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1 Web Pages

This handout accompanies the web pages

http://www.stat.umn.edu/geyer/5601/examp/smoo.html
http://www.stat.umn.edu/geyer/5601/examp/smootoo.html

2 The General Smoothing Problem

In simple linear regression, the standard assumptions are that the data are
of the form (xi, yi), i = 1, . . ., n. We are interested in being able to predict yi

values given the corresponding xi values. For this reason we treat xi as non-
random. If the xi are actually random, we say we are conditioning on their
observed values, which is the same thing as treating them as non-random. The
conditional distribution of the yi given the xi is determined by

yi = α + βxi + ei (1)

where α and β are unknown parameters (non-random but unknown constants)
and the ei are IID mean zero normal random variables.

More generally, using multiple linear regression, we can generalize the model
(1) to

yi = α + β1g1(xi) + · · ·+ βkgk(xi) + ei (2)

where g1, . . ., gk are any known functions and the errors ei are as before.
For example, polynomial regression is the case where the gi are monomials

gi(x) = xi, i = 1, . . . , k.

But multiple regression works with any functions gi so long as they are known
not estimated, that is, chosen by the data analyst without looking at the data
rather than somehow estimated from the data (only the regression parameters
α, β1, . . ., βk are estimated from the data).

Even more generally (using we don’t yet know what) we can generalize the
model (2) to

yi = g(xi) + ei (3)

where g is an unknown function and the errors ei are as before. Unlike the
jump from (1) to (2), which involves only a quantitative change from 2 to k + 1
regression coefficients, the jump from (2) to (3) involves a qualitative change
from k + 1 real parameters α, β1, . . ., βk to an unknown “parameter” that is a
whole function g.

Theoretical statisticians often call such a g an infinite-dimensional parameter
because no finite-dimensional parameter vector θ can parameterize all possible
functions, that is, we cannot write the function g(x) as gθ(x) for some finite-
dimensional parameter θ. In particular, we cannot write

gθ(x) = α + β1g1(x) + · · ·+ βkgk(x)
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where θ = (α, β1, . . . , βk) where g1, . . ., gk are known functions. If we could to
that, this would reduce (3) to a special case of (2). But we can’t do that, (3) is
not a special case of (2).

Those who have had advanced calculus may know that we can generally write
large classes of functions (for example all continuous functions on a bounded
interval) as infinite series

gθ(x) = α +
∞∑

i=1

βix
i

where now θ = (α, β1, β2, . . .) is an infinite-dimensional vector. This is the
sense in which the parameter vector is infinite-dimensional. However, we won’t
actually use this parameterization or any parameterization. The actual way
statisticians estimate the general regression model (3) doesn’t explicitly use any
parameters.

Summary of Section 2. In all forms of regression there are two kinds of
assumptions: (i) those about the regression function and (ii) those about the
error distribution.

It is possible to be nonparametric about either (i) or (ii). Robust regression
as implemented by the R functions lmsreg and ltsreg is nonparametric about
the error distribution. These methods are robust against non-normality of the
errors.

In this handout and the accompanying web pages we are making the stan-
dard parametric error assumption IID mean zero normal errors. Instead we are
nonparametric about (i). The regression function is the statisticians name for
the conditional expectation E(Y | x) thought of as a function of the conditioning
variable x.

From (3) we have
E(yi | xi) = g(xi)

because the errors have mean zero and are independent of the xi. So g is the
regression function. We are allowing it to be completely arbitrary (or almost
arbitrary, more on this below). That’s nonparametric.

3 Some Smoothers

The basic idea of all smoothers is that the unknown regression function g is
smooth, meaning that |g(x)−g(y)| is small when |x−y| is small. From calculus,
we know that these quantities are involved in the derivative

g′(x) = lim
y→x

g(y)− g(x)
y − x

Thus we may assume that the unknown regression function is differentiable or
even differential several times. But differentiability assumptions are not strictly
necessary. Some smoothing methods assume derivatives, and some don’t.
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What all smoothing methods have in common is making some use of (xi, yi)
pairs with xi near x in estimating g(x). Only smoothness of g can justify this.
If g were arbitrarily rough, if g(y) were completely unrelated to g(x) for y 6= x,
then the only sensible thing to do would be to use the data itself as our estimate,
that is, use yi as our estimate of g(xi) and not even bother to estimate g(x) for x
not equal to any xi. To do better than just letting the raw data be the“estimate”
(doing no analysis at all), we need to use smoothness of g. See Section 4.2.2
below for more on this.

3.1 Running Mean Smoother

A running mean smoother averages the values yi such that |xi − x| ≤ h
for some fixed h. For now, we will just treat the number h as a magic number
pulled out of the air. Later we will see that choosing h or the number or numbers
analogous to h in other methods (and every known smoothing method has some
such numbers that must be chosen) can be done using statistical methodology.

