Stat 5101 Notes: Brand Name Distributions

Charles J. Geyer

February 14, 2003

1 Discrete Uniform Distribution

Symbol DiscreteUniform(n).

Type Discrete.

Rationale Equally likely outcomes.

Sample Space The interval 1, 2, ..., n of the integers.

Probability Function

$$f(x) = \frac{1}{n}, \qquad x = 1, 2, \dots, n$$

Moments

$$E(X) = \frac{n+1}{2}$$
$$var(X) = \frac{n^2 - 1}{12}$$

2 Uniform Distribution

Symbol Uniform(a, b).

Type Continuous.

Rationale Continuous analog of the discrete uniform distribution.

Parameters Real numbers a and b with a < b.

Sample Space The interval (a, b) of the real numbers.

Probability Density Function

$$f(x) = \frac{1}{b-a}, \qquad a < x < b$$

Moments

$$E(X) = \frac{a+b}{2}$$
$$var(X) = \frac{(b-a)^2}{12}$$

Relation to Other Distributions Beta(1,1) = Uniform(0,1).

3 Bernoulli Distribution

Symbol Bernoulli(p).

Type Discrete.

Rationale Any zero-or-one-valued random variable.

Parameter Real number $0 \le p \le 1$.

Sample Space The two-element set $\{0, 1\}$.

Probability Function

$$f(x) = \begin{cases} p, & x = 1\\ 1 - p, & x = 0 \end{cases}$$

Moments

$$E(X) = p$$
$$var(X) = p(1 - p)$$

Addition Rule If $X_1, ..., X_k$ are i. i. d. Bernoulli(p) random variables, then $X_1 + \cdots + X_k$ is a Binomial(k, p) random variable.

Relation to Other Distributions Bernoulli(p) = Binomial(1, p).

4 Binomial Distribution

Symbol Binomial(n, p).

Type Discrete.

Rationale Sum of i. i. d. Bernoulli random variables.

Parameters Real number $0 \le p \le 1$. Integer $n \ge 1$.

Sample Space The interval 0, 1, ..., n of the integers.

Probability Function

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0, 1, \dots, n$$

Moments

$$E(X) = np$$
$$var(X) = np(1-p)$$

Addition Rule If X_1, \ldots, X_k are independent random variables, X_i being Binomial (n_i, p) distributed, then $X_1 + \cdots + X_k$ is a Binomial $(n_1 + \cdots + n_k, p)$ random variable.

Normal Approximation If np and n(1-p) are both large, then

$$Binomial(n, p) \approx Normal(np, np(1-p))$$

Poisson Approximation If n is large but np is small, then

$$Binomial(n, p) \approx Poisson(np)$$

Theorem The fact that the probability function sums to one is equivalent to the **binomial theorem:** for any real numbers a and b

$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a+b)^n.$$

Degeneracy If p = 0 the distribution is concentrated at 0. If p = 1 the distribution is concentrated at 1.

Relation to Other Distributions Bernoulli(p) = Binomial(1, p).

5 Hypergeometric Distribution

Symbol Hypergeometric (A, B, n).

Type Discrete.

Rationale Sample of size n without replacement from finite population of B zeros and A ones.

Sample Space The interval $\max(0, n - B), \ldots, \min(n, A)$ of the integers.

Probability Function

$$f(x) = \frac{\binom{A}{x}\binom{B}{n-x}}{\binom{A+B}{n}}, \qquad x = \max(0, n-B), \dots, \min(n, A)$$

Moments

$$E(X) = np$$
$$var(X) = np(1-p) \cdot \frac{N-n}{N-1}$$

where

$$p = \frac{A}{A+B}$$

$$N = A+B$$
(5.1)

Binomial Approximation If n is small compared to either A or B, then

$$Hypergeometric(n, A, B) \approx Binomial(n, p)$$

where p is given by (5.1).

Normal Approximation If n is large, but small compared to either A or B, then

Hypergeometric
$$(n, A, B) \approx \text{Normal}(np, np(1-p))$$

where p is given by (5.1).

