Stat 5102 (Geyer) Midterm 1

Problem 1

The basic fact this problem uses is

$$
\frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}} \sim t(n-1)
$$

(Corollary 7.25 in the notes), which, since $\mu=0$, specializes to

$$
\begin{equation*}
\frac{\bar{X}_{n}}{S_{n} / \sqrt{n}} \sim t(n-1) \tag{1}
\end{equation*}
$$

in this problem. This is the only exact result we have involving both \bar{X}_{n} and S_{n}, so nothing else is of any use.

To use (1), we must put the event of interest $\bar{X}_{n}<S_{n}$ in a form related to the left hand side of (1). Clearly, this is equivalent to

$$
\frac{\bar{X}_{n}}{S_{n} / \sqrt{n}}<\sqrt{n}=3
$$

So the probability we need to find $P(Y<3)$ where Y is a $t(n-1)$ random variable ($n-1=8$ degrees of freedom).

From Table IIIa in Lindgren $P(Y>3)=0.009$, so $P(Y<3)=1-0.009=$ 0.991 .

Problem 2

To use the method of moments, we first need to find some moments. Since this is not a "brand name" distribution, we must integrate to find the moments. The obvious moment to try first is the first moment (the mean)

$$
\begin{aligned}
\mu & =\int_{0}^{1} x f_{\beta}(x) d x \\
& =\frac{2}{1+\beta} \int_{0}^{1}\left[x+(\beta-1) x^{2}\right] d x \\
& =\frac{2}{1+\beta}\left[\frac{x^{2}}{2}+(\beta-1) \frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{1+2 \beta}{3+3 \beta}
\end{aligned}
$$

Solving for β as a function of μ, we get

$$
\beta=\frac{3 \mu-1}{2-3 \mu}
$$

(the numerator and denominator are both positive because $1 / 3<\mu<2 / 3$.)
Either way, we get a method of moments estimator by plugging in \bar{X}_{n} for μ

$$
\hat{\beta}_{n}=\frac{3 \bar{X}_{n}-1}{2-3 \bar{X}_{n}}
$$

Problem 3

(a) The asymptotic distribution of \bar{X}_{n} is, as usual, by the CLT,

$$
\bar{X}_{n} \approx \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Plugging in $\sigma^{2}=\mu$ gives

$$
\bar{X}_{n} \approx \mathcal{N}\left(\mu, \frac{\mu}{n}\right)
$$

(b) The asymptotic distribution of V_{n} is, by Corollary 7.17 in the notes,

$$
V_{n} \approx \mathcal{N}\left(\mu_{2}, \frac{\mu_{4}-\mu_{2}^{2}}{n}\right)
$$

where $\mu_{2}=\sigma^{2}=\mu$ and $\mu_{4}=\mu+3 \mu^{2}$ are given in the problem statement. Plugging these in gives

$$
V_{n} \approx \mathcal{N}\left(\mu, \frac{\mu+2 \mu^{2}}{n}\right)
$$

(c) The ARE is the ratio of the asymptotic variances, either $1+2 \mu$ or the the reciprocal $1 /(1+2 \mu)$, depending on which way you write it.
(d) The better estimator is the one with the smaller asymptotic variance, in this case \bar{X}_{n}.

Problem 4

This is a problem for the delta method. We know from the properties of the exponential distribution

$$
E\left(X_{i}\right)=\frac{1}{\lambda}
$$

and

$$
\operatorname{var}\left(X_{i}\right)=\frac{1}{\lambda^{2}}
$$

Hence the CLT says in this case

$$
\bar{X}_{n} \approx \mathcal{N}\left(\frac{1}{\lambda}, \frac{1}{n \lambda^{2}}\right)
$$

For any differentiable function g, the delta method says

$$
g\left(\bar{X}_{n}\right) \approx \mathcal{N}\left(g\left(\frac{1}{\lambda}\right), g^{\prime}\left(\frac{1}{\lambda}\right)^{2} \frac{1}{n \lambda^{2}}\right)
$$

The g such that $W_{n}=g\left(\bar{X}_{n}\right)$ is

$$
\begin{equation*}
g(x)=\frac{x}{1+x} \tag{2}
\end{equation*}
$$

which has derivative

$$
\begin{equation*}
g^{\prime}(x)=\frac{1}{(1+x)^{2}} \tag{3}
\end{equation*}
$$

so

$$
g\left(\frac{1}{\lambda}\right)=\frac{1}{1+\lambda}
$$

and

$$
g^{\prime}\left(\frac{1}{\lambda}\right)=\frac{\lambda^{2}}{(1+\lambda)^{2}}
$$

and

$$
W_{n} \approx \mathcal{N}\left(\frac{1}{1+\lambda}, \frac{\lambda^{2}}{n(1+\lambda)^{4}}\right)
$$

Problem 5

There are several different ways to proceed here.