The number h is sometimes called the smoothing parameter but it more often
referred to by the cutesy name bandwidth, which is a metaphorical use of a term
from communications theory. The bandwidth of a radio signal is the range of
frequencies used. Although the frequency of a radio station is usually given as
a single number, such as KSJN FM 99.5 (the units are megahertz, abbreviated
MHz), but the station actually uses the“band”0.2 MHz wide (from 99.4 to 99.6).
The wider the band, the more information that can be transmitted through the
communication channel. That’s why FM radio has higher fidelity than AM
radio, which uses only 5 kHz = 0.005 Mhz bandwidth. It’s not clear what this
metaphor has to do with smoothing, but it sounds high tech and statisticians
like to use it.

For an example we will use the cholostyramine data set provided with the R
bootstrap package and described in Section 7.3 of Efron and Tibshirani (1993).

The following R creates the data

> library(bootstrap)

> data(cholost)

> compliance <- cholost$V1

> improvement <- cholost$V2

> plot(compliance, improvement)

and makes the plot shown in our Figure 1 and in Figure 7.5 in Efron and
Tibshirani (1993). The figures should (and do) look the same except for trivial
details (like the shape of plotting points).

The following code adds a running mean smoother to the plot (Figure 2).

> plot(compliance, improvement)

> lines(ksmooth(compliance, improvement, bandwidth = 10))
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Figure 1: Scatterplot for the cholostyramine data.
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Figure 2: Scatterplot with running mean smooth (bandwidth 10) for the
cholostyramine data.
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3.2 General Kernel Smoothing

One of the problems with the simple running mean smoother, so problematic
that no one uses it on important data (other fancier smoothers are preferred) is
that its estimate of the supposedly smooth function g isn’t very smooth. The
reason it isn’t smooth is that the operation of choosing which yi contribute to
the estimate of g(x) is all or nothing. A given yi contributes to the estimate
for some x and not to other x. It contributes if and only if |xi − x| ≤ h. This
makes the “smooth” estimate actually a discontinuous function of x. No good!

An obvious choice is to replace all-or-nothing choice with partial use. We
replace the ordinary average with a weighted average. Let w be an arbitrary
known, fixed non-negative function that is symmetric about zero called the
kernel. We estimate g(x) by the kernel regression estimate

ĝ(x) =

n∑
i=1

yiw

(
x− xi

h

)
n∑

i=1

w

(
x− xi

h

) (4)

(we write the denominator with that peculiar space to emphasize that formulas
for the numerator and denominator are exactly the same except for the yi in
the numerator that is missing in the denominator).

Note that each ĝ(x) is a weighted average of the yi, which is the operation

p1y1 + · · ·+ pnyn (5)

where the pi are non-negative constants that sum to one. We put (4) in the
form (5) by defining the “weights”

pi =
w

(
x− xi

h

)
n∑

j=1

w

(
x− xj

h

)
Note that a running mean smoother is the special case of a general kernel
smoother (4) where the kernel function is a simple “box” function

w(x) =


0, x < −1
1, −1 ≤ x ≤ 1
0, 1 < x

But if we change, for example, to the “gaussian” kernel

w(x) = exp(−x2/2)

we get much smoother behavior.

7



●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

−
20

0
20

40
60

80
10

0

compliance

im
pr

ov
em

en
t

Figure 3: Scatterplot with gaussian kernel smooth (bandwidth 10) for the
cholostyramine data.

The kernel estimate ĝ(x) of the true unknown regression function g(x) given
by (4) obviously is smooth if and only if the kernel w(x) is smooth. For example,
ĝ is continuous if and only if w is continuous, ĝ is differentiable if and only if w
is differentiable, and ĝ is differentiable k times if and only if w is differentiable
k times.

Note finally that “bandwidth” is not comparable between different kernels.
For fixed w, it is always true that large h gives smoother smooths and small h
gives rougher smooths. But consider two kernels w1 and w2 related by w1(x) =
w2(3x). Then with smoothing parameters (bandwidths) related by h1 = 3h2,
they give the same smooth. So clearly bandwidth in smoothing is a rather vague
metaphor.

The following code adds a kernel smoother with gaussian kernel to the plot
(Figure 3).

> plot(compliance, improvement)

> lines(ksmooth(compliance, improvement, bandwidth = 10, kernel = "normal"))

Observe how the estimated regression function shown in Figure 3 is much,
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Figure 4: Gaussian kernel smooth (bandwidth 30) for noiseless pseudo-data
showing edge effects.

much smoother than the estimated regression function shown in Figure 2.

3.3 Local Polynomial Smoothing

An issue with kernel smoothing (including running means) is that these
methods have bad behavior at the edges of the plot. Observe what kernel
smoothing does with perfectly regular, noiseless, linear data. (Figure 4).

> x <- seq(1:100)

> plot(x, x)

> lines(ksmooth(x, x, bandwidth = 30, kernel = "normal"))

An improvement to kernel smoothing is local polynomial smoothing, which
does the following. To estimate g(x) fit a polynomial to the data (xi, yi), i = 1,
. . ., n using weighted least squares with weights

wi = w

(
x− xi

h

)

9



where w is a kernel function and h the smoothing parameter. Then use the
predicted value at x from this regression to at ĝ(x).

