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1 The Pivotal Method

A function g(X, θ) of data and parameters is said to be a pivot or a pivotal
quantity if its distribution does not depend on the parameter. The primary
example of a pivotal quantity is

g(X, µ) =
Xn − µ

Sn/
√

n
(1.1)

which has the distribution t(n − 1), when the data X1, . . ., Xn are i. i. d.
Normal(µ, σ2) and

Xn =
1
n

n∑
i=1

Xi (1.2a)

S2
n =

1
n− 1

n∑
i=1

(Xi −Xn)2 (1.2b)

Pivotal quantities allow the construction of exact confidence intervals, mean-
ing they have exactly the stated confidence level, as opposed to so-called “asymp-
totic” or “large-sample” confidence intervals which only have approximately the
stated confidence level and that only when the sample size is large. An exact
confidence interval is valid for any sample size. An asymptotic confidence in-
terval is valid only for sufficiently large sample size (and typically one does not
know how large is large enough).

Exact intervals are constructed as follows.

• Find a pivotal quantity g(X, θ).

• Find upper and lower confidence limits on the pivotal quantity, that is,
numbers c1 and c2 such that

Pr{c1 < g(X, θ) < c2} = γ (1.3)

where γ is the desired confidence coefficient.
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• Solve the inequalities: the confidence set (usually an interval) is

{ θ ∈ Θ : c1 < g(X, θ) < c2 } (1.4)

The point is that the probability (1.3) does not depend on the parameter θ by
definition of “pivotal quantity.” If g(X, θ) were not pivotal, then the probability
(1.3) would depend on the unknown true parameter value and could not be
calculated.

The constants c1 and c2 in (1.3) are called critical values. They are obtained
from a table for the distribution of the pivotal quantity or from a computer
program.

1.1 Pivot for Normal Mean

For the t pivotal quantity (1.1) we usually choose symmetric critical values:
for some positive number c, we choose c2 = c and c1 = −c. Then the inequalities
in (1.4) become

−c <
Xn − µ

Sn/
√

n
< c

which when solved for µ are equivalent to

Xn − c
Sn√

n
< µ < Xn + c

Sn√
n

the usual t confidence interval.

1.2 Pivot for Exponential Rate

For the t interval, we just relearned what we already knew. Here’s another
example. Suppose X1, . . ., Xn are i. i. d. Exponential(λ). Then we know from
the addition rule for the exponential that

n∑
i=1

Xi ∼ Gamma(n, λ).

Then because the second parameter of the gamma distribution is a “rate” pa-
rameter (reciprocal scale parameter) multiplying by a constant gives another
gamma random variable with the same shape and rate divided by that constant
(DeGroot and Schervish, Problem 1 of Section 5.9). We choose to multiply by
λ/n giving

λXn ∼ Gamma(n, n) (1.5)

Since the distribution here does not depend on the parameter λ, we see that

g(X, λ) = λXn

is a pivotal quantity. Hence we can apply the pivotal method.
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When the distribution of the pivotal quantity is not symmetric, there is no
reason to choose symmetric critical values (plus and minus some number). In
this case it is impossible to choose symmetric critical values. Negative critical
values make no sense when the pivotal quantity is almost surely positive.

A convenient choice (which specializes to symmetric critical values when the
distribution of the pivotal quantity is symmetric) is to use equal-tailed criti-
cal values. We choose c1 and c2 to be the α/2 and 1 − α/2 quantiles of the
distribution of the pivotal quantity, where α = 1 − γ and γ is the confidence
coefficient.