6 Poisson Distribution

Symbol Poisson(μ)

Type Discrete.

Rationale Counts in a Poisson process.

Parameter Real number $\mu > 0$.

Sample Space The non-negative integers $0, 1, \ldots$

Probability Function

$$f(x) = \frac{\mu^x}{x!}e^{-\mu}, \qquad x = 0, 1, \dots$$

Moments

$$E(X) = \mu$$
$$var(X) = \mu$$

Addition Rule If X_1, \ldots, X_k are independent random variables, X_i being Poisson (μ_i) distributed, then $X_1 + \cdots + X_k$ is a Poisson $(\mu_1 + \cdots + \mu_k)$ random variable.

Normal Approximation If μ is large, then

$$Poisson(\mu) \approx Normal(\mu, \mu)$$

Theorem The fact that the probability function sums to one is equivalent to the Maclaurin series for the exponential function: any real numbers x

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x.$$

7 Geometric Distribution

Symbol Geometric(p).

Type Discrete.

Rationales

- Discrete lifetime of object that does not age.
- Waiting time or interarrival time in sequence of i. i. d. Bernoulli trials.
- Inverse sampling.
- Discrete analog of the exponential distribution.

Parameter Real number 0 .

Sample Space The non-negative integers $0, 1, \ldots$

Probability Function

$$f(x) = p(1-p)^x$$
 $x = 0, 1, \dots$

Moments

$$E(X) = \frac{1-p}{p}$$
$$var(X) = \frac{1-p}{p^2}$$

Addition Rule If $X_1, ..., X_k$ are i. i. d. Geometric(p) random variables, then $X_1 + \cdots + X_k$ is a NegativeBinomial(k, p) random variable.

Theorem The fact that the probability function sums to one is equivalent to the geometric series: for any real number s such that -1 < s < 1

$$\sum_{k=0}^{\infty} s^k = \frac{1}{1-s}.$$

8 Negative Binomial Distribution

Symbol NegativeBinomial(r, p).

Type Discrete.

Rationale

- Sum of i. i. d. geometric random variables.
- Inverse sampling.

Parameters Real number $0 \le p \le 1$. Integer $r \ge 1$.

Sample Space The non-negative integers $0, 1, \ldots$

Probability Function

$$f(x) = {r+x-1 \choose x} p^r (1-p)^x, \qquad x = 0, 1, \dots$$

Moments

$$E(X) = \frac{r(1-p)}{p}$$
$$var(X) = \frac{r(1-p)}{p^2}$$

Addition Rule If X_1, \ldots, X_k are independent random variables, X_i being NegativeBinomial (r_i, p) distributed, then $X_1 + \cdots + X_k$ is a NegativeBinomial $(r_1 + \cdots + r_k, p)$ random variable.

Normal Approximation If r(1-p) is large, then

NegativeBinomial
$$(r, p) \approx \text{Normal}\left(\frac{r(1-p)}{p}, \frac{r(1-p)}{p^2}\right)$$

Extended Definition The definition makes sense for noninteger r if binomial coefficients are defined by

$$\binom{r}{k} = \frac{r \cdot (r-1) \cdots (r-k+1)}{k!}$$

which for integer r agrees with the standard definition.

Also

$$\binom{r+x-1}{x} = (-1)^x \binom{-r}{x}$$
 (8.1)

which explains the name "negative binomial."

Theorem The fact that the probability function sums to one is equivalent to the **generalized binomial theorem:** for any real number s such that -1 < s < 1 and any real number m

$$\sum_{k=0}^{\infty} {m \choose k} s^k = (1+s)^m. \tag{8.2}$$

If m is a nonnegative integer, then $\binom{m}{k}$ is zero for k>m, and we get the ordinary binomial theorem.

Changing variables from m to -m and from s to -s and using (8.1) turns (8.2) into

$$\sum_{k=0}^{\infty} \binom{m+k-1}{k} s^k = \sum_{k=0}^{\infty} \binom{-m}{k} (-s)^k = (1-s)^{-m}$$

which has a more obvious relationship to the negative binomial density summing to one.

