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Preface

The book Radically Elementary Probability Theory (Nelson, 1987, Preface)

is an attempt to lay new foundations for probability theory using a
tiny bit of nonstandard analysis. The mathematical background is
little more than that which is taught in high school, and it is my hope
that it will make deep results from the modern theory of stochastic
processes readily available to anyone who can add, multiply, and
reason.

The “tiny bit of nonstandard analysis” is really “tiny” entailing little more
than a rigorous notion of infinitesimals. Nelson (1987) introduces it in three
brief chapters. We give a more belabored treatment (our Part I), but almost
everything one needs to know about nonstandard analysis are the arithmetic
rules for infinitesimal, appreciable, and unlimited numbers (a number is unlim-
ited if its reciprocal is infinitesimal, and a number is appreciable if it is neither
infinitesimal or unlimited) given in the tables in our Section 3.3, the principle
of external induction — an axiom of the nonstandard analysis used in Nelson
(1987) and this book (Axiom IV in Section 2.1) — and the principle of overspill
(our Section 3.4).

With this tiny bit of nonstandard analysis in hand Nelson (1987) radically
simplifies probability theory, adopting two principles (explained in our Sec-
tion 5.1). All probability spaces have

(i) finite sample space and

(ii) no nonempty events of probability zero.

These have the consequence that expectations always exist and are given by
finite sums, conditional expectations are unique and given by a simple formula,
also involving a finite sum, our equation (5.5), and no measure theory is neces-
sary.

One might think that this “radical” simplification is too radical — throwing
the baby out with the bathwater — but Nelson (1987) and this book provide
some evidence that this is not so. Even though our theory has no continuous
random variables or even discrete random variables with infinite sample space,
hence no normal, exponential, Poisson, and so forth random variables. We shall
see that finite approximations satisfactorily take their place.

vii
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Consider a Binomial(n, p) random variable X such that neither p nor 1−p is
infinitesimal and n is unlimited. Then (the Nelson-style analog of) the central
limit theorem says that (X−np)/

√
p(1− p)/n has a distribution that is “nearly

normal” in the sense that the distribution function of this random variable
differs from the distribution function of the normal distribution in conventional
probability only by an infinitesimal amount at any point (our Theorem 8.2).

Consider a Binomial(n, p) random variable X such that p is infinitesimal
but np is appreciable. Then X has a distribution that is “nearly Poisson” in
the sense that the distribution function of this random variable differs from the
distribution function of the Poisson(np) distribution in conventional probability
only by an infinitesimal amount at any point (unfortunately this result is in a
yet to be written chapter of this book, but is easily proved).

Consider a Geometric(p) random variable X such that p is infinitesimal and
choose a (necessarily infinitesimal) number ε such that Y = εX has apprecia-
ble expectation µ. Then Y has a distribution that is “nearly exponential” in
the sense that the distribution function of this random variable differs from
the distribution function of the Exponential(1/µ) distribution in conventional
probability only by an infinitesimal amount at any point.

Thus although Nelson-style probability theory does not have continuous ran-
dom variables, it does have discrete analogs that take their place. One is en-
titled to ask what is the point? Nelson makes one point in the text quoted
above: the level of mathematical difficulty is much lower. In teaching proba-
bility at levels below Ph. D. we are used to starting with Kolmogorov’s axioms
and Venn diagrams and mutually exclusive events and — just when the students
are thoroughly confused — dropping the whole subject. When expectation is
introduced, it is entirely the nineteenth-century, pre-Kolmogorov notion. Many
topics are discussed with allusions to Kolmogorov-style theory but without rigor
because measure theoretic abstraction is deemed too difficult for the level of the
course. Nelson-style theory avoids the necessity for all this handwaving. It pro-
vides a different kind of rigor that is understandable, perhaps (as Nelson claims)
even by high school students.

We would not like to make the wrong impression. As Nelson (1987, p. 13)
says, all mathematics involves abstractions. The notion of an unlimited number
(which is larger than any number you could actually name) is just as much
an abstraction as an infinite sequence. The question is which abstraction do
we wish to use. If we choose to use actually infinite sequences, then measure
theory is unavoidable. If we choose to use nonstandard analysis, then the law
of large numbers (Nelson, 1987, Chapter 16) can be stated without reference
to measure theory. The mathematical content is not exactly the same, but the
same purposes are served. Both laws of large numbers (Kolmogorov and Nel-
son) serve equally well in applications, such as justifying statistical inference.
Neither flavor of abstraction makes the proof of the theorem trivial. Char-
lie’s law of conservation of mathematical difficulty says that, no matter what
abstraction you use, at the end of the day you still have prove something is
less than ε and that calculation is always essentially the same. Neither Nelson
(1987) nor this book is easy reading. I admit that most American undergradu-
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ates (never mind high school students) are not comfortable with mathematical
arguments that run over several pages with many steps. Regardless of the level
of abstraction, such arguments are unavoidable. Nevertheless Nelson (1987) is a
remarkable tour de force. In 79 small format pages he goes from nothing to what
he calls the de Moivre-Laplace-Lindeberg-Feller-Wiener-Lévy-Doob-Erdös-Kac-
Donsker-Prohorov theorem, which

is a version of the de Moivre-Laplace central limit theorem that con-
tains Lindeberg’s theorem on the sufficiency of his condition, Feller’s
theorem on its necessity, Wiener’s theorem on the continuity of the
trajectories for his process, the Lévy-Doob characterization of it as
the only normalized martingale with continuous trajectories, and the
invariance principle of Erdös and Kac as extended by Donsker and
Prohorov.

Nelson ends by saying

This is an arbitrary stopping point. More can be done. I hope
that someone will write a truly elementary book on stochastic pro-
cesses along these lines, complete with exercises and applications.

I cannot claim that this is that book. At least this book is “along these lines.”
We follow Nelson in using only “radically elementary” nonstandard analysis
based on four axioms from Nelson (1987) (our Section 2.1) and only “radi-
cally elementary” probability theory based on principles (i) and (ii) above. We
have filled in many details left untouched by Nelson, in particular the rela-
tionship of the central limit theorem mentioned above, which is the climax of
Nelson (1987), to x 7→ exp(−x2/2)/

√
2π. We also do weak convergence on arbi-

trary metric spaces, Prohorov metric, Lévy metric, the portmanteau theorem,
Slutsky’s theorem, the continuous mapping theorem, and the Glivenko-Cantelli
theorem.