To be a bit more concrete in our description, suppose we choose to use a
first degree polynomial (that is, use linear regression), then for each x we find
α̂(x) and β̂(x) that minimize the weighted residual sum of squares

n∑
i=1

w

(
x− xi

h

)
(yi − α− βxi)2 (6)

and set
ĝ(x) = α̂(x) + β̂(x) · x (7)

Note that we have to do this for each x for which we wish to evaluate ĝ(x).
Local polynomial smoothing, because it is fitting lines locally would do the

right thing to the pseudo-data in Figure 4. There would be no curving of the
smooth at the edges. The smooth would follow the points.

Let’s try local polynomial smoothing on the cholostyramine data (Figure 5).

> library(KernSmooth)

KernSmooth 2.22 installed
Copyright M. P. Wand 1997

> plot(compliance, improvement)

> lines(locpoly(compliance, improvement, bandwidth = 5))

3.4 Smoothing Splines

In this section we start over with a completely different rationale for smooth-
ing. We are not going to use anything remotely resembling a kernel or “local”
use of any well-known statistical procedure. We are going to use a completely
different approach of using penalty functions.

The method of least squares finds the best (according to certain criteria)
model within a certain parametric class to fit the data. But if the parametric
class is too “big” (generally, whenever there are at least as many parameters
as data points) we just fit the data perfectly. The data are the “smooth” and
effectively we do no analysis at all.

For example, if we have n data points and fit a polynomial of degree n − 1
(which has n parameters including the intercept). We get a perfect fit (Figure 6).

> n <- 10

> x <- seq(1, n)

> set.seed(42)

> y <- rnorm(n)

> out <- lm(y ~ poly(x, n - 1))

> xx <- seq(min(x), max(x), length = 1001)

> yy <- predict(out, newdata = data.frame(x = xx))

10
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Figure 5: Scatterplot with local polynomial smooth (bandwidth 10) for the
cholostyramine data.
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Figure 6: Polynomial interpolating data points.

> plot(x, y, ylim = range(yy))

> curve(predict(out, newdata = data.frame(x = x)), add = TRUE,

+ n = 1001)

And, of course, this “perfect” fit is perfectly useless. At x = xi for some i it just
predicts the data value ĝ(xi) = yi. At other points, it does give nice smooth
predictions, but we don’t believe these wild oscillations. In fact, the data are
simulated from the model with constant regression function and

ĝ(x) = ȳn, for all x

would be a much, much better estimate than the curve in Figure 6.
Thus the method of least squares gives ridiculous results when applied to a

model that is too big. One cure is to “penalize” models that seem less reason-
able. The penalty function that leads to smoothing splines penalizes integrated
squared second derivative. The method of smoothing splines chooses the g that
minimizes “residual sum of squares plus penalty”

n∑
i=1

[
yi − g(xi)

]2 + λ

∫ ∞

−∞
g′′(x)2 dx (8)
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It can be shown that the g that minimizes (8) is always a natural cubic spline
with knots at the observed predictor values. Let x(1), . . ., x(k) be the distinct
ordered predictor values, that is, each xi is some x(j) and

x(1) < x(2) < · · · < x(k).

Then a natural cubic spline g with these “knots” is the function given by

g(x) = (α0 + β0x) · I(−∞,x(1)](x)

+
k−1∑
j=1

(αj + βjx + γjx
2 + δjx

3) · I(x(j),x(j+1)](x)

+ (αk + βkx) · I(x(k),∞)(x)

(9)

that has two continuous derivatives, which imposes the additional side condi-
tions in which each equation containing an i indicates k− 1 equations for i = 2,
. . ., k

α0 + β0x(1) = α1 + β1x(1) + γ1x
2
(1) + δ1x

3
(1)

αi−1 + βi−1x(i) + γi−1x
2
(i) + δi−1x

3
(i) = αi + βix(i) + γix

2
(i) + δix

3
(i)

αk−1 + βk−1x(k) + γk−1x
2
(k) + δk−1x

3
(k) = αk + βkx(k)

β0 = β1 + 2γ1x(1) + 3δ1x
2
(1)

βi−1 + 2γi−1x(i) + 3δi−1x
2
(i) = βi + 2γix(i) + 3δix

2
(i)

βk−1 + 2γk−1x(k) + 3δk−1x
2
(k) = βk

0 = 2γ1 + 6δ1x(1)

2γi−1 + 6δi−1x(i) = 2γi + 6δix(i)

2γk−1 + 6δk−1x(k) = 0

This function has 4k parameters (α’s, β’s, γ’s, and δ’s) and 3k side conditions,
which reduces us to k free parameters.

Sorry about all the equations. I just thought someone might like to see actual
equations instead of vague handwaving. The only points most people need to
know are that natural cubic splines have the following properties.

• Zeroth, first, and second derivatives are continuous (the“zeroth”derivative
is the function itself).

• The third derivative is piecewise constant with jumps at the “knots”.

• For a “smoothing spline” knots are at the distinct xi values.

• For a “regression spline” (not discussed here) knots are at user-specified
points.

• The second derivative is zero (so the function itself is linear) outside the
range of the knots.
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As with all the other smoothing methods we have discussed a smoothing
spline has an adjustable “smoothing parameter” λ, which we don’t call “band-
width” because the other “bandwidth” parameters had units of x (in order for
(x − xi)/h to be dimensionless h must have the same units as x) whereas λ is
dimensionless. However λ is qualitatively like a bandwidth parameter. As we
adjust λ between zero and infinity the smoothing spline goes from very rough
to very smooth.