9 Normal Distribution

Symbol Normal(μ, σ^2).

Type Continuous.

Rationale Limiting distribution in the central limit theorem.

Parameters Real numbers μ and $\sigma^2 > 0$.

Sample Space The real numbers.

Probability Density Function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, \quad -\infty < x < \infty$$

Moments

$$E(X) = \mu$$
$$var(X) = \sigma^{2}$$
$$E\{(X - \mu)^{3}\} = 0$$
$$E\{(X - \mu)^{4}\} = 3\sigma^{4}$$

Linear Transformations If X is Normal(μ , σ^2) distributed, then aX + b is Normal($a\mu + b$, $a^2\sigma^2$) distributed.

Addition Rule If X_1, \ldots, X_k are independent random variables, X_i being Normal (μ_i, σ_i^2) distributed, then $X_1 + \cdots + X_k$ is a Normal $(\mu_1 + \cdots + \mu_k, \sigma_1^2 + \cdots + \sigma_k^2)$ random variable.

Theorem The fact that the probability density function integrates to one is equivalent to the integral

$$\int_{-\infty}^{\infty} e^{-z^2/2} \, dz = \sqrt{2\pi}$$

Relation to Other Distributions If Z is Normal(0,1) distributed, then Z^2 is Gamma $(\frac{1}{2},\frac{1}{2})$ distributed.

10 Exponential Distribution

Symbol Exponential(λ).

Type Continuous.

Rationales

- Lifetime of object that does not age.
- Waiting time or interarrival time in Poisson process.
- Continuous analog of the geometric distribution.

Parameter Real number $\lambda > 0$.

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \lambda e^{-\lambda x}, \qquad 0 < x < \infty$$

Cumulative Distribution Function

$$F(x) = 1 - e^{-\lambda x}, \qquad 0 < x < \infty$$

Moments

$$E(X) = \frac{1}{\lambda}$$
$$var(X) = \frac{1}{\lambda^2}$$

Addition Rule If X_1, \ldots, X_k are i. i. d. Exponential(λ) random variables, then $X_1 + \cdots + X_k$ is a Gamma(k, λ) random variable.

Relation to Other Distributions Exponential(λ) = Gamma(1, λ).

11 Gamma Distribution

Symbol Gamma(α, λ).

Type Continuous.

Rationales

- Sum of i. i. d. exponential random variables.
- Conjugate prior for exponential, Poisson, or normal precision family.

Parameter Real numbers $\alpha > 0$ and $\lambda > 0$.

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \qquad 0 < x < \infty$$

where $\Gamma(\alpha)$ is defined by (11.1) below.

Moments

$$E(X) = \frac{\alpha}{\lambda}$$
$$var(X) = \frac{\alpha}{\lambda^2}$$

Addition Rule If $X_1, ..., X_k$ are independent random variables, X_i being $Gamma(\alpha_i, \lambda)$ distributed, then $X_1 + \cdots + X_k$ is a $Gamma(\alpha_1 + \cdots + \alpha_k, \lambda)$ random variable.

Normal Approximation If α is large, then

$$\operatorname{Gamma}(\alpha,\lambda) \approx \operatorname{Normal}\left(\frac{\alpha}{\lambda},\frac{\alpha}{\lambda^2}\right)$$

Theorem The fact that the probability density function integrates to one is equivalent to the integral

$$\int_0^\infty x^{\alpha - 1} e^{-\lambda x} \, dx = \frac{\Gamma(\alpha)}{\lambda^{\alpha}}$$

the case $\lambda=1$ is the definition of the gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \tag{11.1}$$

Relation to Other Distributions

- Exponential(λ) = Gamma(1, λ).
- Chi-Square $(\nu) = \text{Gamma}(\frac{\nu}{2}, \frac{1}{2}).$
- If X and Y are independent, X is $\Gamma(\alpha, \lambda)$ distributed and Y is $\Gamma(\beta, \lambda)$ distributed, then X/(X+Y) is $\text{Beta}(\alpha, \beta)$ distributed.
- If Z is Normal(0,1) distributed, then Z^2 is Gamma($\frac{1}{2},\frac{1}{2}$) distributed.