However, my interests are not in stochastic processes, except for spatial
point processes and Markov chains, but in statistics. The original idea of this
book was to rewrite statistics in “radically elementary” fashion, but I have only
barely begun that task. The reason this incomplete draft is being turned into a
technical report is so that the thesis of Bernardo Borba de Andrade, which deals
with the “radically elementary” approach to Markov chains, can cite some of the
results in the part of my planned book that now exists (this technical report),
in particular, the relationship between characteristic functions and convergence
in distribution (Chapter 11) that he uses to prove the central limit theorem for
alpha-mixing stationary processes. I hope that some of the planned additions
to this book will eventually be written.

Whether the “radically elementary” or “Nelson-style” approach is better or
worse than the “conventional” or “Kolmogorov-style” approach is something we
cannot yet say. I can only hope that a reader of Nelson (1987) and this book
will concede that our approach has promise. It is a huge task to rewrite all of
probability theory in the new style. Many people will not think it worth the
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effort even if the new style is simpler, more elegant, and easier to understand.
Moreover, it must be conceded that the new style is not always more elegant.
In particular, I had a great deal of difficulty proving the Lévy continuity the-
orem (our Theorem 11.8) because characteristic functions are messier objects
when only discrete random variables are allowed: compare the form (11.11)
of the characteristic function of the discrete double exponential distribution to
t 7→ 1/(1 + t2/α2) of its continuous analog and the inelegant condition (11.16)
that is required for the former to be well approximated by the latter. Other
characteristic functions are worse. Generally one has no closed form expression,
messy or otherwise.

The new style also takes a lot of getting used to. It is hard to abandon the
unique normal distribution of conventional theory. In our new theory we call
“normal” any distribution whose distribution function differs from the distri-
bution function of the normal distribution in conventional probability only by
an infinitesimal amount at any point. This huge class of distributions is very
like the conventional normal distribution in some respects and very unlike it in
others. In particular, the moments need be nothing like those of a conventional
normal distribution. Even if we add the condition that our “Nelson-style” nor-
mal distributions be (Nelson-style) L2 so that first and second moments agree
(to within an infinitesimal amount) with those of the conventional normal dis-
tribution (our Theorem 10.7), higher moments need not agree.

Now is this a good thing or a bad thing? Originally, the normal distribution
was not thought of as a real distribution but only as a limit arising in the de
Moivre-Laplace theorem. Gradually, through the work of Gauss, Quetelet, and
others the normal distribution was reified so we now think of it as a real distribu-
tion. But much of late twentieth century statistics, especially nonparametrics
and robustness, had the objective of knocking the normal distribution off its
pedestal. Is is part of the problem or part of the solution that E(X4) = 3σ4 for
the normal distribution? Confidence intervals for the population variance based
on the F distribution give incorrect results, even asymptotically incorrect, un-
less the population fourth central moment is exactly three times the population
second central moment squared. We have no reason to believe that will be true
in real applications. A well-known introductory textbook (Moore and McCabe,
1989, pp. 568–569) said

The F test and other procedures for inference about variances
are so lacking in robustness as to be of little use in practice.

reproducing figures from Pearson and Please (1975) as evidence. So is the
uniqueness of the normal distribution in conventional theory a benefit or a trap
for the unwary? Here it seems to a trap. The theory of “exact” confidence
intervals based on the F distribution (assuming “exact” normality) is elegant
but worthless in application precisely because “exact” normality is too much
to ask. In Nelson-style theory the unique continuous normal distribution goes
back to being only a limit that is never reached and doesn’t really exist, so we
are not tempted to take it too seriously.
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Many other cases could be considered where conventional theory “takes in-
finity too seriously.” Marginalization paradoxes arising from the use of improper
priors in Bayesian inference (Dawid, et al., 1973) are an example. Nelson-style
improper priors do not exist because any positive measure on a finite sample
space can be renormalized so that it is a probability measure. There are Nelson-
style analogs to improper priors. For example, the uniform distribution on a
grid of points that has infinitesimal spacing and extends to unlimited num-
bers in both positive and negative directions behaves in some respects just like
Lebesgue measure as an improper prior. But since the Nelson-style “improper”
prior is in fact proper (a probability distribution), no paradoxes can arise. Here
the supposed simplicity of conventional theory is not simple at all. It leads
only to confusion and incoherence. The extreme technical difficulty of deciding
when an improper prior leads to sensible inference (Eaton, 1992) is notorious.
In Nelson-style theory, the issue simply does not arise.

The same point has been made about using finitely additive probability the-
ory by Sudderth (1980). Nelson-style “radically elementary” probability theory
is in this respect and some other respects — especially in Nelson’s definition
of “almost surely” (see our Section 6.1) — much like finitely additive proba-
bility theory because, of course, if the sample space is finite, then countable
additivity is vacuous. In other respects, Nelson-style theory is not much like
finitely additive theory. As we have stressed, in Nelson-style theory the level
of abstraction is much lower than conventional Kolmogorov-style theory. The
level of abstraction of finitely additive theory tends to be much higher than
conventional theory.

For a long time I have wondered why probability theory is the way it is. Why
is based on Kolmogorov (1933)? As mentioned above, finitely additive theory
has been studied, although nowhere near as intensively as the Kolmogorov-style
countably additive theory. Kolmogorov himself (along with others) initiated
other approaches, such as the so-called algorithmic complexity approach (Li and
Vitanyi, 1997). There is a remarkable paper by Solovay (1970) which shows that
is it possible to make set-theoretic assumptions (incompatible with the axiom
of choice) so that every subset of the real numbers is Lebesgue measurable. So-
called Loeb measure (Loeb, 1975) uses Robinson-style nonstandard analysis (see
our Chapter 1 for brief explanation of that) to construct probability measures.
The emphasis of probability over expectation in conventional theory can be
reversed, as in Whittle (2005). Finally, as everyone is well aware, probability
theory had nearly 300 years of history before 1933 in which many important
theorems were proved without measure theory. So why do we do probability
theory the way we do?