At λ = ∞ (infinite penalty) we only get a finite criterion (8) if the integral
is zero, which happens if the second derivative g′′(x) is zero for all x, which
happens if g(x) is a linear function. Least squares with a linear regression
function is just simple linear regression. At λ = 0 (no penalty) the smoothing
spline interpolates the data (Figure 7, which is qualitatively like Figure 6 but
different in detail).

> out <- spline(x, y, n = 1001, method = "natural")

> plot(x, y, ylim = range(out$y))

> foo <- par("usr")

> out <- spline(x, y, n = 1001, method = "natural", xmin = foo[1],

+ xmax = foo[2])

> lines(out)

> outr <- lm(y ~ x)

> abline(outr, lty = 2)

Note that the oscillations in Figure 7 are much less wild than the oscillations
in Figure 6. That is an important reason why people use smoothing splines
instead of polynomials. Both can be fitted by multiple regression, both have n
free parameters (regression coefficients) for n data points, but splines just do a
better job fitting most data.

But Figure 7 only shows the extreme behavior of smoothing splines. In
real applications we are only interested in intermediate values. So Figure 8
is a smoothing spline for the cholostyramine data. It is produced by the R
statements

> plot(compliance, improvement)

> lines(smooth.spline(compliance, improvement, df = 10))

in which the df = 10 specifies the smoothness in terms of “effective degrees of
freedom”, which is explained in the following section.

4 Some Theory

The theory in this section closely follows the presentation in Chapters 2
and 3 of Hastie and Tibshirani (1990), although it leaves out a lot of what they
say and fills in a lot of details. Students interested in more information about
smoothing should look at Hastie and Tibshirani (1990). It’s a good book.
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Figure 7: Natural cubic spline interpolating data points (solid curve) and simple
linear regression line (dashed line).
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4.1 Linear Smoothers

Every smoother we have discussed so far is a so-called linear smoother. What
this means is that the vector ŷ of predicted values at the observed predictor
values is a linear function of the data vector y. This is obvious for kernel
smoothers (including running mean smoothers). Equation (4) gives predicted
values using a formula that is linear in the yi (the components of y). This is less
obvious for local polynomial smoothers and smoothing splines, but the can be
fitted by weighted least squares, so they too must have ŷ a linear function of y.
More specifically, for the local polynomial smoother, the objective function (6) is
quadratic in the residuals yi−α−βxi, hence its partial derivatives with respect
to α and β are linear in the residuals, hence simultaneous linear equations to
be solved for α and β that are also linear in the yi. Hence the solutions α̂(x)
and β̂(x) are also linear in the yi. Then applying (7) we see that the ŷi must
be linear in the yi. The story for the smoothing splines is similar though more
complicated. The “side conditions” are linear in the 4k parameters αj , βj , γj ,
and δj . They can be solved to express these parameters as linear functions of
k parameters, call them ηj . Then (9) with the old paramters αj , βj , γj , and
δj expressed in terms of the new parameters ηj gives the regression function
as a linear function gη(x) of the parameter vector η = (η1, . . . , ηk). Then the
smoothing spline objective function (8) is a quadratic function of the residuals
and linear in the parameters. Hence its partial derivatives with respect to the
parameters are linear in both parameters and data. Hence the solution of the
simultaneous linear equations obtained by setting the partial derivatives to zero
gives solutions for the parameters that are linear functions of the data. Hence
when these are plugged back into (9) to get predictions, these predictions are
also linear in the data.

In short, for all of these smoothers we can write

ŷλ = Sλy (10)

where (as we defined them before) y is the data vector and ŷλ is the predicted
values vector and (newly defined here) Sλ is a matrix, called the smoother
matrix, that depends on some smoothing parameter λ and also on the data
vector x = (x1, . . . , xn) although this is not explicitly indicated by the notation.
The smoother matrix Sλ can (and typically does) depend on λ and x in a highly
non-linear way. The only linearity we have in (10) is linearity in y.

It is of some interest that multiple regression itself fits into this scheme. In
regression theory the smoother matrix is called the “hat matrix” because it puts
the hat on y and has the form

H = X(XT X)−1XT (11)

where X is the so-called“design”or “model”matrix which has as rows the values
of the predictor variables, one row per case. Thus ordinary multiple regression is
a special case of “smoothing”where there is no adjustable smoothing parameter.
The amount of “smoothness” is just built into the model somehow.

17



4.2 Distribution Theory

4.2.1 Assumptions

The usual “assumptions” for smoothing are the same as those for linear
regression. We assume

y = µ + e (12a)

where
e ∼ Normal(0, σ2I) (12b)

In (12a) the vector µ = (µ1, . . . , µn) is the regression function evaluated at the
“design points”

µi = g(xi)

and in (12b) the matrix I is the n × n identity matrix, so (12b) says that the
components of the error vector e are IID Normal(0, σ2).

4.2.2 Bias

The (nonparametric) parameter µ is the unknown parameter of interest.
The variance parameter σ2 is a nuisance parameter.

