles

If X is a random variable and 0 < q < 1, then the q-th quantile

of X (or of the distribution of X) is any number x such that

Pr(X ≤ x) ≥ q and Pr(X ≥ x) ≥ 1− q

If X is a discrete random variable having distribution function F ,

then this simplifies to

F (y) ≤ q ≤ F (x), y < x

(5101 Slide 60, Deck 4).
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Quantiles of the Empirical Distribution

The q-th quantile of the empirical distribution is any number x

such that

Pn(X ≤ x) ≥ q and Pn(X ≥ x) ≥ 1− q

or such that

Fn(y) ≤ q ≤ Fn(x), y < x

(the two conditions are equivalent).
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Quantiles of the Empirical Distribution (cont.)

For any real number a the notation dae (read “ceiling of a”)

denotes the least integer greater than or equal to a. For any

real number a the notation bac (read “floor of a”) denotes the

greatest integer less than or equal to a.

If nq is not an integer, then the q-th quantile is unique and is

equal to x(dnqe)

If nq is an integer, then the q-th quantile is not unique and is

any real number x such that

x(nq) ≤ x ≤ x(nq+1)
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Quantiles of the Empirical Distribution (cont.)

(nq not an integer case). Define a = x(dnqe), the number we are

to show is the empirical q-th quantile. There are at least dnqe of

the xi less than or equal to a, hence

Pn(X ≤ a) ≥
dnqe

n
≥ q

There are at least n−dnqe+1 of the xi greater than or equal to

a, hence

Pn(X ≥ a) ≥
n− dnqe+ 1

n
=

n− bnqc
n

≥ 1− q
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Quantiles of the Empirical Distribution (cont.)

(nq is an integer case). Define a to be any real number such

that

x(nq) ≤ a ≤ x(nq+1)

We are to show that a is an empirical q-th quantile. There are

at least nq of the xi less than or equal to a, hence

Pn(X ≤ a) ≥
nq

n
= q

There are at least (n+1)− (nq +1) = n(1− q) of the xi greater

than or equal to a, hence

Pn(X ≥ a) ≥
n(1− q)

n
= 1− q
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Quantiles of the Empirical Distribution (cont.)

Suppose the order statistics are

0.03 0.04 0.05 0.49 0.50 0.59 0.66 0.72 0.83 1.17

Then the 0.25-th quantile is x(3) = 0.05 because dnqe = d2.5e =

3. And the 0.75-th quantile is x(8) = 0.72 because dnqe =

d7.5e = 8. And the 0.5-th quantile is any number between

x(5) = 0.50 and x(6) = 0.59 because nq = 5 is an integer.
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Empirical Median

Nonuniqueness of empirical quantiles can be annoying. People

want one number they can agree on. But there is, for general q,

no such agreement.

For the median (the 0.5-th quantile) there is widespread agree-

ment. Pick the middle number of the interval.

If n is odd, then the empirical median is the number

x̃n = x(dn/2e)

If n is even, then the empirical median is the number

x̃n =
x(n/2) + x(n/2+1)

2
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Characterization of the Median

For any random variable X, the median of the distribution of X

is the best prediction in the sense of minimizing mean absolute

error (5101 Slides 70–74, Deck 4).

The median is any real number a that minimizes

E{|X − a|}

considered as a function of a.
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Characterization of the Empirical Median

The empirical median minimizes

En{|X − a|} =
1

n

n∑
i=1

|xi − a|

considered as a function of a.
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Characterization of the Empirical Mean and Median

The empirical mean is the center of x1, . . ., xn, where center is

defined to minimize squared distance.

The empirical median is the center of x1, . . ., xn, where center

is defined to minimize absolute distance.
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Empirical Distribution Calculations in R

Suppose the vector (x1, . . . , xn) has been made an R vector, for
example, by

x <- c(0.03, 0.04, 0.05, 0.49, 0.50,

0.59, 0.66, 0.72, 0.83, 1.17)

Then

mean(x)

calculates the empirical mean for these data and

median(x)

calculates the empirical median.
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Empirical Distribution Calculations in R (cont.)

Furthermore, the mean function can be used to calculate other

empirical expectations, for example,

xbar <- mean(x)

mean((x - xbar)^2)

calculates the empirical variance, as does the one-liner

mean((x - mean(x))^2)
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Empirical Distribution Calculations in R (cont.)

bigf <- ecdf(x)

calculates the empirical distribution function (the “c” in ecdf is

for “cumulative” because non-theoretical people call DF “cumu-

lative distribution functions”). The result is a function that can

be evaluated at any real number.

bigf(0)

bigf(0.5)

bigf(1)

bigf(1.5)

and so forth.
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Empirical Distribution Calculations in R (cont.)

The empirical DF can also be plotted by

plot(bigf)

or by the one-liner

plot(ecdf(x))
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Empirical Distribution Calculations in R (cont.)

R also has a function quantile that calculates quantiles of the

empirical distribution. As we mentioned there is no widely ac-

cepted notion of the best way to calculate quantiles. The defi-

nition we gave is simple and theoretically correct, but arguments

can be given for other notions and the quantile function can

calculate no less than nine different notions of “quantile”.

quantile(x, type = 1)

calculates a bunch of quantiles. Other quantiles can be specified

quantile(x, probs = 1 / 3, type = 1)
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Little x to Big X

We now do something really tricky.

So far we have just been reviewing finite probability spaces. The
numbers x1, . . ., xn are just numbers.

Now we want to make the numbers X1, . . ., Xn that determine
the empirical distribution IID random variables.

In one sense the change is trivial: capitalize all the x’s you see.

In another sense the change is profound: now all the thingum-
mies of interest — mean, variance, other moments, median,
quantiles, and DF of the empirical distribution — are random
variables.
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Little x to Big X (cont.)