This is not just a question of the history and sociology of mathematics. In
statistics, especially, theorems often only have heuristic value. The central limit
theorem does not assure that normal approximation is good in any particular
application, only that it will be good for some sufficiently large sample size,
perhaps billions and billions of times larger than in any application. If it were
really the case that sample sizes of billions and billions were required, then no
one would care about the theorem, despite its beauty. Statisticians who worry
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about the validity of normal approximation sometimes do simulations to check,
and they find that it sometimes works well and sometimes not, depending on
the details of the application. So the theorem does, at least sometimes, provide
a useful guide to practice, even if it provides no guarantee. When we change the
abstractions we use, we often change the atmospherics, hence we often change
the heuristics, even though the mathematical assertions of the theorems are
very similar. Nelson’s central limit theorem is very similar to the conventional
central limit theorem in what it says, but because the limiting distribution is
not unique (it is unique up to near equivalence, of course), it feels different.
The normal distribution, as we said above, doesn’t really exist in Nelson-style
theory. Hence we take some of its properties, such as its fourth moment, much
less seriously.

I started working on “radically elementary” probability and statistics merely
out of curiosity. I had to struggle to unlearn some ingrained habits from con-
ventional theory. But I have been richly rewarded. Conventional theory looks
different to me now. I have a broader perspective, a wider context. To me, that
is even more important than simplicity and elegance.
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Nonstandard Analysis
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Chapter 1

Introduction

This part of the book introduces so-called “nonstandard analysis,” which is
the branch of mathematics that makes rigorous use of infinitesimals. The early
history of infinitesimals starts with the invention of calculus by Newton and
Leibniz in the late seventeenth century. From then until the late nineteenth
century all calculus and analysis (the mathematician’s term for advanced cal-
culus, as in the title of Cauchy’s Cours d’Analyse de l’École Royale Polytech-
nique) used infinitesimals, although questions about rigor persisted throughout
this period. In the late nineteenth century, the delta-epsilon definitions of limits,
continuity, derivatives, and integrals still in use today provided the first rigorous
foundations for calculus. From then until the middle of the twentieth century
infinitesimals were banished for lack of rigor.

The reasons for banishment of infinitesimals disappeared with the publica-
tion of Robinson (1996, first edition 1966). Interestingly, Robinson’s work grew
out of the process of formalization of mathematics that made infinitesimals seem
nonrigorous in the first place. What goes around comes around.

Model theory is the branch of mathematical logic that deals with models
for axiomatic systems. Given a set of axioms, a model for those axioms is a
mathematical object that satisfies the axioms. If the axioms in question are
those for a vector space, then a model is just a vector space. This may seem
trivial, but it is profound. For one thing, the existence of a model means the
axioms are consistent, meaning they imply no contradiction (statements that
follow from the axioms and contradict each other), because no model can satisfy
a contradiction. For another thing, it leads to the question of what sort of
models can satisfy the axioms. Again, if the axioms in question are those for a
vector space, then the question is what vector spaces exist and what are their
properties? So this question encompasses the whole subject of linear algebra.

If the axioms in question are those for the real numbers, then the question is
what real number systems can exist? We are taught in conventional mathemat-
ics about the real number system. But model theoretic study of the axioms for
the real numbers shows that uniqueness of the real numbers cannot be proved,
and that “nonstandard” models exist. Robinson exploited this fact to bring

3



4 CHAPTER 1. INTRODUCTION

infinitesimals back into rigorous mathematics. He constructed, in conventional
mathematics, nonstandard models of the real numbers having elements that
could be interpreted as infinitesimals. For a recent, fairly elementary, treatment
of such model-theoretic constructions, see Goldblatt (1998).

Nelson (1977) introduced axiomatic nonstandard analysis in which the be-
havior of nonstandard concepts is derived from axioms rather than by explicit
construction of models. In some ways this is simpler than the approach of
Robinson (1996), since it requires no knowledge of model theory. Many other
axiomatic theories of nonstandard analysis have since been developed. Gordon,
Kusraev and Kutateladze (2002) and Kanovei and Reeken (2004) give encyclo-
pedic coverage of them. These various versions of nonstandard analysis can
be considered different formalizations of the same subject. Although axiomatic
nonstandard analysis following Nelson (1977) requires no model theory, it does
require a lot of set theory. In this book we are going to use a very simple version
of nonstandard analysis found in Nelson (1987), which requires very little set
theory.

In this version of nonstandard analysis, we consider the real number system
we use to be the same as the real number system of conventional mathematics
in the sense that every conventional mathematical theorem about it remains
the same. Those theorems are silent about infinitesimals. They neither prove
infinitesimals exist nor prove they do not exist. Hence we may assume that
infinitesimals do exist and are real numbers just like any other real numbers.

We might worry that this will cause trouble, but we shall be very careful. Our
mathematics with infinitesimals will be based on axioms (taken from Nelson,
1987), which are theorems of the version of nonstandard analysis in Nelson
(1977); see p. 80 in Nelson (1987). A theorem in Nelson (1977), attributed
to Powell, asserts that the theory of that paper and conventional mathematics
(as formalized in Zermelo-Frankel set theory with the axiom of choice, usually
abbreviated ZFC) are equiconsistent (meaning both theories are consistent or
both are inconsistent). Since the celebrated inconsistency theorem of Gödel says
that the consistency of ZFC cannot be proved within ZFC, this is all that can
be said. Our nonstandard analysis is consistent if conventional mathematics is
itself consistent.



Chapter 2

The Natural Numbers

The objects of this version of nonstandard analysis are the objects of con-
ventional mathematics: the integers, the real numbers, and so forth. No new
objects are added. Nothing in conventional mathematics is changed. Every
theorem of conventional mathematics remains true.

In particular, the natural numbers, the set N = {0, 1, 2, . . .}, remains the
same as it is in conventional mathematics.

2.1 Axioms

Our only addition to conventional mathematics is an undefined property
standard and four axioms that govern the use of this property.

(I) 0 is standard.

(II) If n ∈ N is standard, then so is n + 1.