Facts About Gamma Functions Integration by parts in (11.1) establishes the gamma function recursion formula

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha), \qquad \alpha > 0$$
 (11.2)

The relationship between the $\operatorname{Exponential}(\lambda)$ and $\operatorname{Gamma}(1,\lambda)$ distributions gives

$$\Gamma(1) = 1$$

and the relationship between the Normal (0,1) and $\operatorname{Gamma}(\frac{1}{2},\frac{1}{2})$ distributions gives

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Together with the recursion (11.2) these give for any positive integer n

$$\Gamma(n+1) = n!$$

and

$$\Gamma(n+\frac{1}{2}) = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\cdots\frac{3}{2}\cdot\frac{1}{2}\sqrt{\pi}$$

12 Beta Distribution

Symbol Beta(α, β).

Type Continuous.

Rationales

- Ratio of gamma random variables.
- Conjugate prior for binomial or negative binomial family.

Parameter Real numbers $\alpha > 0$ and $\beta > 0$.

Sample Space The interval (0,1) of the real numbers.

Probability Density Function

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \qquad 0 < x < 1$$

where $\Gamma(\alpha)$ is defined by (11.1) above.

Moments

$$E(X) = \frac{\alpha}{\alpha + \beta}$$
$$var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$$

Theorem The fact that the probability density function integrates to one is equivalent to the integral

$$\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Relation to Other Distributions

- If X and Y are independent, X is $\Gamma(\alpha, \lambda)$ distributed and Y is $\Gamma(\beta, \lambda)$ distributed, then X/(X+Y) is $\text{Beta}(\alpha, \beta)$ distributed.
- Beta(1,1) = Uniform(0,1).

13 Multinomial Distribution

Symbol Multinomial (n, \mathbf{p})

Type Discrete.

Rationale Multivariate analog of the binomial distribution.

Parameters Real vector \mathbf{p} in the parameter space

$$\left\{ \mathbf{p} \in \mathbb{R}^k : 0 \le p_i, \ i = 1, \dots, k, \text{ and } \sum_{i=1}^k p_i = 1 \right\}$$
 (13.1)

Sample Space The set of vectors with integer coordinates

$$S = \left\{ \mathbf{x} \in \mathbb{Z}^k : 0 \le x_i, \ i = 1, \dots, k, \text{ and } \sum_{i=1}^k x_i = n \right\}$$
 (13.2)

Probability Function

$$f(\mathbf{x}) = \binom{n}{\mathbf{x}} \prod_{i=1}^{k} p_i^{x_i}, \quad \mathbf{x} \in S$$

where

$$\binom{n}{\mathbf{x}} = \frac{n!}{\prod_{i=1}^{k} x_i!}$$

is called a multinomial coefficient.

Moments

$$E(X_i) = np_i$$
$$var(X_i) = np_i(1 - p_i)$$
$$cov(X_i, X_j) = -np_i p_j, \qquad i \neq j$$

Moments (Vector Form)

$$E(\mathbf{X}) = n\mathbf{p}$$
$$var(\mathbf{X}) = n\mathbf{M}$$

where

$$\mathbf{M} = \operatorname{diag}(\mathbf{p}) - \mathbf{p}\mathbf{p}'$$

is the matrix with elements $m_{ij} = \text{cov}(X_i, X_j)/n$.

Addition Rule If X_1, \ldots, X_k are independent random vectors, X_i being Multinomial (n_i, \mathbf{p}) distributed, then $\mathbf{X}_1 + \cdots + \mathbf{X}_k$ is a Multinomial $(n_1 + \cdots + \mathbf{X}_k)$ n_k, \mathbf{p}) random variable.