The parameter of interest is the (conditional) mean of y

E(y) = µ.

The estimate of this parameter is the “fitted values” vector ŷλ. The expectation
of this estimate is

E(ŷλ) = E
(
Sλy

)
= Sλµ

The difference is the bias of the estimator

bλ = E(ŷλ)− µ =
(
Sλ − I

)
µ

Generally, smoothers are biased. The bias vector bλ is generally not equal to
zero. But (this is a very important point). When you think nonparametrically,
trying to be unbiased is the stupidest thing you can do. An unbiased smoothing
method would have to satisfy

µ = Sλµ, for all µ

and the only matrix Sλ that has that property is the the identity matrix Sλ = I.
But that smoother just“estimates” ŷλ = y. This isn’t data analysis. When your
“estimate” is the raw data, you’re not really doing any statistics.

4.2.3 Variance

The variance of y is variance of e, that is

var(y) = σ2I

18



From a general theorem about the variance of a linear transformation of a ran-
dom vector

var(ŷλ) = σ2SλST
λ (13)

where the superscript T indicates the matrix transpose operation. Also of in-
terest is the variance of the residual vector

var(y − ŷλ) = var
(
(I− Sλ)y)

)
= σ2(I− Sλ)(I− Sλ)T

= σ2(I− Sλ − ST
λ + SλST

λ )

(14)

4.2.4 Variance Estimate

We need an estimate of σ2. In multiple regression, we divide the residual
sum of squares

‖y − ŷλ‖2 =
n∑

i=1

(yi − ŷi)2 (15)

by the “degrees of freedom for error” to get an unbiased estimate of σ2.
In smoothing, things are not so simple. Let us calculate the expectation

of (15) and see what we can do with it. First recall from theory that for any
random variable W whatsoever

var(W ) = E(W 2)− E(W )2

or, equivalently,
E(W 2) = var(W ) + E(W )2.

Applying this with
W = yi − ŷλ,i

we see that E(W ) = bλ,i and var(W ) is given by the i, i-th element of the
variance matrix (14).

The sum of the diagonal elements of a matrix is called its trace. We denote
the trace of a matrix A by tr(A). With this notation and the ideas above, we
get

E
{
‖y − ŷλ‖2

}
= σ2 tr(I− Sλ − ST

λ + SλST
λ ) + bT b

= σ2
(
n− 2 tr(Sλ) + tr(SλST

λ )
)

+ bT b
(16)

Now we have a slight problem carrying out our program. No multiple of
(15) is an unbiased estimate of σ2. The best we can do is ignore the bias term
and divide (15) by

dferr = n− 2 tr(Sλ) + tr(SλST
λ ) (17)

We call (17) the degrees of freedom for error of a smoother with smoother matrix
Sλ. Then

σ̂2 =
‖y − ŷλ‖2

dferr
is our (biased) estimate of σ2. At least we can say that σ̂2 generally overesti-
mates σ2 because its bias bT b/dferr is necessarily nonnegative.
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4.2.5 Degrees of Freedom

The notion of degrees of freedom doesn’t really apply to smoothers, but

• people are so used to degrees of freedom, we would like to find an analog,
even a strained one, and

• smoothing parameters in general and “bandwidth” in particular mean dif-
ferent things for different smoothers, so we would like some intrinsic notion
of how much smoothing a smoother does.

We already have one thing we have called degrees of freedom (17). But (13)
gives us another. In ordinary linear regression the analog of the smoother matrix
is the hat matrix (11). It is an orthogonal projection, which mean HT = H and
H2 = H. This the analog of (13) for ordinary linear regression is

var(ŷ) = σ2HHT = σ2H

and tr(H) is the number of regression coefficients in the model (this is tricky,
we won’t try to prove it).

By analogy, this suggests

dfvar = tr(SλST
λ )

as another degrees of freedom notion. Yet a third degrees of freedom notion is

df = tr(Sλ).

This is the simplest of all, because it doesn’t involve a matrix multiplication. It
arises as the correction in Mallows’s Cp statistic (Section 4.3.2 below) and also
as the correction in generalized cross validation (Section 4.3.6 below).

These three are not directly comparable, because dferr is n minus something
comparable to the others. The three directly comparable degrees of freedom
notions are

tr(Sλ)

tr(SλST
λ )

2 tr(Sλ)− tr(SλST
λ )

All three reduce to trH = p in the case of ordinary linear regression. They are
all different for a general smoother.

4.3 Performance Criteria

4.3.1 Mean Squared Error

The mean squared error of the estimator ĝλ(x) is

mse(x, λ) = E
{(

ĝλ(x)− g(x)
)2}
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Generally, this is different at each x.
The predictive squared error of the estimator ĝλ(x) is

pse(x, λ) = E
{(

y∗ − ĝλ(x)
)2}

where y∗ is a new response value associated with predictor value x (“new” here
meaning not one of the “old” values used in the estimation of ĝλ). There is a
simple relation between these two quantities.

pse(x, λ) = E
{(

y∗ − ĝλ(x)
)2}

= E
{(

y∗ − g(x)
)2}− E

{(
y∗ − g(x)

)(
ĝλ(x)− g(x)

)}
+ E

{(
ĝλ(x)− g(x)

)2}
= E

{(
y∗ − g(x)

)2}+ E
{(

ĝλ(x)− g(x)
)2}

= σ2 + mse(x, λ)

(the expectation of the cross product term is zero because y∗ and the data used
to estimate ĝλ are independent).