(III) There exists an n ∈ N that is not standard.

(IV) If A is any property such that A(0) holds and A(n)→ A(n + 1) holds for
all standard n ∈ N, then A(n) holds for all standard n ∈ N.

We define nonstandard to mean not standard. Hence we usually say axiom
(III) asserts the existence of a nonstandard n ∈ N. We also define limited as a
synonym of standard and unlimited as a synonym of nonstandard. (In the next
chapter these terms will become nonsynonymous when limited and unlimited
can be applied to real numbers and standard and nonstandard cannot.) We
could replace “standard” everywhere it appears in the axioms by “limited,” but
we do not do so, partly to follow Nelson (1987) and partly to distinguish between
the undefined term “standard” that has no meaning other than that given by
its appearance in these axioms and the term “limited” which is defined in terms
of “standard.”

The complicated axiom (IV) is called external induction. We also, of course,
inherit conventional mathematical induction from conventional mathematics.

5



6 CHAPTER 2. THE NATURAL NUMBERS

To explain the difference, we need the following terminology. A property from
conventional mathematics (defined without any reference, direct or indirect,
to the property “standard”) is called internal. A property that is not inter-
nal is external. Our only examples of external properties so far are standard,
nonstandard, limited, and unlimited, but later on we shall meet infinitesimal,
nearly continuous, and many more. Following Nelson, we extend this termi-
nology to mathematics itself and sometimes say internal mathematics instead
of “conventional mathematics” and internal induction instead of “conventional
mathematical induction.” Internal induction is the following, which is a theorem
of set theory.

(V) If A is any internal property such that A(0) holds and A(n) → A(n + 1)
holds for all n ∈ N, then A(n) holds for all n ∈ N.

Note that internal induction can only be applied to internal properties (conven-
tional mathematical induction can only be applied to conventional mathematical
properties). If (V) could be applied with A(n) meaning “n is standard,” then
together with axioms (I) and (II) it would imply that every natural number is
standard, but that would contradict axiom (III), and our axioms would be in-
consistent when combined with those of conventional mathematics (ZFC). Note
that external induction (IV) applied with A(n) meaning “n is standard” only
produces the tautology that every standard n is standard.

So these axioms produce no immediately obvious contradiction. As was
mentioned at the end of the last chapter, our theory is consistent if conven-
tional mathematics is consistent. Thus we need not worry about contradictions,
obvious or not.

Theorem 2.1. The numbers 1, 2, . . ., 10 are limited.

The proof is obvious. Axioms (I) and (II) together imply that 1 is limited.
Having established that, another application of axiom (II) shows that 2 is lim-
ited. Then another shows that 3 is limited. And so forth. Clearly the process
need not stop at 10. The theorem would be just as true if we replaced 10 by a
thousand or a million. (There would just be more steps to the proof.) We can-
not, however, strengthen Theorem 2.1 by removing the upper bound entirely.
That would conflict with axiom (III).

2.2 Arithmetic

If we want to increase the upper bound in Theorem 2.1 we can make our
proof more efficient by using external induction.

Theorem 2.2. If m and n are limited natural numbers, then so is m + n.

Proof. Fix a limited m ∈ N and let A(n) be the property “m + n is limited.”
By axiom (II) and external induction A(n) holds for all limited n.

Now we can count limited numbers a little faster: 10 + 10 = 20 is limited,
20 + 20 = 40 is limited, and so forth.
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Theorem 2.3. If m and n are limited natural numbers, then so is m · n.

Proof. Fix a limited m ∈ N and let A(n) be the property “m ·n is limited.” By
Theorem 2.2 and external induction A(n) holds for all standard n.

Now we can count limited numbers a faster still: 10 · 10 = 100 is limited,
100 · 100 = 10, 000 is limited, and so forth.

Theorem 2.4. If m and n are limited natural numbers, then so is mn.

Proof. Fix a limited m ∈ N and let A(n) be the property “mn is limited.” By
Theorem 2.3 and external induction A(n) holds for all standard n.

Now we can count limited numbers much faster: 1010 is limited, 101010

is limited, and so forth. We could accelerate this process further with further
applications of external induction, but we have run out of familiar mathematical
operations (what comes after addition, multiplication, exponentiation?) and so
will be content to stop here.

2.3 Order

We now fill in the gaps in our counting.

Theorem 2.5. If n and ν are natural numbers, n limited and ν unlimited, then
n < ν.

Proof. Fix an unlimited ν, and let A(n) be the property n < ν. Since ν is
unlimited, it is not zero, hence A(0) holds. If n is limited and A(n) holds, then
n + 1 is limited and n + 1 ≤ ν, and since equality is impossible when n + 1 is
limited and ν is unlimited, we actually have A(n + 1). Thus external induction
implies n < ν for all limited n.

Hence we could now improve Theorem 2.1 to say that 1, 2, . . ., 101010
are

limited, but we won’t bother with a theorem number and a formal statement.

2.4 Illegal Set Formation

It is a principle of internal mathematics that properties can be used to define
sets (the subset axiom or the axiom of specification of ZFC).

(VI) For any internal property A and any set S, there exists a set B such that
x ∈ B if and only if x ∈ S and A(x).

The set B is unique (by the axiom of extension of ZFC) and is usually denoted

{x ∈ S : A(x) } (2.1)

But nothing in internal mathematics says that external properties can be used
to define sets in this way (internal mathematics having no external properties).
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Moreover, none of our four axioms of nonstandard analysis allows the use of
(2.1) when A is an external property. Nelson calls attempts to use (2.1) with A
external illegal set formation.

This explains why we only distinguish between internal and external proper-
ties and not between internal and external objects. From a foundational point
of view, everything is a set. Natural numbers are sets: zero is just another
name for the empty set, one is the set {0}, two is the set {0, 1}, and so forth.
Signs are identified with {0, 1} and integers with ordered pairs of a sign and a
natural number. Rational numbers are identified with ordered pairs of integers.
Real numbers are identified with Dedekind cuts of rationals (pairs of sets of
rationals). Functions are identified with their graphs, which are subsets of the
Cartesian product of the domain and range. And so forth. The rule against
illegal set formation disallows the use of (2.1) when A is external. Thus there is
no way to get any new sets that are not already present in internal mathematics,
hence no new mathematical objects of any sort. All objects are internal. Only
properties can be internal or external.