For the pivotal quantity (1.5), the following R statements find these critical
values, assuming the sample size n and confidence coefficient alpha are already
defined

qgamma(alpha / 2, shape = n, rate = n)
qgamma(1 - alpha / 2, shape = n, rate = n)

Using the vectorizing property of R functions, we can get both with one state-
ment

qgamma(c(alpha / 2, 1 - alpha / 2), shape = n, rate = n)

For a concrete example, suppose n = 10 and x̄n = 23.45 and we want a 95%
confidence interval, so γ = 0.95 and α = 0.05. The the code above gives

Rweb:> n <- 10
Rweb:> alpha <- 0.05
Rweb:> qgamma(c(alpha / 2, 1 - alpha / 2), shape = n, rate = n)
[1] 0.4795389 1.7084803

So our confidence interval found by the pivotal method is

0.4795389 < λXn < 1.708480

solved for λ, that is
0.4795389

Xn

< λ <
1.708480

Xn

or using the computer

Rweb:> n <- 10
Rweb:> alpha <- 0.05
Rweb:> xbar <- 23.45
Rweb:> crit <- qgamma(c(alpha / 2, 1 - alpha / 2),
+ shape = n, rate = n)
Rweb:> print(crit / xbar)
[1] 0.02044942 0.07285630
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1.3 Pivot for Exponential Rate, Part 2

If you don’t have a computer and must use tables in the back of some book,
then you probably don’t find tables of the gamma distribution. What you
do find is tables of the chi-square distribution, which is a gamma distribution
with integer or half-integer degrees of freedom and rate parameter 1/2. Inte-
ger degrees of freedom is what we need for estimating the rate parameter of
the exponential, and the rate parameter can be adjusted to what we want by
multiplying by a constant

2nλXn ∼ Chi-Square(2n) (1.6)

Note that the degrees of freedom becomes 2n because that makes the shape
parameter of the gamma distribution n.

Now we find critical values for an equal-tailed 95% confidence interval from
the table on pp. 774–775 in DeGroot and Schervish. For 2n = 20 degrees of
freedom the 0.025 and 0.975 quantiles are 9.591 and 34.17, and the corresponding
confidence interval for λ is

9.591
20Xn

< λ <
34.17
20Xn

and for x̄n = 23.45 this works out to (0.02044989, 0.07285714), which agrees
with the answer we got before to four significant figures (the accuracy of the
table in the book).

1.4 Philosophy

It must be admitted that exactness depends crucially on assumptions. The
t pivotal quantity (1.1) has the t(n− 1) distribution it is supposed to have if (a
very big if!) the assumptions (i. i. d. normal data) are true. If the assumptions
are incorrect, then the so-called “exact” confidence isn’t actually exact. So this
“exact” language must be taken with a grain of salt. It all depends on whether
the required assumptions are true, and in reality they are never true. Real data
are messy, never exactly obeying a simple theoretical model.

So exactness is best thought of as just another kind of approximation, one
that isn’t critically dependent on large sample size but is critically dependent
on other distributional assumptions.

2 The Asymptotic Method

2.1 Convergence in Distribution

In order to understand the asymptotic method for confidence intervals (and
later for hypothesis tests), we need to a better understanding of the central limit
theorem than we can get from reading DeGroot and Schervish.

First we define (which DeGroot and Schervish don’t, at least not this pre-
cisely) the notion of convergence in distribution. A sequence of random variables
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Xn having distribution functions Fn converges in distribution to a random vari-
able X having distribution function F if

Fn(x) → F (x), for every x at which F is continuous.

This is denoted
Xn

D−→ X.

2.2 The Central Limit Theorem (CLT)

As DeGroot and Schervish note (p. 288) the central limit theorem uses this
notion.

Theorem 2.1 (Central Limit Theorem). If X1, X2, . . . are independent and
identically distributed random variables having mean µ and variance σ2 and Xn

is defined by (1.2a), then

√
n

(
Xn − µ

) D−→ Y, as n →∞, (2.1)

where Y ∼ Normal(0, σ2).

It simplifies notation if we are allowed to write a distribution on the right
hand side of a statement about convergence in distribution, simplifying (2.1)
and the rest of the sentence following it to

√
n

(
Xn − µ

) D−→ Normal(0, σ2), as n →∞. (2.2)

There’s nothing wrong with this mixed notation because convergence in distri-
bution is a statement about distributions of random variables, not about the
random variables themselves. So when we replace a random variable with its
distribution, the meaning is still clear.