For example

Xn =
1

n

n∑
i=1

Xi

(the mean of the empirical distribution) is a random variable.

What is the distribution of this random variable? It is determined

somehow by the distribution of the Xi.

When the distribution of Xn is not a brand-name distribution but

the distribution of

nXn =
n∑

i=1

Xi

is a brand name distribution, then we refer to that.
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Sampling Distribution of the Empirical Mean

The distribution of nXn is given by what the brand-name distri-

bution handout calls “addition rules”.

If each Xi is Ber(p), then nXn is Bin(n, p).

If each Xi is Geo(p), then nXn is NegBin(n, p).

If each Xi is Poi(µ), then nXn is Poi(nµ).

If each Xi is Exp(λ), then nXn is Gam(n, λ).

If each Xi is N (µ, σ2), then nXn is N (nµ, nσ2).
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Sampling Distribution of the Empirical Mean (cont.)

In the latter two cases, we can apply the change-of-variable the-

orem to the linear transformation y = x/n obtaining

fY (y) = nfX(ny)

If each Xi is Exp(λ), then Xn is Gam(n, nλ).

If each Xi is N (µ, σ2), then Xn is N
(
µ, σ2

n

)
.
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Sampling Distribution of the Empirical Mean (cont.)

For most distributions of of the Xi we cannot calculate the exact

sampling distribution of nXn or of Xn. The central limit the-

orem (CLT), however, gives an approximation of the sampling

distribution when n is large.

If each Xi has mean µ and variance σ2, then Xn is approximately

N
(
µ, σ2

n

)
.

The CLT is not applicable if the Xi do not have finite variance.
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Sampling Distributions

The same game can be played with any of the other quantities,

the empirical median, for example.

Much more can be said about the empirical mean, because we

have the addition rules to work with. The distribution of the

empirical median is not brand-name unless the Xi are Unif(0,1)

and n is odd. There is a large n approximation, but the argument

is long and complicated. We will do both, but not right away.
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Sampling Distributions (cont.)

The important point to understand for now is that any random

variable has a distribution (whether we can name it or otherwise

describe it), hence these quantities related to the empirical dis-

tribution have probability distributions — called their sampling

distributions — and we can sometimes describe them exactly,

sometimes give large n approximations, and sometimes not even

that. But they always exist, whether we can describe them or

not, and we can refer to them in theoretical arguments.
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Sampling Distributions (cont.)

Why the “sample” in “sampling distribution”?

Suppose X1, . . ., Xn are a sample with replacement from a fi-

nite population. Then we say the distribution of each Xi is the

population distribution, and we say X1, . . ., Xn are a random

sample from this population, and we say the distribution of Xn

is its sampling distribution because its randomness comes from

X1, . . ., Xn being a random sample.

This is the story that introduces sampling distributions in most

intro stats courses. It is also the language that statisticians use

in talking to people who haven’t had a theory course like this

one.
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Sampling Distributions (cont.)

This language becomes only a vague metaphor when X1, . . ., Xn

are IID but their distribution does not have a finite sample space,
so they cannot be considered — strictly speaking — a sample
from a finite population.

They can be considered a sample from an infinite population
in a vague metaphorical way, but when we try to formalize this
notion we cannot. Strictly speaking it is nonsense.

And strictly speaking, the “sampling” in “sampling distribution”
is redundant. The “sampling distribution” of Xn is the distribu-
tion of Xn. It is a random variable, hence it has a probability dis-
tribution. Its probability distribution doesn’t need the adjective
“sampling” attached to it any more than any other probability
distribution does (i. e., not at all).
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Sampling Distributions (cont.)

So why do statisticians, who are serious people, persist in using

this rather silly language? The phrase “sampling distribution”

alerts the listener that we are not talking about the “popula-

tion distribution” and the distribution of Xn or X̃n (or whatever

quantity related to the empirical distribution is under discussion)

is not the same as the distribution of each Xi.

Of course, no one theoretically sophisticated (like all of you)

would think for a second that the distribution of Xn is the same

as the distribution of the Xi, but — probability being hard for less

sophisticated audiences — the stress in “sampling distribution”

— redundant though it may be — is perhaps useful.
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Chi-Square Distribution

Recall that for any real number ν > 0 the chi-square distribution

having ν degrees of freedom, abbreviated chi2(ν), is another

name for the Γ
(

ν
2, 1

2

)
distribution.
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Student’s T Distribution

Now we come to a new brand name distribution whose name is
the single letter t (not very good terminology). It is sometimes
called “Student’s t distribution” because it was invented by W.
S. Gosset who published under the pseudonym “Student”.

Suppose Z and Y are independent random variables

Z ∼ N (0,1)

Y ∼ chi2(ν)

then

T =
Z√
Y/ν

is said to have Student’s t distribution with ν degrees of freedom,
abbreviated t(ν).
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Student’s T Distribution (cont.)

The PDF of the t(ν) distribution is

fν(x) =
1

√
νπ

·
Γ(ν+1

2 )

Γ(ν
2)

·
1(

1 + x2

ν

)(ν+1)/2
, −∞ < x < +∞

because Γ(1
2) =

√
π,

1
√

νπ
·
Γ(ν+1

2 )

Γ(ν
2)

=
1
√

ν
·

1

B(ν
2, 1

2)

where the beta function B(ν
2, 1

2) is the normalizing constant of

the beta distribution defined in the brand name distributions

handout.
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Student’s T Distribution (cont.)

The joint distribution of Z and Y in the definition is

f(z, y) =
1√
2π

e−z2/2

(
1
2

)ν/2

Γ(ν/2)
yν/2−1e−y/2

Make the change of variables t = z/
√

y/ν and u = y, which has

inverse transformation

z = t
√

u/ν

y = u

and Jacobian ∣∣∣∣∣
√

u/ν t/2
√

uν

0 1

∣∣∣∣∣ = √
u/ν
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Student’s T Distribution (cont.)