This is a bit confusing; one must make an effort to keep this distinction
clear. When we say a natural number ν is unlimited, we are asserting A(ν)
holds where A is the external property defined by A(n) means “n is unlimited,”
but ν itself is an internal object. From a foundational point of view, ν is the
set {0, . . . , ν − 1} and the principles of set theory allow us to form this set for
any natural number ν.

The rule about illegal set formation is very important because ignoring it is
like money laundering: it destroys the distinction between internal and external
properties and internal and external induction. If A is a property and B is a
set such that A(x) holds if and only if x ∈ B, then the property A′ defined by
A′(x) meaning x ∈ B is equivalent to A and is an internal property, because B
is an internal set (all sets being internal) and ∈ is an internal relation.

Theorem 2.6. There does not exist a subset B of N such that n ∈ B if and
only if n is limited.

Proof. Suppose the set B described by the theorem does exist. Then the prop-
erty A defined by A(n) means “n ∈ B” is an internal property, and we can apply
internal induction to it. Axiom (I) implies A(0), and Axiom (II) implies A(n)
implies A(n) → A(n + 1). We conclude A(n) holds for all n ∈ N, which says
that every natural number is limited, but that contradicts Axiom (III). Hence
no such set exists.

The rule about illegal set formation does not deny existence; it merely denies
a particular justification of existence. Let A(n) be the property “n is limited
and n < 6.” At first sight A appears to be an external property because it
involves the external property “limited.” However, we know from Theorem 2.1
that the elements of the set B = {0, 1, 2, 3, 4, 5} are all limited and thus we see
that A is equivalent to the internal property A′ defined by A′(n) meaning either
n ∈ B or n < 6.
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Thus even though the rule about illegal set formation forbids us to use the
subset axiom as a justification of the existence of this set, it nevertheless exists.
If we want to show that no set corresponds to an external property, then we
need a theorem (like Theorem 2.6). Without a theorem proving either existence
or non-existence, we do not know whether any set corresponds to an external
property. All we know is that there is no rule that asserts it automatically exists
and that we can’t just blithely use the notation (2.1) as if there were such a
rule.
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Chapter 3

Real Numbers

Any real number x lies between two integers bxc and dxe, which are called
the floor and ceiling of x and which are the greatest integer less than or equal
to x and the least integer greater than or equal to x, respectively. If x is an
integer, then bxc = dxe. Otherwise, bxc+ 1 = dxe.

Note that any two consecutive natural numbers n and n + 1 are either both
limited or both unlimited. If n is limited, then so is n + 1 by Axiom II. If n is
unlimited, then so is n + 1, by Theorem 2.5.

Thus we extend the notions of limited and unlimited to real numbers as
follows.

• A nonnegative real number x is limited if and only if bxc and dxe are
standard.

• A negative real number x is limited if and only if |x| is limited.

Unlimited means not limited.
We use the concept “limited” to define a new concept “infinitesimal.”

• 0 is infinitesimal.

• A nonzero real number x is infinitesimal if and only if 1/x is unlimited.

Another useful auxiliary concept is “appreciable.”

• A real number is appreciable if it is limited and not infinitesimal.

It is important to remember that limited, unlimited, infinitesimal, non-
infinitesimal, and appreciable are external properties.

Theorem 3.1. A nonzero real number x is infinitesimal if and only if 1/x is
unlimited and is appreciable if and only if 1/x is appreciable.

Proof. The first assertion just restates the definition of infinitesimal. The sec-
ond assertion then follows because when x is appreciable 1/x can be neither
infinitesimal nor unlimited.

11
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With these definitions come new notation. In the following x and y are any
real numbers.

• x ' y means x− y is infinitesimal.

• x� y means x ≤ y and x 6' y.

• x . y means x ≤ y or x ' y.

• x ' ∞ means x is positive and unlimited.

• x�∞ means x 6' ∞.

• x� y means y � x.

• x & y means y . x.

• x ' −∞ means −x ' ∞.

• x� −∞ means −x�∞.

And it is important to remember that all of the symbolic notations above express
external properties.

These notations are read as follows.

• x ' y is read x and y are nearly equal.

• x� y is read x is appreciably less than y or x is strongly less than y.

• x . y is read x is weakly less than y.

Please note, to avoid any misunderstanding, that the notation x ' ∞ does
not (despite appearances) assert that there are two objects x and ∞ that are
nearly equal. It is just shorthand for x is positive and unlimited and says nothing
about an object ∞, not even that such an object exists.

3.1 Order

Theorem 3.2. If ξ, x, ε, y, and η are real numbers, ξ is negative and unlimited,
x is negative and appreciable, ε is infinitesimal, y is positive and appreciable,
and η is positive and unlimited, then ξ < x < ε < y < η.

Proof. y < η is immediate from Theorem 2.5 and the definition of limited real
numbers. Then ε < y follows from the fact that for positive x and y we have
x < y if and only if 1/y < 1/x (and from nonpositive numbers being less than
positive numbers). The other inequalities follow from 0 < x < y if and only if
−y < −x < 0.
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3.2 Arithmetic

Theorem 3.3. If x and y are real numbers, then x + y is limited if both x and
y are limited, and |x|+ |y| is limited only if both x and y are limited.

Proof. The forward part follows from Theorem 2.2 by the order properties of
addition and the definitions of limited and unlimited real numbers. The converse
part follows from max(|x|, |y|) ≤ |x|+ |y|.

Theorem 3.4. If x and y are real numbers, then x · y is limited if both x and
y are limited.

Proof. This follows from Theorem 2.3 by the order properties of multiplication
and the definitions of limited and unlimited real numbers.

Corollary 3.5. If x1, . . ., xn are limited real numbers and n is a limited natural
number, then x1 + · · ·+ xn is limited and x1 × · · · × xn is limited.

Proof. Apply external induction to Theorem 3.3 or Theorem 3.4.

Theorem 3.6. If x and y are real numbers, then x · y is unlimited if x is
non-infinitesimal and y is unlimited.