Normal Approximation If n is large and \mathbf{p} is not near the boundary of the parameter space (13.1), then

$$Multinomial(n, \mathbf{p}) \approx Normal(n\mathbf{p}, n\mathbf{M})$$

Theorem The fact that the probability function sums to one is equivalent to the multinomial theorem: for any vector a of real numbers

$$\sum_{\mathbf{x} \in S} \left[\binom{n}{\mathbf{x}} \prod_{i=1}^{k} a_i^{x_i} \right] = (a_1 + \dots + a_k)^n$$

Degeneracy If there exists a vector **a** such that $\mathbf{Ma} = 0$, then $var(\mathbf{a}'\mathbf{X}) = 0$. In particular, the vector $\mathbf{u} = (1, 1, \dots, 1)$ always satisfies $\mathbf{M}\mathbf{u} = 0$, so $\operatorname{var}(\mathbf{u}'\mathbf{X}) = 0$. This is obvious, since $\mathbf{u}'\mathbf{X} = \sum_{i=1}^{k} X_i = n$ by definition of the multinomial distribution, and the variance of a constant is zero. This means a multinomial random vector of dimension k is "really" of dimension no more than k-1 because it is concentrated on the hyperplane containing the sample space (13.2).

Marginal Distributions Every univariate marginal is binomial

$$X_i \sim \text{Binomial}(n, p_i)$$

Not, strictly speaking marginals, but random vectors formed by collapsing categories are multinomial. If A_1, \ldots, A_m is a partition of the set $\{1, \ldots, k\}$

$$Y_j = \sum_{i \in A_j} X_i, \qquad j = 1, \dots, m$$

 $q_j = \sum_{i \in A_j} p_i, \qquad j = 1, \dots, m$

$$q_j = \sum_{i \in A_j} p_i, \qquad j = 1, \dots, m$$

then the random vector \mathbf{Y} has a Multinomial (n, \mathbf{q}) distribution.

Conditional Distributions If $\{i_1, ..., i_m\}$ and $\{i_{m+1}, ..., i_k\}$ partition the set $\{1, ..., k\}$, then the conditional distribution of $X_{i_1}, ..., X_{i_m}$ given $X_{i_{m+1}}, ..., X_{i_k}$ is Multinomial $(n - X_{i_{m+1}} - \cdots - X_{i_k}, \mathbf{q})$, where the parameter vector \mathbf{q} has components

$$q_j = \frac{p_{i_j}}{p_{i_1} + \dots + p_{i_m}}, \qquad j = 1, \dots, m$$

Relation to Other Distributions

- Each marginal of a multinomial is binomial.
- If X is Binomial(n, p), then the two-component vector (X, n X) is Multinomial(n, (p, 1 p)).

14 Bivariate Normal Distribution

Symbol See multivariate normal below.

Type Continuous.

Rationales See multivariate normal below.

Parameters Real vector $\boldsymbol{\mu}$ of dimension 2, real symmetric positive semi-definite matrix \mathbf{M} of dimension 2×2 having the form

$$\mathbf{M} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

where $\sigma_1 > 0$, $\sigma_2 > 0$ and $-1 < \rho < +1$.

Sample Space The Euclidean space \mathbb{R}^2 .

Probability Density Function

$$f(\mathbf{x}) = \frac{1}{2\pi} \det(\mathbf{M})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})' \mathbf{M}^{-1}(\mathbf{x} - \boldsymbol{\mu})'\right)$$

$$= \frac{1}{2\pi\sqrt{1 - \rho^2}\sigma_1\sigma_2} \exp\left(-\frac{1}{2(1 - \rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right) + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right), \quad \mathbf{x} \in \mathbb{R}^2$$

Moments

$$E(X_i) = \mu_i, \qquad i = 1, 2$$
$$var(X_i) = \sigma_i^2, \qquad i = 1, 2$$
$$cov(X_1, X_2) = \rho \sigma_1 \sigma_2$$
$$cor(X_1, X_2) = \rho$$

Moments (Vector Form)

$$E(\mathbf{X}) = \boldsymbol{\mu}$$
$$var(\mathbf{X}) = \mathbf{M}$$

Linear Transformations See multivariate normal below.

Addition Rule See multivariate normal below.

Marginal Distributions X_i is $Normal(\mu_i, \sigma_i^2)$ distributed, i = 1, 2.