A sloppy way of rephrasing (2.2) is

Xn ≈ Normal
(

µ,
σ2

n

)
(2.3)

for “large n.” Most of the time the sloppiness causes no harm and no one is
confused. The mean and variance of Xn are indeed µ and σ2/n and the shape
of the distribution is approximately normal if n is large. What one cannot do
is say Xn converges in distribution to Z, where Z ∼ Normal(µ, σ2/n). Having
an n in the supposed limit of a sequence is mathematical nonsense. To make
mathematical sense, all of the n’s must be on the left hand side of the limit
statement, as they are in (2.1) and (2.2).

2.3 Convergence in Probability to a Constant

A special case of convergence in distribution is convergence in distribution
to a degenerate random variable concentrated at one point, which we denote by
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a small letter a to show that it is a constant random variable. It turns out this
is a concept we have met before. Convergence in probability to a constant was
defined in Section 4.8 of DeGroot and Schervish. It is denoted Xn

P−→ a.

Theorem 2.2. If X1, X2, . . . is a sequence of random variables and a a con-
stant, then Xn

P−→ a if and only if Xn
D−→ a.

In view of the theorem, we could dispense with the notion of convergence in
probability to a constant and just use convergence in distribution to a constant.
The reason we don’t is social. For some reason, the social convention among
statisticians is to always write Xn

P−→ a and never write Xn
D−→ a when a is a

constant and the two mean the same thing. We will go along with the rest of
the herd.

2.4 The Law of Large Numbers (LLN)

As DeGroot and Schervish note (p. 234) the central limit theorem uses this
notion (although their statement of the theorem has an irrelevant condition).

Theorem 2.3 (Law of Large Numbers). If X1, X2, . . . is a sequence of
independent, identically distributed random variables having mean µ, and Xn is
defined by (1.2a), then

Xn
P−→ µ, as n →∞. (2.4)

The difference between our statement and the one in DeGroot and Schervish
is that they add the condition that the Xi have second moments to the LLN.
But then the conditions of the LLN and the CLT are the same. Since the
conclusion of the CLT is much stronger than the conclusion of the LLN (see
Section 2.6 below), there is no point to the LLN if this irrelevant condition is
added. (The reason they impose this irrelevant condition is to get a simple
proof. The theorem as stated here is too difficult to prove with the techniques
developed in this course).

An example of a theorem for which the LLN as stated here holds but the
CLT does not is Student’s t distribution with two degrees of freedom. The mean
exists (and is zero) but the variance does not exist. Thus we have (2.4) with
µ = 0, but we do not have (2.1).

2.5 Slutsky’s Theorem

Theorem 2.4 (Slutsky). If g(x, y) is a function jointly continuous at every
point of the form (x, a) for some fixed a, and if Xn

D−→ X and Yn
P−→ a, then

g(Xn, Yn) D−→ g(X, a).
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Corollary 2.5. If Xn
D−→ X and Yn

P−→ a, then

Xn + Yn
D−→ X + a,

YnXn
D−→ aX,

and if a 6= 0

Xn/Yn
D−→ X/a.

In other words, we have all the nice properties we expect of limits, the limit
of a sum is the sum of the limits, and so forth. The point of the theorem is
this is not true unless one of the limits is a constant. If we only had Xn

D−→ X

and Yn
D−→ Y , we couldn’t say anything about the limit of Xn + Yn without

knowing about the joint distribution of Xn and Yn. When Yn converges to a
constant, Slutsky’s theorem tells us that we don’t need to know anything about
joint distributions.

A special case of Slutsky’s theorem involves two sequences converging in
probability. If Xn

P−→ a and Yn
P−→ b, then Xn + Yn

P−→ a + b, and so forth.
This is a special case of Slutsky’s theorem because convergence in probability
to a constant is the same as convergence in distribution to a constant.

Slutsky’s theorem can be extended by mathematical induction to many se-
quences converging in probability. If Xn

D−→ X, Yn
P−→ a, and Zn

P−→ b then
Xn + Yn + Zn

D−→ X + a + b, and so forth. Note that this induction argument
cannot be applied when we have several sequences converging in distribution.
Slutsky’s theorem only allows one sequence converging in distribution.

2.6 Comparison of the LLN and the CLT

When X1, X2, . . . is an i. i. d. sequence of random variables having second
moments, both the law of large numbers and the central limit theorem apply,
but the CLT tells us much more than the LLN.