Proof. Suppose to get a contradiction that z = x · y is limited. Then, by
Theorem 3.4, y = z · (1/x) is limited.

Theorem 3.7. If x and y are real numbers, then x + y is infinitesimal if both
x and y are infinitesimal, and |x|+ |y| is infinitesimal only if both x and y are
infinitesimal.

Proof. The direct part is trivial when either x or y is zero, and because of
|x + y| ≤ |x| + |y| we may assume without loss of generality that x and y are
positive, in which case we have

1
x + y

≥ 1
2
· 1
max(x, y)

' ∞

by the definition of infinitesimal and Theorem 3.6.
The converse part follows from max(|x|, |y|) ≤ |x|+ |y| and Theorem 3.2.

Corollary 3.8. If x1, . . ., xn are infinitesimal real numbers and n is a limited
natural number, then x1 + · · ·+ xn is infinitesimal.

Proof. Apply external induction to Theorem 3.7.

Corollary 3.9. The external relation ' is an equivalence.

An equivalence relation is symmetric, reflexive, and transitive. The corollary
asserts that ' has these properties. We emphasize that it is an external relation.
Hence { (x, y) ∈ R× R : x ' y } and {x ∈ R : x ' y } are illegal set formation.
We can prove facts about ' but we cannot consider it a mathematical object
(that is, a set), nor can we define objects, such as equivalence classes, in terms
of it.
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Proof. Symmetry, x ' x for all x, is obvious. Reflexivity, x ' y −→ y ' x, is
also obvious. Transitivity, x ' y and y ' z −→ x ' z, follows from the sum of
infinitesimals is infinitesimal (Theorem 3.7).

Theorem 3.10. If x and y are real numbers, then x · y is infinitesimal if x is
infinitesimal and y is limited.

Proof. This is trivial when either x or y is zero, and because of |xy| = |x| · |y|
we may assume without loss of generality that 0 < x ≤ y, in which case we have

1
x · y

=
1
x
· 1
y
' ∞

by Theorem 3.6 because 1/x is unlimited and 1/y is non-infinitesimal.

Theorem 3.11. exp(x)�∞ if and only if x�∞.

Proof. Since exp(x) ≤ 1 when x ≤ 0 and exp(x) ≤ 3dxe when x ≥ 0, the “if”
direction follows from Theorems 2.4 and 3.2.

The “only if” direction follows from exp(x) ≥ 1 + x (which is obvious from
the Maclaurin series for exp).

Theorem 3.12. exp(x) ' 1 if and only if x ' 0.

Proof. Suppose x ' 0. By the law of the mean there exists an x∗ between 0
and x such that

exp(x)− exp(0) = exp(x∗) · x.

By Theorems 3.2, 3.10 and 3.11 the right hand side is infinitesimal. That proves
one direction.

Suppose x ' 1. By the law of the mean there exists an x∗ between 1 and x
such that

log(x)− log(1) =
1
x∗
· (x− 1)

By theorems 3.1, 3.2, 3.10 and 3.11 the right hand side is infinitesimal. That
proves the other direction.

3.3 Summary of Arithmetic

Robert (1988) summarizes the arithmetic of nonstandard analysis in sev-
eral tables. This seems like a good idea, and we have copied it, making some
modifications.

Let δ and ε be infinitesimal real numbers, u and v appreciable real numbers,
and X and Y unlimited real numbers. Then we have the following results about
addition (and subtraction).
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infinitesimal appreciable unlimited
δ, ε u, v X, Y

δ + ε δ + u, |u|+ |v| δ + X, u + X
u + v |X|+ |Y |

X + Y

The wide boxes indicate lack of more specific information. We only know that
u + v is limited. It may be infinitesimal (for example, if v = −u). And we can’t
say anything about X + Y . It may be infinitesimal, appreciable, or unlimited.

And we have the following results about multiplication and division.

infinitesimal appreciable unlimited
δ, ε u, v X, Y

δ · ε, δ · u u · v u ·X, X · Y
δ/u, δ/X, u/X u/v u/δ, X/u, X/δ

δ ·X
δ/ε, X/Y

(Again the wide box contains results we can’t say anything about in general.)
When we consider exponentiation, the identities

x−y =
(

1
x

)y

=
1
xy

allow us to calculate xy for all positive real x and all real y if we are only given
xy for x ≥ 1 and y ≥ 0. Thus we make a table only covering that case. If δ, ε,
u, v, X, and Y are all nonnegative, we have the following results about powers.

infinitesimal appreciable unlimited
δ, ε u, v X, Y

result ' 1 1� result�∞ result ' ∞
(1 + δ)ε, (1 + δ)u, (1 + u)δ (1 + u)v (1 + u)X , Xu, XY

(1 + δ)X , Xδ

Exercise 3-1. Verify all entries in the summary tables about addition, sub-
traction, multiplication, and division. For “wide boxes” not only show that the
result is in the wide box but also give examples showing that the result can be
in each part of the wide box.

Exercise 3-2. Prove the assertions of each row of the following table: x has
the external property in the left column if and only if exp(x) has the external
property in the right column and same row.

x y = exp(x)
x ≥ 0 and x ' 0 y ≥ 1 and y ' 1

0� x�∞ 1� y �∞
x ' ∞ y ' ∞
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Also state and prove the analogous theorem about x and log(x).

Exercise 3-3. Use the results of Exercises 3-1 and 3-2 to verify the summary
table about exponentiation. As in Exercise 3-1, provide examples showing that
results in the wide box can be either infinitesimal, appreciable, or unlimited.

3.4 Overspill

Illegal set formation is not just a complication that makes nonstandard anal-
ysis hard to understand. It is involved in an important proof technique called
overspill.

We have divided the real numbers into “parts” with external properties, but
these parts are not sets.

Theorem 3.13. There does not exist a set that contains all and only the
real numbers, where the blank is filled in with any of the following: limited,
unlimited, infinitesimal, non-infinitesimal, appreciable, or any of these modified
by positive or negative.