The joint distribution of T and U given by the multivariate change

of variable formula is

f(t, u) =
1√
2π

e−(t
√

u/ν)2/2

(
1
2

)ν/2

Γ(ν/2)
uν/2−1e−u/2 ·

√
u/ν

=
1√
2π

(
1
2

)ν/2

Γ(ν/2)

1
√

ν
uν/2−1/2 exp

{
−
(
1 +

t2

ν

)
u

2

}
Thought of as a function of u for fixed t, this is proportional

to a gamma density with shape parameter (ν + 1)/2 and rate

parameter 1
2(1 + t2

ν ).
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Student’s T Distribution (cont.)

The “recognize the unnormalized density trick” which is equiv-

alent to using the “theorem” for the gamma distribution allows

us to integrate out u getting the marginal of t

f(t) =
1√
2π

·

(
1
2

)ν/2

Γ(ν/2)
·

1
√

ν
·

Γ(ν+1
2 )

[12(1 + t2
ν )](ν+1)/2

which, after changing t to x, simplifies to the form given on

slide 42.
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Student’s T Distribution: Moments

The t distribution is symmetric about zero, hence the mean is

zero if the mean exists. Hence central moments are equal to

ordinary moments. Hence every odd ordinary moment is zero if

it exists.

For the t(ν) distribution and k > 0, the ordinary moment E(|X|k)
exists if and only if k < ν.
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Student’s T Distribution: Moments (cont.)

The PDF is bounded, so the question of whether moments exist
only involves behavior of the PDF at ±∞. Since the t distribution
is symmetric about zero, we only need to check the behavior at
+∞. When does ∫ ∞

0
xkfν(x) dx

exist? Since

lim
x→∞

xkfν(x)

xα
→ c

when α = k − (ν + 1). The comparison theorem (5101 Slide 9,
Deck 4) says the integral exists if and only if

k − (ν + 1) = α < −1

which is equivalent to k < ν.
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Student’s T Distribution: Moments (cont.)

If X has the t(ν) distribution and ν > 1, then

E(X) = 0

Otherwise the mean does not exist. (Proof: symmetry.)

If X has the t(ν) distribution and ν > 2, then

var(X) =
ν

ν − 2

Otherwise the variance does not exist. (Proof: homework.)
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Student’s T Distribution and Cauchy Distribution

Plugging in ν = 1 into the formula for the PDF of the t(ν)

distribution on slide 42 gives the PDF of the standard Cauchy

distribution. In short t(1) = Cauchy(0,1).

Hence if Z1 and Z2 are independent N (0,1) random variables,

then

T =
Z1

Z2

has the Cauchy(0,1) distribution.
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Student’s T Distribution and Normal Distribution

If Yν is chi2(ν) = Gam(ν
2, 1

2), then Uν = Yν/ν is Gam(ν
2, ν

2), and

E(Uν) = 1

var(Uν) =
2

ν
Hence

Uν
P−→ 1, as ν →∞

by Chebyshev’s inequality. Hence if Z is a standard normal ran-
dom variable independent of Yν

Z√
Yν/ν

D−→ Z, as ν →∞

by Slutsky’s theorem. In short, the t(ν) distribution converges
to the N (0,1) distribution as ν →∞.
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Snedecor’s F Distribution

If X and Y are independent random variables and

X ∼ chi2(ν1)

Y ∼ chi2(ν2)

then

W =
X/ν1

Y/ν2

has the F distribution with ν1 numerator degrees of freedom and

ν2 denominator degrees of freedom.

51



Snedecor’s F Distribution (cont.)

The “F” is for R. A. Fisher, who introduced a function of this

random variable into statistical inference. This particular random

variable was introduced by G. Snedecor. Hardly anyone knows

this history or uses the eponyms.

This is our second brand-name distribution whose name is a

single letter. It is abbreviated F (ν1, ν2).
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Snedecor’s F Distribution (cont.)

The theorem on slides 130–139, 5101 Deck 3 says that if X and

Y are independent random variables and

X ∼ Gam(α1, λ)

Y ∼ Gam(α2, λ)

then

V =
X

X + Y

has the Beta(α1, α2) distribution.
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Snedecor’s F Distribution (cont.)

Hence, if X and Y are independent random variables and

X ∼ chi2(ν1)

Y ∼ chi2(ν2)

then

V =
X

X + Y

has the Beta(ν1
2 , ν2

2 ) distribution.

54



Snedecor’s F Distribution (cont.)

Since
X

Y
=

V

1− V

we have

W =
ν2

ν1
·

V

1− V

and

V =
ν1W/ν2

1 + ν1W/ν2

This gives the relationship between the F (ν1, ν2) distribution of

W and the Beta(ν1
2 , ν2

2 ) distribution of V .
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Snedecor’s F Distribution (cont.)

The PDF of the F distribution can be derived from the PDF of

the beta distribution using the change-of-variable formula. It is

given in the brand name distributions handout, but is not very

useful.

If one wants moments of the F distribution, for example,

E(W ) =
ν

ν − 2

when ν > 2, write W as a function of V and calculate the moment

that way.
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Snedecor’s F Distribution (cont.)

The same argument used to show

t(ν)
D−→ N (0,1), as ν →∞

shows

F (ν1, ν2)
P−→ 1, as ν1 →∞ and ν2 →∞

So an F random variable is close to 1 when both degrees of

freedom are large.
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Sampling Distributions for Normal Populations

Suppose X1, . . ., Xn are IID N (µ, σ2) and

Xn =
1

n

n∑
i=1

Xi

Vn =
1

n

n∑
i=1

(Xi −Xn)
2

are the mean and variance of the empirical distribution. Then

Xn and Vn are independent random variables and

Xn ∼ N
(

µ,
σ2

n

)
nVn

σ2
∼ chi2(n− 1)
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Sampling Distributions for Normal Populations (cont.)