It could not tell us less, because the CLT implies the LLN. By Slutsky’s
theorem, the CLT (2.1) implies

Xn − µ =
1√
n
·
√

n
(
Xn − µ

) D−→ 0 · Y = 0

where Y ∼ Normal(0, σ2). Another application of Slutsky’s theorem, this time
with the sequence converging in probability being a constant sequence, shows
that Xn−µ

D−→ 0 implies Xn
D−→ µ. By Theorem 2.2 Xn

D−→ µ is the same as
Xn

P−→ µ. Thus the conclusion of the CLT

√
n

(
Xn − µ

) D−→ Y
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implies the conclusion of the LLN

Xn
P−→ µ.

And this tells us that the CLT is the stronger of the two theorems.

2.7 Consistent Estimation

A sequence of point estimators Tn of a parameter θ is consistent if

Tn
P−→ θ, as n →∞.

Generally we aren’t so pedantic as to emphasize that consistency is really a
property of a sequence. We usually just say Tn is a consistent estimator of θ.

Consistency is not a very strong property, since it doesn’t say anything about
how fast the errors go to zero nor does it say anything about the distribution
of the errors. So we generally aren’t interested in estimators that are merely
consistent unless for some reason consistency is all we want. The most important
instance when consistency is all we want is explained in Section 2.9.1 below.

By the law of large numbers, if X1, X2, . . . are i. i. d. from a distribution
with mean µ, then the sample mean Xn is a consistent estimator of µ. The only
requirement is that the expectation µ exist.

More generally, any moment that exists can be consistently estimated. First
consider ordinary moments

αk = E(Xk). (2.5)

If X1, X2, . . . are i. i. d. with the same distribution as X, then the natural
estimator of the theoretical moment (2.5) is the sample moment

α̂k,n =
1
n

n∑
i=1

Xk
i . (2.6)

A very simple argument shows that α̂k,n is a consistent estimator of αk. Define
Yi = Xk

i . Then Y n = α̂k,n and E(Yi) = µY = αk and the consistency statement

α̂k,n
P−→ αk

is just the law of large numbers

Y n
P−→ µY

in different notation.
For central moments, the argument becomes a bit more complicated. The

k-th central moment of a random variable X with mean µ is defined by

µk = E{(X − µ)k} (2.7)
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assuming the expectation exists. If X1, X2, . . . are i. i. d. with the same distri-
bution as X, then the natural estimator of the theoretical moment (2.7) is the
sample central moment

µ̂k,n =
1
n

n∑
i=1

(Xi −Xn)k. (2.8)

The LLN does not apply directly to sample central moments because (2.8) is
not the average of i. i. d. terms, because Xn appears in each term and involves
all the Xi. Nevertheless, a few applications of Slutsky’s theorem shows that
µ̂k,n is a consistent estimator of µk.

In order to apply the LLN, we define

µ̃k,n =
1
n

n∑
i=1

(Xi − µ)k. (2.9)

This is the average of i. i. d. terms and the expectation of each term is µk.
Hence

µ̃k,n
P−→ µk

by the LLN, the argument being just the same as the argument for ordinary
moments.

Now we rewrite µ̂k,n in terms of µ̃k,n using the binomial theorem

µ̂k,n =
1
n

n∑
i=1

(Xi −Xn)k

=
1
n

n∑
i=1

k∑
j=0

(
k

j

)
(−1)j(Xn − µ)j(Xi − µ)k−j

=
k∑

j=0

(
k

j

)
(−1)j(Xn − µ)j 1

n

n∑
i=1

(Xi − µ)k−j

=
k∑

j=0

(
k

j

)
(−1)j(Xn − µ)jµ̃k−j,n

Now as we already saw in Section 2.6

Xn − µ
P−→ 0

(this already involved one application of Slutsky’s theorem). Another applica-
tion of the theorem implies

(Xn − µ)jµ̃k−j,n
P−→ 0jµk−j

and 0j = 0 for all terms except the j = 0 term, where 0j = 1. Then a final
application of Slutsky’s theorem gives us that the limit of the sum is the sum
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of the limits, and since all terms but the first are zero, we get