Proof. If the limited reals constituted a set L, then L ∩ N would be the set B
that Theorem 2.6 asserts does not exist. If the unlimited reals constituted a set
U , then its complement would be L, which doesn’t exist. If the infinitesimals
constituted a set I, then {x ∈ R \ {0} : 1/x ∈ I } would be U , which doesn’t
exist. If the non-infinitesimal reals constituted a set, then its complement would
be I, which doesn’t exist. If the appreciable reals constituted a set A, then
[−1, 1] \A would be I, which doesn’t exist.

If any of these modified by positive or negative constituted a set S, then
S′ = {−x : x ∈ S } would be the same modified by negative or positive,
respectively, and S ∪ S′ or (for infinitesimals) S ∪ S′ ∪ {0} would be a set that
we have already proved does not exist.

Now we explain overspill. Suppose A is an internal property such that
A(x) holds for all x in any one of the “non-sets” mentioned in the theorem, for
concreteness, say the infinitesimals, that is, we are assuming A(x) holds for all
infinitesimal x. Then because A is internal,

B = {x ∈ R : A(x) } (3.1)

is not illegal set formation. Now we know by assumption that A(x) holds for
all infinitesimal x. If it held only for infinitesimal x, then B would be the set
I which the proof shows does not exist. We conclude that A(x) holds for some
non-infinitesimal x. In picturesque language, A spills over from infinitesimals
to non-infinitesimals. In short, if A(x) holds for all infinitesimal x, then by
overspill, it holds for some non-infinitesimal x (the words “by overspill” alluding
to Theorem 3.13).

There are three important things to note about this technique. The key
issue is that A must be internal. This method of proof is completely bogus
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when applied to an external property, because then its starting point (3.1) is
illegal set formation.

The second issue is that the scope of the technique is not limited to the
infinitesimals. As we hinted above, any of the “non-sets” mentioned in the
theorem will work just as well, for example, if A(x) holds for all unlimited x,
then, by overspill, it holds for some limited x.

The third issue is that the technique works when the free variable ranges
over the natural numbers, in which case “by overspill” alludes to Theorem 2.6
instead of Theorem 3.13. For example, if A(n) is an internal property that holds
for all unlimited n, then it holds for some limited n.

As simple examples of overspill, we have the following.

x ' 0←→ (∀ε� 0)(|x| ≤ ε)
x ' ∞←→ (∀y �∞)(y ≤ x)

To see the first one, let A(ε) be the property |x| ≤ ε. If x is infinitesimal, then
A(ε) holds for every ε� 0 by Theorem 3.2. Conversely, if A(ε) holds for every
ε� 0, then, by overspill, it also holds for some infinitesimal ε, which implies x
is infinitesimal (by Theorem 3.2 every number smaller than an infinitesimal is
infinitesimal).
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Chapter 4

Calculus

This chapter isn’t really about calculus, despite its title. What it is about, is
concepts from nonstandard analysis that compete with concepts from calculus
and real analysis.1

4.1 Convergence

A sequence x1, x2, . . . of nonrandom real numbers nearly converges to a real
number x if

xn ' x, n ' ∞ (4.1a)

(Nelson, 1987, Chapter 6).
At first sight, this appears very different from the conventional notion of

convergence. But the following definition, which looks more like the conventional
notion, is equivalent. A sequence . . . nearly converges . . . if

(∀ε� 0)(∃N �∞)(∀n ≥ N)(|xn − x| ≤ ε). (4.1b)

The reason these two definitions are equivalent is because they are both
equivalent to a sequence . . . nearly converges . . . if

(∀n ≥ N)(|xn − x| ≤ ε), ε� 0, N ' ∞. (4.1c)

That (4.1a) implies (4.1c) is clear. For the opposite direction, fix an n ' ∞.
Then (4.1c) implies |xn − x| ≤ ε holds for all ε � 0 and hence for some ε ' 0
by overspill. Hence (4.1a) holds for this n and (since n ' ∞ was arbitrary) for
all unlimited n.

1It is possible to redo calculus and real and functional analysis using nonstandard analysis,
but “radically elementary nonstandard analysis” is not the right vehicle. In order to define
derivatives and integrals as mathematical objects, one needs what we have called the “full
theory” Nelson’s IST. Nelson (1977) and Gordon, et al. (2002, Chapter 2) give brief sketches
of that theory. Robert (1988) gives a more complete discussion covering all of elementary
calculus.

19
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That (4.1b) implies (4.1c) is also clear. For the opposite direction, fix an
ε � 0. Then (4.1c) implies (∀n ≥ N)(|xn − x| ≤ ε) holds for all N ' ∞ and
hence for some N �∞ by overspill. Hence (4.1b) holds.

Two more issues of note should be mentioned. First, the limit is not unique.
Indeed (4.1a) and x ' y implies by Corollary 3.9 that xn nearly converges to y.
Second, and this is what is important for Nelson-style probability theory, the
concept applies quite nicely to finite sequences.

Nelson (1987), after pointing out that near convergence is not exactly the
same as ordinary convergence, drops the “near” because ordinary convergence
is of no interest in Nelson-style probability theory. We will follow his lead.
When we say “convergent,” we always mean “nearly convergent” unless it is
clear from the context that we are talking about the notion from conventional
mathematics, although sometimes we say “nearly convergent” for emphasis.

An important aspect of this notion of convergence is that in many contexts it
makes sequences irrelevant. A sequence xn is (nearly) convergent if xm ' xn for
all unlimited m and n. So it is enough to understand (the external equivalence
relation) near equality. We never need to deal with the whole sequence; we
always deal with two elements at a time (is xm ' xn or not?)

In some respects, near convergence is very different from conventional con-
vergence. Consider a double sequence xij and suppose

xij → yj , i→∞
xij → zi, j →∞

If we are talking about the conventional notion of convergence, this does not
imply anything about joint convergence, the behavior of xinjn

as n → ∞ for
arbitrary subsequences in and jn. But if we are talking about near convergence,
then the situation is very different;

xij ' yj , i ' ∞
xij ' zi, j ' ∞

implies

xij ' xmn, i, j,m, n ' ∞

because

xij ' yj ' xmj ' zm ' xmn

whenever all of the indices are unlimited: that’s just how equivalence relations
(Corollary 3.9) behave.