It is traditional to name the distribution of

nVn

σ2
=

n∑
i=1

(Xi −Xn)
2

rather than of Vn itself. But, of course, if

nVn

σ2
∼ chi2(n− 1)

then

Vn ∼ Gam
(

n− 1

2
,

n

2σ2

)
by the change-of-variable theorem.

59



Sampling Distributions for Normal Populations (cont.)

Strictly speaking, the “populations” in the heading should be in

scare quotes, because infinite populations are vague metaphorical

nonsense.

Less pedantically, it is important to remember that the theorem

on slide 58 has no analog for non-normal populations.

In general, Xn and Vn are not independent.

In general, the sampling distribution of Xn is not exactly N
(
µ, σ2

n

)
,

although it is approximately so when n is large.

In general, the sampling distribution of Vn is not exactly gamma.
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Empirical Variance and Sample Variance

Those who have been exposed to an introductory statistic course

may be wondering why we keep saying “empirical mean” rather

than “sample mean” which everyone else says. The answer is

that the “empirical variance” Vn is not what everyone else calls

the “sample variance”.

In general, we do not know the distribution of Vn. It is not brand

name and is hard or impossible to describe explicitly.

However we always have

E(Vn) =
n− 1

n
· σ2
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Empirical Variance and Sample Variance (cont.)

Define

V ∗
n =

1

n

n∑
i=1

(Xi − µ)2

where µ = E(Xi). Then E(V ∗
n ) = σ2, because E{(Xi−µ)2} = σ2.

The empirical analog of the mean square error formula (derived

on slide 7) is

En{(X − a)2} = varn(X) + (a−Xn)
2

and plugging in µ for a gives

V ∗
n = En{(X − µ)2} = varn(X) + (µ−Xn)

2 = Vn + (µ−Xn)
2
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Empirical Variance and Sample Variance (cont.)

But since E(Xn) = µ (5101, Slide 89, Deck 2)

E{(µ−Xn)
2} = var(Xn)

In summary,

E(V ∗
n ) = E(Vn) + var(Xn)

and we know var(Xn) = σ2/n (5101, Slide 89, Deck 2), so

E(Vn) = E(V ∗
n )− var(Xn) = σ2 −

σ2

n
=

n− 1

n
· σ2
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Empirical Variance and Sample Variance (cont.)

The factor (n− 1)/n is deemed to be unsightly, so

S2
n =

n

n− 1
· Vn =

1

n− 1

n∑
i=1

(Xi −Xn)
2

which has the simpler property

E(S2
n) = σ2

is usually called the sample variance, and Sn is usually called the

sample standard deviation.

In cookbook applied statistics the fact that these are not the

variance and standard deviation of the empirical distribution does

no harm. But it does mess up the theory. So we do not take S2
n

as being the obvious quantity to study and look at Vn too.
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Sampling Distributions for Normal Populations (cont.)

We now prove the theorem stated on slide 58.

The random vector (Xn, X1 − Xn, . . . , Xn − Xn), being a linear

function of a multivariate normal, is multivariate normal.

We claim the first component Xn is independent of the other

components Xi − Xn, i = 1, . . ., n. Since uncorrelated implies

independent for multivariate normal (5101, Deck 5, Slides 129–

134), it is enough to verify

cov(Xn, Xi −Xn) = 0
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Sampling Distributions for Normal Populations (cont.)

cov(Xn, Xi −Xn) = cov(Xn, Xi)− var(Xn)

= cov(Xn, Xi)−
σ2

n

= cov

1

n

n∑
j=1

Xj, Xi

− σ2

n

=
1

n

n∑
j=1

cov(Xj, Xi)−
σ2

n

= 0

because cov(Xj, Xi) = 0 when i 6= j and because cov(Xi, Xi) =

var(Xi) = σ2.
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Sampling Distributions for Normal Populations (cont.)

That finishes the proof that Xn and Vn are independent random

variables, because Vn is a function of Xi −Xn, i = 1, . . ., n.

That

Xn ∼ N
(

µ,
σ2

n

)
we already knew. It comes from the addition rule for the normal

distribution.

Establishing the sampling distribution of Vn is more complicated.
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Orthonormal Bases and Orthogonal Matrices

A set of vectors U is orthonormal if each has length one

uTu = 1, u ∈ U

and each pair is orthogonal

uTv = 0, u,v ∈ U andu 6= v

An orthonormal set of d vectors in d-dimensional space is called

an orthonormal basis (plural orthonormal bases, pronounced like

“base ease”).
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Orthonormal Bases and Orthogonal Matrices (cont.)

A square matrix whose columns form an orthonormal basis is

called orthogonal.

If O is orthogonal, then the orthonormality property expressed in

matrix notation is

OTO = I

where I is the identity matrix. This implies OT = O−1 and

OOT = I

Hence the rows of O also form an orthonormal basis.

Orthonormal matrices have appeared before in the spectral de-

composition (5101 Deck 5, Slides 103–110).
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Orthonormal Bases and Orthogonal Matrices (cont.)

It is a theorem of linear algebra, which we shall not prove, that

any orthonormal set of vectors can be extended to an orthonor-

mal basis (the Gram-Schmidt orthogonalization process can be

used to do this).

The unit vector

u =
1
√

n
(1,1, . . . ,1)

all of whose components are the same forms an orthonormal

set {u} of size one. Hence there exists an orthogonal matrix O

whose first column is u.
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Sampling Distributions for Normal Populations (cont.)

Any orthogonal matrix O maps standard normal random vectors

to standard normal random vectors. If Z is standard normal and

Y = OTZ, then

E(Y) = OTE(Z) = 0

var(Y) = OT var(Z)O = OTO = I
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Sampling Distributions for Normal Populations (cont.)