Conditional Distributions The conditional distribution of X_2 given X_1 is

Normal
$$\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1), (1 - \rho^2)\sigma_2^2\right)$$

where

15 Multivariate Normal Distribution

Symbol Normal(μ , M)

Type Continuous.

Rationales

- Multivariate analog of the univariate normal distribution.
- Limiting distribution in the multivariate central limit theorem.

Parameters Real vector $\boldsymbol{\mu}$ of dimension k, real symmetric positive semi-definite matrix \mathbf{M} of dimension $k \times k$.

Sample Space The Euclidean space \mathbb{R}^k .

Probability Density Function If M is (strictly) positive definite,

$$f(\mathbf{x}) = (2\pi)^{-k/2} \det(\mathbf{M})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})'\mathbf{M}^{-1}(\mathbf{x} - \boldsymbol{\mu})'\right), \quad \mathbf{x} \in \mathbb{R}^k$$

Otherwise there is no density (X is concentrated on a hyperplane).

Moments (Vector Form)

$$E(\mathbf{X}) = \boldsymbol{\mu}$$
$$var(\mathbf{X}) = \mathbf{M}$$

Linear Transformations If **X** is Normal(μ , **M**) distributed, then $\mathbf{AX} + \mathbf{b}$, where **A** is a constant matrix and **b** is a constant vector of dimensions such that the matrix multiplication and vector addition make sense, is Normal($\mathbf{A}\boldsymbol{\mu}$ + $\mathbf{b}, \mathbf{AMA'})$ distributed.

Addition Rule If $X_1, ..., X_k$ are independent random vectors, X_i being $Normal(\mu_i, \mathbf{M}_i)$ distributed, then $\mathbf{X}_1 + \cdots + \mathbf{X}_k$ is a $Normal(\mu_1 + \cdots + \mu_k, \mathbf{M}_1 + \cdots + \mathbf{M}_k)$ $\cdots + \mathbf{M}_k$) random variable.

Degeneracy If there exists a vector **a** such that $\mathbf{Ma} = 0$, then $var(\mathbf{a}'\mathbf{X}) = 0$.

Partitioned Vectors and Matrices The random vector and parameters are written in partitioned form

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \tag{15.1a}$$

$$\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix} \tag{15.1b}$$

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_2 \end{pmatrix}$$

$$(15.1b)$$

when X_1 consists of the first r elements of X and X_2 of the other k-r elements and similarly for μ_1 and μ_2 .

Marginal Distributions Every marginal of a multivariate normal is normal (univariate or multivariate as the case may be). In partitioned form, the (marginal) distribution of X_1 is Normal(μ_1, M_{11}).

Conditional Distributions Every conditional of a multivariate normal is normal (univariate or multivariate as the case may be). In partitioned form, the conditional distribution of X_1 given X_2 is

$$\operatorname{Normal}(\boldsymbol{\mu}_1 + \mathbf{M}_{12}\mathbf{M}_{22}^-[\mathbf{X}_2 - \boldsymbol{\mu}_2], \mathbf{M}_{11} - \mathbf{M}_{12}\mathbf{M}_{22}^-\mathbf{M}_{21})$$

where the notation \mathbf{M}_{22}^- denotes the inverse of the matrix \mathbf{M}_{22}^- if the matrix is invertable and otherwise any generalized inverse.

16 Chi-Square Distribution

Symbol Chi-Square(ν) or $\chi^2(\nu)$.

Type Continuous.

Rationales

- Sum of squares of i. i. d. standard normal random variables.
- Sampling distribution of sample variance when data are i. i. d. normal.

Parameter Real number $\nu > 0$ called "degrees of freedom."

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \frac{(\frac{1}{2})^{\nu/2}}{\Gamma(\frac{\nu}{2})} x^{\nu/2 - 1} e^{-x/2}, \qquad 0 < x < \infty.$$

Moments

$$E(X) = \nu$$
$$var(X) = 2\nu$$

Addition Rule If X_1, \ldots, X_k are independent random variables, X_i being Chi-Square (ν_i) distributed, then $X_1 + \cdots + X_k$ is a Chi-Square $(\nu_1 + \cdots + \nu_k)$ random variable.