µ̂k,n
P−→

(
k

0

)
(−1)000µk = µk

which is the consistency statement we wanted to prove.
The most important example of consistency of sample central moments is

the second moment

µ̂2,n =
1
n

n∑
i=1

(Xi −Xn)2 P−→ µ2 = σ2

It is a nuisance that the sample central moment µ̂2,n is not commonly used.
Rather the slightly different (1.2b) is widely used, because of its appearance
in the usual formulation of the t pivotal quantity. Asymptotically, there is no
difference between the two estimators. By Slutsky’s theorem

S2
n =

n− 1
n

µ̂2,n
P−→ 1 · σ2 = σ2

Another application of Slutsky’s theorem, using the fact that the square root
function is continuous, gives us

Sn
P−→ σ.

In summary.

• S2
n is a consistent estimator of σ2.

• Sn is a consistent estimator of σ.

2.8 Asymptotic Normality

Mere consistency is a fairly uninteresting property, unless it just happens to
be all we want. A much more important property is asymptotic normality. We
say an estimator Tn is consistent for a parameter θ if

Tn
P−→ θ,

or equivalently if
Tn − θ

P−→ 0.

The estimator Tn is supposed to estimate the parameter θ, so Tn − θ is the
error of estimation. Consistency says the error goes to zero. We would like to
know more than that. We would like to know how about big the error is, more
specifically we would like an approximation of its sampling distribution.

It turns out that almost all estimators of practical interest are not just
consistent but also asymptotically normal, that is,

√
n(Tn − θ) D−→ Normal(0, τ2) (2.10)
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holds for some constant τ2, which may depend on the true distribution of the
data. We say an estimator Tn that satisfies (2.10) is consistent and asymptoti-
cally normal (that is, asymptotically normal when centered at θ).

The simplest example of this phenomenon is when Tn is the sample mean Xn

and the parameter θ is the population mean µ. Asymptotic normality of this
estimator is just the CLT (2.2). But many other estimators of many other pa-
rameters are consistent and asymptotically normal. For example, every sample
moment is a consistent and asymptotically normal estimator of the correspond-
ing theoretical moment if enough theoretical moments exist. In order for sample
k-th moments to be consistent and asymptotically normal we need existence of
theoretical moments of order 2k.

2.9 Asymptotically Pivotal Quantities

An estimator that is consistent and asymptotically normal can be used to
construct, so-called asymptotic or large-sample confidence intervals if asymp-
totics can be arranged so that the asymptotic distribution does not depend on
parameters. Then we say we have an asymptotically pivotal quantity.

2.9.1 The Plug-In Principle

The CLT does not at first sight produce an asymptotically pivotal quantity,
because the asymptotic distribution Normal(0, σ2) depends on the unknown
parameter σ. We can divide by σ giving (by Slutsky’s theorem)

Xn − µ

σ/
√

n

D−→ Normal(0, 1). (2.11)

Since the right hand side now contains no unknown parameter, we say the left
hand side is an asymptotically pivotal quantity. But this is entirely useless
because we don’t know σ. If we were to try to use this to make a confidence
interval for µ we would get the interval

Xn − c
σ√
n

< µ < Xn + c
σ√
n

where c is the critical value (more on that below). If we don’t know σ, then we
can’t use this.

So we proceed a bit differently. Rewrite (2.11) as

Xn − µ

σ/
√

n

D−→ Z, (2.12)

where Z is standard normal. Then by yet another application of Slutsky’s
theorem,

Xn − µ

Sn/
√

n
=

σ

Sn
· Xn − µ

σ/
√

n

D−→ σ

σ
· Z = Z (2.13)
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In summary
Xn − µ

Sn/
√

n

D−→ Normal(0, 1). (2.14)

Thus (2.14) describes an asymptotically pivotal quantity, just like (2.11). But
there is a world of difference between the two: (2.14) is useful when σ is unknown
and (2.11) is useless.

The plug-in principle can be vastly generalized to any situation in which we
have consistent and asymptotically normal estimators.