Also
n∑

i=1

Y 2
i = ‖Y‖2

= YTY

= ZTOTOZ

= ZTZ

=
n∑

i=1

Z2
i
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Sampling Distributions for Normal Populations (cont.)

In the particular case where u is the first column of O

n∑
i=1

Y 2
i = Y 2

1 +
n∑

i=2

Y 2
i

= nZ
2
n +

n∑
i=2

Y 2
i

because

uTZ =
1
√

n

n∑
i=1

Zi =
√

nZ n
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Sampling Distributions for Normal Populations (cont.)

Hence
n∑

i=2

Y 2
i =

n∑
i=1

Y 2
i − nZ

2
n

=
n∑

i=1

Z2
i − nZ

2
n

= n

1

n

n∑
i=1

Z2
i − Z

2
n


= n varn(Z)

This establishes the theorem in the special case µ = 0 and σ2 = 1

because the components of Y are IID standard normal, hence

n times the empirical variance of Z1, . . ., Zn has the chi-square

distribution with n− 1 degrees of freedom.
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Sampling Distributions for Normal Populations (cont.)

To finish the proof of the theorem, notice that if X1, . . ., Xn are

IID N (µ, σ2), then

Zi =
Xi − µ

σ
, i = 1, . . . , n

are IID standard normal. Hence

n varn(Z) =
n varn(X)

σ2
=

nVn

σ2

has the chi-square distribution with n − 1 degrees of freedom.

That finishes the proof of the theorem stated on slide 58.
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Sampling Distributions for Normal Populations (cont.)

The theorem can be stated with S2
n replacing Vn. If X1, . . ., Xn

are IID N (µ, σ2) and

Xn =
1

n

n∑
i=1

Xi

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)
2

then Xn and S2
n are independent random variables and

Xn ∼ N
(

µ,
σ2

n

)
(n− 1)S2

n

σ2
∼ chi2(n− 1)
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Sampling Distributions for Normal Populations (cont.)

An important consequence uses the theorem as restated using

S2
n and the definition of a t(n− 1) random variable.

If X1, . . ., Xn are IID N (µ, σ2), then

Xn − µ

σ/
√

n
∼ N (0,1)

(n− 1)S2
n

σ2
∼ chi2(n− 1)

Hence

T =
(Xn − µ)/σ/

√
n√

[(n− 1)S2
n/σ2]/(n− 1)

=
Xn − µ

Sn/
√

n

has the t(n− 1) distribution.
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Asymptotic Sampling Distributions

When the data X1, . . ., Xn are IID from a distribution that is

not normal, we have no result like the theorem just discussed for

the normal distribution. Even when the data are IID normal, we

have no exact sampling distribution for moments other than the

mean and variance. We have to make do with asymptotic, large

n, approximate results.
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Asymptotic Sampling Distributions (cont.)

The ordinary and central moments of the distribution of the

data were defined on 5101 deck 3, slides 153–154. The ordinary

moments, if they exist, are denoted

αk = E(Xk
i )

(they are the same for all i because the data are IID). The first

ordinary moment is the mean µ = α1. The central moments, if

they exist, are denoted

µk = E{(Xi − µ)k}

(they are the same for all i because the data are IID). The

first central moment is always zero µ1 = 0. The second central

moment is the variance µ2 = σ2.
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Asymptotic Sampling Distributions (cont.)

The ordinary and central moments of the empirical distribution

are defined in the same way. The ordinary moments are denoted

Ak,n = En(X
k) =

1

n

n∑
i=1

Xi

The first ordinary moment is the empirical mean Xn = A1,n.

The central moments are denoted

Mk,n = En{(X −Xn)
k} =

1

n

n∑
i=1

(Xi −Xn)
k

The first central moment is always zero M1,n = 0. The second

central moment is the empirical variance M2,n = Vn.
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Asymptotic Sampling Distributions (cont.)

The asymptotic joint distribution of the ordinary empirical mo-

ments was done on 5101 deck 6, slides 89–90 although we hadn’t

introduced the empirical distribution yet so didn’t describe it this

way.
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Asymptotic Sampling Distributions (cont.)

Define random vectors

Yi =


Xi

X2
i...

Xk
i


Then

Yn =
1

n

n∑
i=1

Yi =


A1,n
A2,n

...
Ak,n
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Asymptotic Sampling Distributions (cont.)

E(Yi) =


α1
α2
...

αk



var(Yi) =


α2 − α2

1 α3 − α1α2 · · · αk+1 − α1αk
α3 − α1α2 α4 − α2

2 · · · αk+2 − α2αk
... ... . . . ...

αk+1 − α1αk αk+2 − α2αk · · · α2k − α2
k


(they are the same for all i because the data are IID). Details of

the variance calculation are on 5101 deck 6, slide 89.
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Asymptotic Sampling Distributions (cont.)

Write

E(Yi) = µordinary

var(Yi) = Mordinary

(µordinary is a vector and Mordinary is a matrix). Then the mul-
tivariate CLT (5101 deck 6, slides 74–86) says

Yn ≈ N
(
µordinary,

Mordinary

n

)
Since the components of Yn are the empirical ordinary moments
up to order k, this gives the asymptotic (large n, approximate)
joint distribution of the empirical ordinary moments up to order
k. Since Mordinary contains population moments up to order 2k,
we need to assume those exist.
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Asymptotic Sampling Distributions (cont.)

All of this about empirical ordinary moments is simple — a

straightforward application of the multivariate CLT — compared

to the analogous theory for empirical central moments. The

problem is that

Mk,n =
1

n

n∑
i=1

(Xi −Xn)
k

is not an empirical mean of the form

En{g(X)} =
1

n

n∑
i=1

g(Xi)

for any function g.
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Asymptotic Sampling Distributions (cont.)