And there is an analogous decomposition of mean square error. Students
who have had theory will recall “mse equals variance plus bias squared.” For
those who haven’t had theory, we derive this here. First we get a notation for
bias in this context (bias at x)

bλ(x) = E
{
ĝλ(x)

}
− g(x)

Then

mse(x, λ) = E
{(

ĝλ(x)− g(x)
)2}

= E
{(

ĝλ(x)− g(x)− bλ(x)
)2}

+ bλ(x)E
{(

ĝλ(x)− g(x)− bλ(x)
)}

+ bλ(x)2

= E
{(

ĝλ(x)− g(x)− bλ(x)
)2}+ bλ(x)2

= var
{
ĝλ(x)

}
+ bλ(x)2

(here the expectation of the cross product term is zero because g(x) + bλ(x) is
the expectation of ĝλ(x)).

In order to get a single criterion of performance, we average these quantities
over the observed x values

mse(λ) =
1
n

n∑
i=1

mse(λ, xi) (18)

and
pse(λ) = σ2 + mse(λ) (19)
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We can now go back to our matrix notation

mse(λ) =
1
n

n∑
i=1

mse(λ, xi)

=
1
n

n∑
i=1

var
{
ĝλ(xi)

}
+

1
n

n∑
i=1

bλ(xi)2

=
1
n

n∑
i=1

var(ŷλ,i) +
1
n

n∑
i=1

b2
i

where the ŷλ,i are the components of ŷλ as defined above and the bλ,i are the
components of bλ as defined above. Thus we see

mse(λ) =
tr
(
var(ŷλ)

)
n

+
bT

λ bλ

n

=
σ2 tr

(
SλST

λ

)
n

+
bT

λ bλ

n

(20)

Hence

pse(λ) = σ2

(
1 +

tr
(
SλST

λ

)
n

)
+

bT
λ bλ

n
(21)

4.3.2 Mallows’s Cp

A very bad approximation of pse(λ) is the average squared residual

asr(λ) =
1
n

n∑
i=1

(yi − ŷi)2 =
‖y − ŷλ‖2

n
(22)

This is the criterion that least squares minimizes. The more the model overfits,
the smaller it is.

We have already calculated its expectation except for a factor of n in (16)

E{asr(λ)} =
σ2
(
n− 2 tr(Sλ) + tr(SλST

λ )
)

+ bT b
n

= σ2

(
1− 2 tr(Sλ)

n
+

tr(SλST
λ )

n

)
+

bT b
n

Comparing this with (21) we see that

E{asr(λ)} = pse(λ)− σ2 2 tr(Sλ)
n

hence

Cp(λ) = asr(λ) + σ̂2 2 tr(Sλ)
n

(23)

is a sensible estimate of predictive squared error. This is called Mallows’s Cp

statistic. It was originally introduced for model selection in ordinary regression.
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In that context p is the number of regression coefficients in the model. Here it
has been generalized to a context where p makes no sense, but the name of this
thingy is “Cp.” Sorry about that. This is why “alphabet soup” terminology is
bad.

4.3.3 Cross Validation

Cross validation is an important idea in regression. The idea is to estimate
pse(λ) by

cv(λ) =
1
n

n∑
i=1

(
yi − ĝλ,−i(xi)

)2 (24)

where ĝλ,−i means the smooth estimate for smoothing parameter λ and data
(x1, . . . , xi−1, xi+1, . . . , xn) that “leaves out” xi.

The point is that in pse(λ) we need y∗ that are independent of the “old”
data. We don’t have any such y∗ so we make do with yi. But to get “old” data
independent of yi we have leave yi out of the so-called “old” data. We do that
in turn for each i, using a different “old” data with each yi. Tricky. And rather
complicated. But the best we can do without actually obtaining some actually
new data.

Another formula for cv(λ) is given in Section 4.3.5 below. To derive it we
need some theory from the next section.

4.3.4 Leave One Out

It seems at first sight that (24) would necessitate doing our smoothing pro-
cedure n times, one for each yi left out. It turns out that this is not so. We can
calculate all the leave-one-out smooths from the original smoother matrix Sλ.

Temporarily, we leave the λ’s off to simplify the notation. We’ll put them
back later. Let ŷ−i denote the predicted value for the i-th case when yi is left
out of the data doing the fitting.

Actually, it is not completely clear what“leave one out”means in the context
of smoothing. In general, there is no necessary relationship between a smoother
for n data pairs and a smoother for n − 1 data pairs. (Of course, a for a
particular kind of smoother, such as a kernel smoother with a particular kernel
and bandwidth or a smoothing spline with a particular smoothing parameter,
there is such a relationship. But there is no relationship in general.)