Using a Confidence Interval for the Mean

The mean is $\mu=1 / p$. Thus we could just get a confidence interval for μ and take reciprocals of the endpoints to get a confidence interval for p.

A confidence interval for μ can be found using Theorem 9.8 in the notes. From Section B.1.8 of the notes

$$
\operatorname{var}\left(X_{i}\right)=\frac{1-p}{p^{2}}=\mu(\mu-1)
$$

so by the LLN and the continuous mapping theorem

$$
S_{n}=\sqrt{\bar{X}_{n}\left(\bar{X}_{n}-1\right)}
$$

is a consistent estimator of the population standard deviation σ needed for the theorem. The theorem gives

$$
\bar{X}_{n} \pm 1.96 \sqrt{\frac{\bar{X}_{n}\left(\bar{X}_{n}-1\right)}{n}}
$$

as an asymptotic 95% confidence interval for μ. So

$$
\frac{1}{\bar{X}_{n}+1.96 \sqrt{\frac{\bar{X}_{n}\left(\bar{X}_{n}-1\right)}{n}}}<p<\frac{1}{\bar{X}_{n}-1.96 \sqrt{\frac{\bar{X}_{n}\left(\bar{X}_{n}-1\right)}{n}}}
$$

is an asymptotic 95% confidence interval for $p=1 / \mu$. Plugging in the numbers gives

$$
0.180<p<0.256
$$

Using the Delta Method

The obvious point estimator for p is

$$
\hat{p}_{n}=\frac{1}{\bar{X}_{n}}
$$

The CLT says

$$
\bar{X}_{n} \approx \mathcal{N}\left(\frac{1}{p}, \frac{(1-p)}{n p^{2}}\right)
$$

Applying the delta method with the transformation

$$
g(u)=\frac{1}{u}
$$

with derivative

$$
g^{\prime}(u)=-\frac{1}{u^{2}}
$$

gives

$$
g\left(\frac{1}{p}\right)=p
$$

and

$$
g^{\prime}\left(\frac{1}{p}\right)=-p^{2}
$$

and

$$
\hat{p}_{n} \approx \mathcal{N}\left(p, \frac{p^{2}(1-p)}{n}\right)
$$

which gives an asymptotic 95% confidence interval

$$
\hat{p}_{n} \pm 1.96 \sqrt{\frac{\hat{p}_{n}^{2}\left(1-\hat{p}_{n}\right)}{n}}
$$

Plugging in the numbers gives

$$
0.2114 \pm 0.03680
$$

or

$$
0.1746<p<0.2482
$$

which is pretty close to the other interval.

Solving Quadratic Inequalities

The really hard way to do this problem is to start with

$$
\bar{X}_{n} \approx \mathcal{N}\left(\frac{1}{p}, \frac{1-p}{n p^{2}}\right)
$$

and standardize giving the asymptotically standard normal quantity

$$
\frac{\bar{X}_{n}-\frac{1}{p}}{\sqrt{\frac{1-p}{n p^{2}}}}
$$

from which we conclude that the set of p such that

$$
\left|\frac{\bar{X}_{n}-\frac{1}{p}}{\sqrt{\frac{1-p}{n p^{2}}}}\right|<1.96
$$

is an asymptotic 95% confidence interval for p. It turns out this is solvable, equivalent to

$$
\begin{aligned}
1.96^{2} & >\left|\frac{\bar{X}_{n}-\frac{1}{p}}{\sqrt{\frac{1-p}{n^{2}}}}\right|^{2} \\
& =\frac{n\left(\bar{X}_{n} p-1\right)^{2}}{1-p}
\end{aligned}
$$

Or, writing $z=1.96$, we see the confidence interval has endpoints satisfying the quadratic equation

$$
(1-p) z^{2}=n\left(\bar{X}_{n} p-1\right)^{2}
$$

which has roots

$$
\frac{2 n \bar{X}_{n}-z^{2} \pm z \sqrt{4 n \bar{X}_{n}+z^{2}-4 n \bar{X}_{n}}}{2 n \bar{X}_{n}^{2}}
$$

or

$$
0.17375<p<0.247366
$$