We would have a simple theory, analogous to the theory for

empirical ordinary moments if we studied instead

M∗
k,n =

1

n

n∑
i=1

(Xi − µ)k

which are empirical moments but are not functions of data only

so not as interesting.

It turns out that the asymptotic joint distribution of the M∗
k,n is

theoretically useful as a step on the way to the asymptotic joint

distribution of the Mk,n, so let’s do it.
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Asymptotic Sampling Distributions (cont.)

Define random vectors

Z∗i =


Xi − µ

(Xi − µ)2
...

(Xi − µ)k


Then

Z
∗
n =


M∗

1,n
M∗

2,n
...

M∗
k,n
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Asymptotic Sampling Distributions (cont.)

E(Z∗i ) =


µ1
µ2
...

µk



var(Z∗i ) =


µ2 − µ2

1 µ3 − µ1µ2 · · · µk+1 − µ1µk
µ3 − µ1µ2 µ4 − µ2

2 · · · µk+2 − µ2µk
... ... . . . ...

µk+1 − µ1µk µk+2 − µ2µk · · · µ2k − µ2
k


(they are the same for all i because the data are IID). The

variance calculation follows from the one for ordinary moments

because central moments of Xi are ordinary moments of Xi− µ.
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Asymptotic Sampling Distributions (cont.)

Write

E(Z∗i ) = µcentral

var(Z∗i ) = Mcentral

(µcentral is a vector and Mcentral is a matrix). Then the multi-
variate CLT (5101 deck 6, slides 74–86) says

Z
∗
n ≈ N

(
µcentral,

Mcentral

n

)
Since the components of Z∗n are the M∗

i,n up to order k, this gives
the asymptotic (large n, approximate) joint distribution of the
M∗

i,n up to order k. Since Mcentral contains population moments
up to order 2k, we need to assume those exist.
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Asymptotic Sampling Distributions (cont.)

These theorems imply the laws of large numbers (LLN)

Ak,n
P−→ αk

M∗
k,n

P−→ µk

for each k, but these LLN actually hold under the weaker condi-

tions that the population moments on the right-hand side exist.

The CLT for Ak,n requires population moments up to order 2k.

The LLN for Ak,n requires population moments up to order k.

Similarly for M∗
k,n.
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Asymptotic Sampling Distributions (cont.)

By the binomial theorem

Mk,n =
1

n

n∑
i=1

(Xi −Xn)
k

=
1

n

n∑
i=1

k∑
j=0

(k
j

)
(−1)j(Xn − µ)j(Xi − µ)k−j

=
k∑

j=0

(k
j

)
(−1)j(Xn − µ)j1

n

n∑
i=1

(Xi − µ)k−j

=
k∑

j=0

(k
j

)
(−1)j(Xn − µ)jM∗

k−j,n
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Asymptotic Sampling Distributions (cont.)

By the LLN

Xn
P−→ µ

so by the continuous mapping theorem

(Xn − µ)j P−→ 0

for any positive integer j. Hence by Slutsky’s theorem(k
j

)
(−1)j(Xn − µ)jM∗

k−j,n
P−→ 0

for any positive integer j. Hence by another application of Slut-

sky’s theorem

Mk,n
P−→ µk
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Asymptotic Sampling Distributions (cont.)

Define random vectors

Zi =


Xi −Xn

(Xi −Xn)2
...

(Xi −Xn)k


Then

Zn =


M1,n
M2,n

...
Mk,n
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Asymptotic Sampling Distributions (cont.)

Since convergence in probability to a constant of random vec-

tors is merely convergence in probability to a constant of each

component (5101, deck 6, slides 68–73), we can write these

univariate LLN as multivariate LLN

Z
∗
n

P−→ µcentral

Zn
P−→ µcentral
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Asymptotic Sampling Distributions (cont.)

Up to now we used the “sloppy” version of the multivariate
CLT and it did no harm because we went immediately to the
conclusion. Now we want to apply Slutsky’s theorem, so we
need the careful pedantically correct version. The sloppy version
was

Z
∗
n ≈ N

(
µcentral,

Mcentral

n

)
The careful version is

√
n
(
Z
∗
n − µcentral

) D−→ N (0,Mcentral)

The careful version has no n in the limit (right-hand side), as
must be the case for any limit as n →∞. The sloppy version does
have an n on the right-hand side, which consequently cannot be
a mathematical limit.
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Asymptotic Sampling Distributions (cont.)

√
n(Mk,n − µk)

=
1
√

n

n∑
i=1

[
(Xi −Xn)

k − µk

]

=
1
√

n

n∑
i=1

 k∑
j=0

(k
j

)
(−1)j(Xn − µ)j(Xi − µ)k−j − µk


=
√

n(M∗
k,n − µk) +

1
√

n

n∑
i=1

k∑
j=1

(k
j

)
(−1)j(Xn − µ)j(Xi − µ)k−j

=
√

n(M∗
k,n − µk) +

k∑
j=1

(k
j

)
(−1)j√n(Xn − µ)jM∗

k−j,n
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Asymptotic Sampling Distributions (cont.)

By the CLT
√

n(Xn − µ)
D−→ U

where U ∼ N (0, σ2). Hence by the continuous mapping theorem

nj/2(Xn − µ)j D−→ Uj

but by Slutsky’s theorem

√
n(Xn − µ)j D−→ 0, j = 2,3 . . .

97



Asymptotic Sampling Distributions (cont.)

Hence only the j = 0 and j = 1 terms on slide 96 do not converge

in probability to zero, that is,
√

n(Mk,n − µk) =
√

n(M∗
k,n − µk)− k

√
n(Xn − µ)M∗

k−1,n + op(1)

where op(1) means terms that converge in probability to zero.