One method of finding such a general relationship is to note that any rea-
sonable smoother is constant preserving, which can be expressed in the formula
S1 = 1, where 1 is the vector with all elements equal to 1. In words, this says
the rows of S sum to one. Thus if we want to use the same smoother with the
i-th row and column deleted to be an (n − 1) × (n − 1) smoother matrix, we
must renormalize the rows to sum to one. Let sij denote the elements of the
original n × n smoother matrix S. When we delete the i-th column, then the
i-th row now sums to 1− sii. So that’s what we divide by to renormalize.
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This line of reasoning gives

ŷ−i =
1

1− sii

n∑
j=1
j 6=i

sijyj (25)

for comparison, the ordinary predicted value is

ŷi =
n∑

j=1

sijyj (26)

If we multiply (25) by (1− sii and then move a term from one side to the other,
we get

ŷ−i =
n∑

j=1
j 6=i

sijyj + siiŷ−i

=
n∑

j=1

sijyj + siiŷ−i − siiyi

= ŷi + siiŷ−i − siiyi

From which we conclude

yi − ŷ−i = yi − ŷi + sii(yi − ŷ−i)

and hence
yi − ŷ−i =

yi − ŷi

1− sii
(27)

This equation is very important. The left hand side of (27) is the leave one out
residual. The right hand side of (27) expresses this in terms of the ordinary
residual yi − ŷi.

Thus we do not need to do n smooths to do cross-validation. As long as we
can get the diagonal elements sii of the smoother matrix S, we can compute the
leave one out residuals from the ordinary residuals.

If we put the λ’s back, (27) becomes

yi − ŷλ,−i =
yi − ŷλ,i

1− sλ,ii
(28)

4.3.5 Cross Validation Revisited

Then

cv(λ) =
1
n

n∑
i=1

(
yi − ŷλ,i

1− sλ,ii

)2

(29)
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4.3.6 Generalized Cross Validation

A minor variant on cross validation is, so-called generalized cross validation,
which, of course, like most things statisticians call“generalized,” isn’t. It replaces
the sλ,ii in the denominator with there average tr(Sλ)/n giving

gcv(λ) =
1
n

n∑
i=1

(
yi − ŷλ,i

1− tr(Sλ)/n

)2

=
1

n(1− tr(Sλ)/n)2
1
n

n∑
i=1

(yi − ŷλ,i)
2

=
‖y − ŷλ‖2

n(1− tr(Sλ)/n)2

=
asr(λ)

(1− tr(Sλ)/n)2

(30)

Thus gcv(λ) is a simple function of the average squared residual asr(λ) given
by (22).

5 The Bias-Variance Trade-off

The title of this section is about the inevitability of trade-offs in life. You
can’t have everything.

The “bias” under discussion is the bias term in mse(λ), the second term on
the right hand side of (20), which is

bT
λ bλ/n (31)

The “variance” under discussion is the variance term in mse(λ), the first term
on the right hand side of (20), which is

σ2 tr(ST
λ Sλ)/n (32)

We want both to be as small as possible. If the “bias” (31) is big, then our esti-
mate ŷλ of the true regression function µ is off center (its sampling distribution
is not centered at µ). If the “variance” (32) is big, then our estimate ŷλ is too
variable (its sampling distribution has too much spread).

Unfortunately, we can’t have both small at the same time. Reducing λ (less
smoothing) reduces bias but increases variance, and vice versa.

To see how the bias-variance trade-off works, let us work through a simple
kernel smoothing example with Gaussian kernel. In order to know the bias we
must know the true regression function µ. So this example must be on made-up
data (where we know the truth).

> n <- 50

> x <- seq(0, 2 * pi, length = n)
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Figure 9: Made-up data with true regression curve.

> mu <- sin(x) + sin(2 * x)

> sigma <- 0.5

> set.seed(42)

> y <- mu + sigma * rnorm(n)

Figure 9 shows these made-up data. It is made by the R commands

> plot(x, y)

> curve(sin(x) + sin(2 * x), add = TRUE)

Because the x values are equally spaced, the following code calculates the
smoother matrix for bandwidth h

> h <- 0.5

> xdiff <- mean(diff(x))

> j <- seq(-n, n)

> k <- seq(1, n)

> wj <- exp(-(xdiff * j/h)^2/2)

> S <- NULL

> for (i in 1:n) {
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Figure 10: Made-up data with true regression curve (solid curve) and kernel
smooth estimate thereof (bandwidth = 0.5).

+ l <- match(k - i, j)

+ foo <- wj[l]

+ S <- rbind(S, foo/sum(foo))

+ }

Figure 10 is the same as Figure 9 except the smooth estimate is added R
commands

> y.hat <- S %*% y

> plot(x, y)

> curve(sin(x) + sin(2 * x), add = TRUE)

> lines(x, y.hat, lty = 2)

Now that we know how to construct the smoother matrix for some smoother,
we can calculate all kinds of things.