Normal Approximation If α is large, then

$$Chi-Square(\nu) \approx Normal(\nu, 2\nu)$$

Relation to Other Distributions

- Chi-Square $(\nu) = \text{Gamma}(\frac{\nu}{2}, \frac{1}{2}).$
- If Z and Y are independent, X is Normal(0,1) distributed and Y is Chi-Square(ν) distributed, then $X/\sqrt{Y/\nu}$ is $t(\nu)$ distributed.
- If X and Y are independent and are Chi-Square(μ) and Chi-Square(ν) distributed, respectively, then $(X/\mu)/(Y/\nu)$ is $F(\mu,\nu)$ distributed.

17 Student's t Distribution

Symbol $t(\nu)$.

Type Continuous.

Rationales

- Sampling distribution of pivotal quantity $\sqrt{n}(\overline{X}_n \mu)/S_n$ when data are i. i. d. normal.
- Marginal for μ in conjugate prior family for two-parameter normal data.

Parameter Real number $\nu > 0$ called "degrees of freedom."

Sample Space The real numbers.

Probability Density Function

$$f(x) = \frac{1}{\sqrt{\nu\pi}} \cdot \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \cdot \frac{1}{\left(1 + \frac{x^2}{\nu}\right)^{(\nu+1)/2}}, \quad -\infty < x < +\infty$$

Moments If $\nu > 1$, then

$$E(X) = 0.$$

Otherwise the mean does not exist. If $\nu > 2$, then

$$var(X) = \frac{\nu}{\nu - 2}.$$

Otherwise the variance does not exist.

Normal Approximation If ν is large, then

$$t(\nu) \approx \text{Normal}(0,1)$$

Relation to Other Distributions

- If Z and Y are independent, X is Normal(0,1) distributed and Y is Chi-Square(ν) distributed, then $X/\sqrt{Y/\nu}$ is $t(\nu)$ distributed.
- If X is $t(\nu)$ distributed, then X^2 is $F(1,\nu)$ distributed.
- t(1) = Cauchy(0, 1).

18 Snedecor's F Distribution

Symbol $F(\mu, \nu)$.

Type Continuous.

Rationale

• Ratio of sums of squares for normal data (test statistics in regression and analysis of variance).

Parameters Real numbers $\mu > 0$ and $\nu > 0$ called "numerator degrees of freedom" and "denominator degrees of freedom," respectively.

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \frac{\Gamma(\frac{\mu + \nu}{2})\mu^{\mu/2}\nu^{\nu/2}}{\Gamma(\frac{\mu}{2})\Gamma(\frac{\nu}{2})} \cdot \frac{x^{\mu/2 + 1}}{(\mu x + \nu)^{(\mu + \nu)/2}}, \qquad 0 < x < +\infty$$

Moments If $\nu > 2$, then

$$E(X) = \frac{\nu}{\nu - 2}.$$

Otherwise the mean does not exist.

Relation to Other Distributions

- If X and Y are independent and are Chi-Square(μ) and Chi-Square(ν) distributed, respectively, then $(X/\mu)/(Y/\nu)$ is $F(\mu,\nu)$ distributed.
- If X is $t(\nu)$ distributed, then X^2 is $F(1,\nu)$ distributed.

19 Cauchy Distribution

Symbol Cauchy(μ , σ).

Type Continuous.

Rationales

- Very heavy tailed distribution.
- \bullet Counter example to law of large numbers.

Parameters Real numbers μ and $\sigma > 0$, called the "location" and "scale" parameter, respectively.

Sample Space The real numbers.

Probability Density Function

$$f(x) = \frac{1}{\pi\sigma} \cdot \frac{1}{1 + \left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < +\infty$$

Moments No moments exist.

Addition Rule If X_1, \ldots, X_k are i. i. d. Cauchy (μ, σ) random variables, then $\overline{X}_n = (X_1 + \cdots + X_k)/n$ is also Cauchy (μ, σ) .

Relation to Other Distributions

•
$$t(1) = Cauchy(0, 1)$$
.