By Slutsky’s theorem this converges to

W − kµk−1U

where the bivariate random vector (U, W ) is multivariate normal

with mean vector zero and variance matrix

M = var

(
Xi − µ

(Xi − µ)k

)
=

(
µ2 µk+1

µk+1 µ2k − µ2
k

)

98



Asymptotic Sampling Distributions (cont.)

Apply the multivariate delta method, which in this case says that

the distribution of

W − kµk−1U

is univariate normal with mean zero and variance(
−kµk−1 1

)( µ2 µk+1
µk+1 µ2k − µ2

k

)(
−kµk−1

1

)
= µ2k − µ2

k − 2kµk−1µk+1 + k2µ2
k−1µ2
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Asymptotic Sampling Distributions (cont.)

Summary:

√
n(Mk,n − µk)

D−→ N (0, µ2k − µ2
k − 2kµk−1µk+1 + k2µ2

k−1µ2)

We could work out the asymptotic joint distribution of all these,

but we spare you these details.

The k = 2 case is particularly simple. Recall µ1 = 0, µ2 = σ2,

and M2,n = Vn, so the k = 2 case is

√
n(Vn − σ2)

D−→ N (0, µ4 − σ4)
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Asymptotic Sampling Distributions (cont.)

We will do one joint convergence in distribution result because

we have already done all the work

√
n

(
Xn − µ

Vn − σ2

)
D−→

(
U
W

)
or

√
n

(
Xn − µ

Vn − σ2

)
D−→ N (0,M)

where

M =

(
µ2 µ3
µ3 µ4 − µ2

2

)
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Asymptotic Sampling Distributions (cont.)

In contrast to the case where the data are exactly normally dis-

tributed, in general, Xn and Vn are not independent and are

not even asymptotically uncorrelated unless the population third

central moment is zero (as it would be for any symmetric pop-

ulation distribution but would not be for any skewed population

distribution).

Moreover, in general, the asymptotic distribution of Vn is differ-

ent from what one would get if a normal population distribution

were assumed (homework problem).

102



Sampling Distribution of Order Statistics

Recall that X(k) is the k-th data value in sorted order. Its distri-

bution function is

FX(k)
(x) = Pr(X(k) ≤ x)

= Pr(at least k of the Xi are ≤ x)

=
n∑

j=k

(n
j

)
F (x)j[1− F (x)]n−j

Where

F (x) = Pr(Xi ≤ x)
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Sampling Distribution of Order Statistics

If the data are continuous random variables having PDF f = F ′,
then the PDF of X(k) is given by

fX(k)
(x) = F ′X(k)

(x)

=
d

dx

n∑
j=k

(n
j

)
F (x)j[1− F (x)]n−j

=
n∑

j=k

(n
j

)
jF (x)j−1f(x)[1− F (x)]n−j

−
n−1∑
j=k

(n
j

)
F (x)j(n− j)[1− F (x)]n−j−1f(x)
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Sampling Distribution of Order Statistics (cont.)

Rewrite the second term replacing j by j − 1 so the powers of

F (x) and 1− F (x) match the first term

fX(k)
(x) =

n∑
j=k

(n
j

)
jF (x)j−1f(x)[1− F (x)]n−j

−
n∑

j=k+1

( n

j − 1

)
F (x)j−1(n− j + 1)[1− F (x)]n−jf(x)

=
n!

(k − 1)!(n− k)!
F (x)k−1[1− F (x)]n−kf(x)
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Sampling Distribution of Order Statistics (cont.)

If X1, . . ., Xn are IID from a continuous distribution having PDF

f and DF F , then the PDF of the k-th order statistic is

fX(k)
(x) =

n!

(k − 1)!(n− k)!
F (x)k−1[1− F (x)]n−kf(x)

and of course the domain is restricted to be the same as the

domain of f .
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Sampling Distribution of Order Statistics (cont.)

In particular, if X1, . . ., Xn are IID Unif(0,1), then the PDF of

the k-th order statistic is

fX(k)
(x) =

n!

(k − 1)!(n− k)!
xk−1(1− x)n−k, 0 < x < 1

and this is the PDF of a Beta(k, n− k + 1) distribution.
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Normal Approximation of the Beta Distribution

We cannot get a normal approximation directly from the CLT

because there is no “addition rule” for the beta distribution (sum

of IID beta does not have a brand name distribution).

Again we use the theorem: if X and Y are independent gamma

distributions with the same rate parameter, then X/(X + Y ) is

beta (5101 Deck 3, Slides 130–139, also used on slide 51 of this

deck).
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Normal Approximation of the Beta Distribution (cont.)

Suppose W is Beta(α1, α2) and both α1 and α2 are large. Then
we can write

W =
X

X + Y

where X and Y are independent gamma random variables with
shape parameters α1 and α2, respectively, and the same rate
parameter (say λ = 1).

Then we know that

X ≈ N (α1, α1)

Y ≈ N (α2, α2)

and X and Y are asymptotically independent (5101, Deck 6,
Slide 85).
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Normal Approximation of the Beta Distribution (cont.)

That is, (
X
Y

)
≈ N (µ,M)

where

µ =

(
α1
α2

)

M =

(
α1 0
0 α2

)
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Normal Approximation of the Beta Distribution (cont.)

We now use the multivariate delta method to find the approxi-

mate normal distribution of W . (This is all a bit sloppy because

we are using the “sloppy” version of the CLT. We could make

it pedantically correct, but it would be messier.)

The transformation is W = g(X, Y ), where

g(x, y) =
x

x + y
∂g(x, y)

∂x
=

y

(x + y)2

∂g(x, y)

∂y
= −

x

(x + y)2
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Normal Approximation of the Beta Distribution (cont.)