Theorem 2.6 (Plug-In). Suppose (2.10) holds and Un is any consistent esti-
mator of τ , then

Tn − θ

Un/
√

n

D−→ Normal(0, 1). (2.15)

The argument is just like the argument leading to (2.14). Note that (2.14)
is the special case of (2.15) with

• Tn = Xn,

• θ = µ,

• Un = Sn,

• and τ2 = σ2.

2.9.2 Confidence Intervals Using Plug-In

The method of asymptotic pivotal quantities proceeds just like the method
of exact pivotal quantities. We just replace exact probability statements by
asymptotic (large-sample) approximate probability statements.

Suppose (2.15) holds. Choose c such that Pr(|Z| < c) = γ, where Z is
standard normal and γ is the desired confidence level. Then

Tn − c
Un√

n
< θ < Tn + c

Un√
n

is the desired (large-sample, asymptotic, approximate) confidence interval. In
the particular case where (2.14) holds, this becomes

Xn − c
Sn√

n
< µ < Xn + c

Sn√
n

Most commonly, people use γ = 0.95 for which c = 1.96 or γ = 0.90 for which
c = 1.645.

Here’s an example where we don’t use Sn to estimate asymptotic variance.
Suppose X1, . . ., Xn are i. i. d. Bernoulli(p) and we are to estimate the unknown
success probability p. This is the same as saying that Y = X1 + · · · + Xn is
Binomial(n, p). Usually when this situation arises the problem is phrased in
terms of Y rather than in terms of X1, . . ., Xn. But in order to see the relation
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to other asymptotic arguments, it is important to keep the i. i. d. Bernoulli
variables in the picture. Then Xn is the same as Y/n the fraction of successes
in n trials. It is commonly denoted p̂n in this context, but is is a sample
mean whether or not it is denoted Xn. From the formulas for the Bernoulli
distribution we know that

σ2 = Var(Xi) = p(1− p)

Thus for Bernoulli or binomial data the estimate of p can also be used to estimate
σ2 and σ. By Slutsky’s theorem (yet again)√

p̂n(1− p̂n) P−→
√

p(1− p)

So from the plug-in theorem we get

p̂n − p√
p̂n(1− p̂n)/n

D−→ Normal(0, 1). (2.16)

Solving the asymptotically pivotal quantity for p gives

p̂n − c

√
p̂n(1− p̂n)

n
< p < p̂n + c

√
p̂n(1− p̂n)

n

where c is the usual normal critical value (like 1.96 for 95% confidence).

2.9.3 Confidence Intervals Without Plug-In

Although plug-in is by far the most common way to make confidence intervals
it is possible in special cases to avoid it.

Let us redo the binomial example avoiding plug-in. If we don’t use plug-in,
then the CLT gives

p̂n − p√
p(1− p)/n

D−→ Normal(0, 1). (2.17)

And the left hand side is an asymptotically pivotal quantity. Unlike the general
case, this is a useful pivotal quantity because the only unknown parameter in
it is p, which is what we are trying to estimate. Thus if c is the appropriate
normal critical value, the set{

p :
|p̂n − p|√
p(1− p)/n

< c

}
(2.18)

is an asymptotic (large-sample, approximate) confidence interval for p. The
“solution” here is not so easy. It involves solving a quadratic equation in p, but
it is possible. The solutions for the endpoints of the confidence interval for p
are

p̂n +
c2

2n
± c

√
c2

4n2
+

p̂n(1− p̂n)
n(

1 +
c2

n

) (2.19)

13



For large n (2.19) is very close to

p̂n ± c

√
p̂n(1− p̂n)

n
(2.20)

which gives the endpoints of the interval obtained by the plug-in method. But
for small n, the two kinds of intervals can be quite different. Simulation studies
show the method of this section, generally works better, meaning the actual
coverage probability of the interval is closer to its nominal coverage probability.