> stuff <- NULL

> hs <- c(seq(0.06, 0.09, 0.01), seq(0.1, 0.9, 0.1))

> for (h in hs) {
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+ wj <- exp(-(xdiff * j/h)^2/2)

+ S <- NULL

+ for (i in 1:n) {

+ l <- match(k - i, j)

+ foo <- wj[l]

+ S <- rbind(S, foo/sum(foo))

+ }

+ y.hat <- S %*% y

+ b <- S %*% mu - mu

+ bsq <- sum(b^2)

+ df1 <- sum(diag(S))

+ df2 <- sum(diag(S %*% t(S)))

+ df3 <- 2 * df1 - df2

+ v <- sigma^2 * df2

+ mse <- (v + bsq)/n

+ pse <- sigma^2 + mse

+ rss <- sum((y - y.hat)^2)

+ sii <- diag(S)

+ cv <- sum(((y - y.hat)/(1 - sii))^2)/n

+ asr <- rss/n

+ gcv <- asr/(1 - df1/n)^2

+ sigmahatsq <- rss/(n - df3)

+ Cp <- asr + sigmahatsq * 2 * df1/n

+ stuff <- rbind(stuff, c(h, df1, df2, df3, bsq, v, pse, cv,

+ gcv, Cp, asr))

+ }

> dimnames(stuff) <- list(rep("", nrow(stuff)), c("h", "df1", "df2",

+ "df3", "bias", "var", "pse", "cv", "gcv", "Cp", "asr"))

> stuff[, 2:4] <- round(stuff[, 2:4], 1)

> round(stuff, 2)

h df1 df2 df3 bias var pse cv gcv Cp asr
0.06 41.7 35.5 47.9 0.00 8.87 0.43 0.46 0.46 0.52 0.01
0.07 36.6 28.6 44.5 0.01 7.15 0.39 0.46 0.46 0.47 0.03
0.08 32.2 23.9 40.5 0.02 5.98 0.37 0.45 0.45 0.45 0.06
0.09 28.7 20.8 36.7 0.03 5.20 0.35 0.45 0.44 0.43 0.08
0.10 25.9 18.6 33.3 0.05 4.64 0.34 0.44 0.44 0.42 0.10
0.20 13.2 9.5 17.0 0.44 2.37 0.31 0.39 0.39 0.38 0.21
0.30 9.0 6.5 11.5 1.45 1.61 0.31 0.41 0.41 0.40 0.27
0.40 6.9 5.0 8.8 3.10 1.24 0.34 0.46 0.46 0.45 0.34
0.50 5.6 4.1 7.1 5.19 1.01 0.37 0.53 0.53 0.53 0.42
0.60 4.7 3.4 6.0 7.47 0.86 0.42 0.61 0.61 0.60 0.50
0.70 4.1 3.0 5.2 9.68 0.75 0.46 0.69 0.68 0.68 0.57
0.80 3.7 2.7 4.6 11.65 0.67 0.50 0.75 0.75 0.75 0.64
0.90 3.3 2.4 4.2 13.31 0.61 0.53 0.80 0.80 0.80 0.70

Not very pretty, but it does show that cv(λ), gcv(λ) and Cp(λ) fairly closely
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approximate pse(λ). And it also shows that they all choose the same bandwidth
(h = 0.20) as the optimal choice (among the ones tried), and this is optimal
according to the pse(λ) criterion.

Of course, that’s partly due to the crudeness of our grid of h values. Let’s
try again with a finer grid. (We won’t repeat the code, which is unchanged
except for different h values and different rounding).

h df1 df2 df3 bias var pse cv gcv Cp asr
0.18 14.6 10.5 18.8 0.32 2.62 0.3087 0.3940 0.3949 0.3830 0.1975
0.19 13.9 9.9 17.9 0.38 2.49 0.3072 0.3927 0.3935 0.3825 0.2051
0.20 13.2 9.5 17.0 0.44 2.37 0.3061 0.3920 0.3925 0.3825 0.2123
0.21 12.6 9.0 16.2 0.51 2.26 0.3054 0.3917 0.3921 0.3828 0.2191
0.22 12.1 8.6 15.5 0.59 2.16 0.3050 0.3919 0.3921 0.3835 0.2256
0.23 11.6 8.3 14.8 0.67 2.07 0.3049 0.3926 0.3925 0.3845 0.2319
0.24 11.1 8.0 14.2 0.76 1.99 0.3051 0.3937 0.3934 0.3859 0.2380
0.25 10.7 7.7 13.7 0.86 1.92 0.3055 0.3953 0.3947 0.3877 0.2441
0.26 10.3 7.4 13.2 0.97 1.85 0.3062 0.3973 0.3964 0.3898 0.2500

Now we see that pse(λ) picks h = 0.23, whereas cv(λ) picks h = 0.21, gcv(λ)
picks either h = 0.21 or h = 0.22, and Cp(λ) picks either h = 0.19 or h = 0.20.

Figure 11 (page 30) is the same as Figure 9 except the “optimal” smooth
estimate is added.

The general story about bias-variance trade-off is much the same as this
example. For h too small (not enough smoothing) the bias is small but the
variance is huge. For h too big (too much smoothing) the variance is small but
the bias is huge. Somewhere in the middle (h just right) the bias and variance
are both moderate. That’s the amount of smoothing you want.
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Figure 11: Made-up data with true regression curve (solid curve) and kernel
smooth estimate thereof (bandwidth = 0.23).
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