The multivariate delta method says W is approximately normal

with mean

g(α1, α2) =
α1

α1 + α2

and variance

1

(α1 + α2)4

(
α2 −α1

)(α1 0
0 α2

)(
α2
−α1

)
=

α1α2
2 + α2

1α2

(α1 + α2)4

=
α1α2

(α1 + α2)3
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Normal Approximation of the Beta Distribution (cont.)

In summary

Beta(α1, α2) ≈ N
(

α1

α1 + α2
,

α1α2

(α1 + α2)3

)
when α1 and α2 are both large.

The parameters of the asymptotic normal distribution are no

surprise, since the exact mean and variance of Beta(α1, α2) are

E(W ) =
α1

α1 + α2

var(W ) =
α1α2

(α1 + α2)2(α1 + α2 + 1)

(brand name distributions handout) and the difference between

α1 + α2 and α1 + α2 + 1 is negligible when α1 and α2 are large.
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Sampling Distribution of Order Statistics (cont.)

Theorem: Suppose U1, U2, . . . are IID Unif(0,1). Suppose

√
n

(
kn

n
− p

)
→ 0, as n →∞

and suppose Vn denotes the kn-th order statistic of U1, . . ., Un,

that is, for each n we sort U1, . . ., Un and pick the kn-th of these.

Then
√

n(Vn − p)
D−→ N

(
0, p(1− p)

)
or (“sloppy version”)

Vn ≈ N
(

p,
p(1− p)

n

)
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Sampling Distribution of Order Statistics (cont.)

Proof: The exact distribution of Vn is Beta(kn, n−kn+1). Hence

Vn ≈ N
(

kn

n + 1
,
kn(n− kn + 1)

(n + 1)3

)
by the normal approximation for the beta distribution. Hence

√
n + 1

(
Vn −

kn

n + 1

)
≈ N

(
0,

kn(n− kn + 1)

(n + 1)2

)
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Sampling Distribution of Order Statistics (cont.)

The right-hand side of the last display on the previous slide con-

verges to N
(
0, p(1− p)

)
because

kn

n + 1
→ p

n− kn + 1

n + 1
→ 1− p

as n →∞. In summary,√
n + 1

(
Vn −

kn

n + 1

)
D−→ N

(
0, p(1− p)

)
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Sampling Distribution of Order Statistics (cont.)

Now use Slutsky’s theorem. Because of

n

n + 1
→ 1

√
n + 1

(
kn

n + 1
− p

)
→ 0

as n →∞, we have√
n + 1

(
Vn −

kn

n + 1

)
=
√

n(Vn − p) + op(1)

and that finishes the proof.
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Sampling Distribution of Order Statistics (cont.)

Now we use a result proved in 5101 homework problem 8-11. If
U is a Unif(0,1) random variable, and G is the quantile function
of another random variable X, then X and G(U) have the same
distribution.

The particular case of interest here X is a continuous random
variable having PDF f which is nonzero on the support, which
is an interval. If F denotes the DF corresponding to the quan-
tile function G, then the restriction of F to the support is the
inverse function of G. Hence by the inverse function theorem
from calculus

dG(q)

dq
=

1
dF (x)

dx

=
1

f(x)

where f = F ′ is the corresponding PDF, x = G(q), and q = F (x).
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Sampling Distribution of Order Statistics (cont.)

Theorem: Suppose X1, X2, . . . are IID from a continuous dis-
tribution having PDF f that is nonzero on its support, which is
an interval. Let xp denote the p-th quantile of this distribution.
Suppose

√
n

(
kn

n
− p

)
→ 0, as n →∞

and suppose Vn denotes the kn-th order statistic of X1, . . ., Xn.
Then

√
n(Vn − xp)

D−→ N
(
0,

p(1− p)

f(xp)2

)
or (“sloppy version”)

Vn ≈ N
(

xp,
p(1− p)

nf(xp)2

)
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Sampling Distribution of Order Statistics (cont.)

Proof: Use the univariate delta method on the transformation

X = G(U). Because functions of independent random variables

are independent, we can write Xi = G(Ui), where U1, U2, . . .

are IID Unif(0,1). Then the univariate delta method says Vn is

asymptotically normal with mean

G(p) = xp

and variance

G′(p)2 ·
p(1− p)

n
=

1

f(xp)2
·
p(1− p)

n
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Sampling Distribution of the Sample Median

Theorem: Suppose X1, X2, . . . are IID from a continuous dis-

tribution having PDF f that is nonzero on its support, which is

an interval. Let m denote the median of this distribution, and

suppose X̃n denotes the sample median of X1, . . ., Xn. Then

√
n(X̃n −m)

D−→ N
(
0,

1

4f(m)2

)
or (“sloppy version”)

X̃n ≈ N
(

m,
1

4nf(m)2

)
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Sampling Distribution of the Sample Median

Proof: If we only look at the n odd case, where the sample me-

dian is an order statistic, this follows from the previous theorem.

The n even case is complicated by the conventional definition

of the sample median as the average of the two middle order

statistics. By the previous theorem these have the same asymp-

totic distribution (because 1/n → 0 as n → ∞). Also they are

ordered X(n/2) ≤ X(n/2+1) always. Hence their asymptotic dis-

tribution, must also have this property. So assuming they do

have an asymptotic joint distribution, it must be degenerate

X(n/2) ≈ X(n/2+1) ≈ N
(

xp,
1

4nf(m)2

)
from which the theorem follows. We skip the details of proving

that they are indeed jointly asymptotically normal.
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Sampling Distribution of the Sample Median

What is the asymptotic distribution of the sample median of an

IID sample from a N (µ, σ2) distribution?

Since the normal distribution is symmetric, it mean and median

are equal.

The normal PDF is

f(x) =
1√
2πσ

e(x−µ)2/2σ2

so

X̃n ≈ N
(

µ,
πσ2

2n

)
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