2.9.4 Confidence Intervals Without Plug-In, Again

Variance-stabilizing transformations provide another method that can be
used to find asymptotically pivotal quantities. For the binomial distribution,
this is Problem 7.5.11 in DeGroot and Schervish. The function

g(p) = 2 sin−1(
√

p)

is variance-stabilizing for the Bernoulli distribution (Problem 5.13.29 in DeGroot
and Schervish), meaning

√
n
[
g(p̂n)− g(p)

] D−→ Normal(0, 1) (2.21)

so the right hand side is an asymptotically pivotal quantity and can be used to
make an asymptotic (large-sample, approximate) confidence interval.

The inverse function is given by

g−1(θ) = sin2(θ/2)

If we write θ = g(p) and θ̂n = g(p̂n), then plugging these into (2.21) gives
√

n
(
θ̂n − θ

) D−→ Normal(0, 1)

Thus, if we wanted to estimate the parameter θ, the confidence interval would
be

θ̂n ±
c√
n

To estimate the original parameter p, we transform back to the original scale
using p = g−1(θ), that is, the confidence interval is

g−1

(
θ̂n ±

c√
n

)
= g−1

(
g(p̂n)± c√

n

)
(2.22)

For numerical example, consider binomial data with n = 30 and x = 6, and
suppose we want a 95% confidence interval so c = 1.96. Then our three intervals
are

Type Interval
(2.20) (0.057, 0.343)
(2.19) (0.095, 0.373)
(2.22) (0.079, 0.359)
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Thus we see there is no single right way to do an asymptotic confidence interval.
This is the nature of approximations. There are many approximations that are
close to correct. Since none is exactly correct, there is no reason to say that one
is without doubt better than the rest.

2.10 Sample Variance Again

The most important moment after the mean is the variance. If we have
exactly normal data, then the sampling distribution of the sample variance
is gamma (Theorem 7.3.1 in DeGroot and Schervish). But what if the data
aren’t normal? Then we don’t have a brand name distribution for the sampling
distribution of the sample variance. But we can use the asymptotic method.

As when we were discussing consistency of sample central moments, there is
a problem that the terms in (1.2b) are not independent because all contain Xn.
Thus we first investigate the asymptotics of (2.9), with k = 2, because we now
doing second moments. The central limit theorem applied to µ̃2,n gives

√
n
(
µ̃2,n − µ2

) D−→ Normal(0, τ2)

where

τ2 = Var{(Xi − µ)k}
= E{(Xi − µ)2k} − E{(Xi − µ)k}2

= µ4 − µ2
2

Of course the second central moment is variance, µ2 = σ2, but we use µ2 where
it makes the formulas make more sense.

We are just about done. We have actually found the asymptotic distribution
of the sample variance, be we need several applications of Slutsky’s theorem to
see that. First

n− 1
n

S2
n =

1
n

n∑
i=1

(Xi −Xn)2

=
1
n

n∑
i=1

[
(Xi − µ)2 − 2(Xi − µ)(Xn − µ) + (Xn − µ)2

]
= µ̃2,n + (Xn − µ)2

So

√
n
(
S2

n−σ2
)

=
n

n− 1
·
√

n
(
µ̃2,n−µ2

)
+

1
n− 1

µ2 +
n

n− 1
·
√

n(Xn−µ)2 (2.23)

The CLT says √
n(Xn − µ) D−→ Y
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where Y ∼ Normal(0, σ2). Then by an argument similar to that in Section 2.6,

n

n− 1
·
√

n(Xn − µ)2 =
√

n

n− 1
·
[√

n(Xn − µ)
]2 D−→ 0 · Y 2 = 0

Hence the third term on the right hand side in (2.23) converges in probability to
zero. The second term on the right is nonrandom and converges to zero, hence it
converges in probability to zero when considered a sequence of constant random
variables. The factor n/(n− 1) in the first term on the right is asymptotically
negligible. Hence by another application of Slutsky’s theorem S2

n has the same
asymptotic distribution as µ̃2,n, that is,

√
n
(
S2

n − σ2
) D−→ Normal(0, µ4 − σ4).

When the data are normally distributed, then µ4 = 3σ4 and we get

S2
n ≈ Normal

(
σ2,

2σ4

n

)
But for non-normal data, we must keep the general form

S2
n ≈ Normal

(
σ2,

µ4 − σ4

n

)
.
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