Thus we see that near convergence and conventional convergence are in some
respects similar, but in other respects near convergence is a much stronger and
more useful property.
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4.2 Continuity

If S is a subset of R, then a function g : S → R is nearly continuous at the
point x ∈ S if

(∀y ∈ S)
(
x ' y −→ g(x) ' g(y)

)
(4.2)

and nearly continuous on a set T ⊂ S if (4.2) holds for all x ∈ T .
As with near convergence, these concepts are analogous to some conventional

concepts. Near continuity at a point x is analogous to conventional continuity at
x, and near continuity on a set T is analogous to conventional uniform continuity
on T .

For example, the function g : x 7→ 1/x is continuous (but not uniformly
continuous) on (0,∞), and for infinitesimal positive ε we have g(ε) − g(2ε) =
1/2ε, which is unlimited, so g is not nearly continuous on (0,∞).

Conversely, if g is nearly continuous on T , then for any ε� 0

(∀x ∈ T )(∀y ∈ T )
(
|x− y| ≤ δ −→ |g(x)− g(y)| ≤ ε

)
(4.3)

holds for all infinitesimal δ, hence, by overspill, for some non-infinitesimal δ.
Thus for every ε � 0 there exists a δ � 0 such that (4.3) holds, which looks
like the conventional notion of uniform continuity (but isn’t exactly because it
has � where the conventional notion has >).

We need to know that familiar functions from calculus are nearly continuous.
The following lemma says they are.

Lemma 4.1. Suppose g is a differentiable function T → R, where T is an open
interval, and g′ is limited on T . Then g is nearly continuous on T .

Proof. For x and y in T , by the mean value theorem,

g(y)− g(x) = g′(ξ)(y − x)

for some ξ between x and y. By assumption g′(ξ) is limited, so if y − x ' 0 we
have g(y)− g(x) ' 0 by Theorem 3.10.

This lemma is not sharp, because functions that are nearly continuous but
not differentiable are easily defined. Moreover, even if g is differentiable, we
do not need g′ to be everywhere limited in order for g to be continuous. The
lemma does, however, handle familiar “nice” functions. For example, it implies
that the sine and cosine functions and the identity function x 7→ x are nearly
continuous on all of R.

Some care is required. For example, the exponential function is its own
derivative, and Theorem 3.11 says ex � ∞ if and only if x � ∞. Hence the
lemma only implies that x 7→ ex is nearly continuous at points x such that
x�∞. This particular application of the lemma is sharp, as direct calculation
shows. For unlimited x by

ey − ex = ex(ey−x − 1) ≥ ex(y − x)
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we see that this cannot be infinitesimal when y − x is a sufficiently large in-
finitesimal, say, y−x = e−x/2 (the inequality here is the same as the one in the
proof of Theorem 3.11).

Thus we see that the exponential function is not (nearly) continuous on all
of R, and again we see the analogy between near continuity and conventional
uniform continuity (the exponential function is not uniformly continuous on R
in conventional mathematics).

4.3 Summation

The “radically elementary” analog of infinite series and integrals studied in
calculus is a sum with an unlimited number of terms. Consider two sums

ν∑
i=1

xi and
ν∑

i=1

yi

When will they be nearly equal? If ν is unlimited, then xi ' yi for all i is not
a sufficient condition. Consider xi = 1/ν and yi = 2/ν.

A sufficient condition is given by Nelson (1987, Chapter 5). It uses the
following notion. If x and y are real numbers with y nonzero, we say x is
asymptotic to y, written x ∼ y, when x/y ' 1, in which case x is also nonzero.

Lemma 4.2. The external relation ∼ on R \ {0} is an equivalence.

Proof. Symmetry, x ∼ x, is obvious. Reflexivity is also obvious, because x/y ' 1
implies y/x ' 1. Transitivity is also obvious, because x/y ' 1 and y/z ' 1 imply
x/z ' 1.

Then we have the following, which is Theorem 5.3 in Nelson (1987).

Theorem 4.3. If xi > 0, yi > 0, and xi ∼ yi for each i, then

ν∑
i=1

xi ∼
ν∑

i=1

yi. (4.4)

Nelson’s proof is instructive, so we copy it here.

Proof. Fix ε� 0. Then we have 1− ε ≤ xi/yi ≤ 1 + ε for each i and

(1− ε)
ν∑

i=1

yi ≤
ν∑

i=1

xi ≤ (1 + ε)
ν∑

i=1

yi.

Hence

1− ε ≤
∑ν

i=1 xi∑ν
i=1 yi

≤ 1 + ε (4.5)

Since ε � 0 was arbitrary, this implies the fraction in (4.5) is nearly equal to
one, which implies (4.4).
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The conclusion of the theorem is not exactly what is wanted. We wanted
' in place of ∼ in (4.4). The following simple lemma, which is Theorem 5.2 in
Nelson (1987), usually gives us what we want.

Lemma 4.4. Suppose x or y is appreciable. Then x ∼ y if and only if x ' y.

Proof. Suppose y is appreciable. First, suppose x ∼ y. Then x/y − 1 is in-
finitesimal, and multiplying by y leaves it infinitesimal. Hence x ' y. Con-
versely, suppose x ' y. Then x− y is infinitesimal, and dividing by y leaves it
infinitesimal. Hence x ∼ y.

Thus, so long as one side of (4.4) is appreciable, the other side is appreciable
too, and there is no difference between ∼ and '.

4.4 Integration

The title of this section should be in quotation marks. In “radically elemen-
tary” nonstandard analysis and probability theory, we replace integrals with
finite sums. But Nelson (1987) often writes sums in a form that makes them
look like integrals for easy comparison with conventional mathematics.

Following Nelson (1987, Chapter 9), we use the following notation. Let T
be a finite subset of R. For t ∈ T such that t 6= max(T ), we write dt to mean
the difference between t and its successor in T , that is,

dt = min{u ∈ T : u > t } − t. (4.6)

For t = max(T ), we adopt the convention dt = 0. We call dt the spacing of T
at t and collectively refer to these dt as the spacings of T .

If all the spacings dt are infinitesimal and each t ∈ T is limited, then we say
T is a near interval. If all the spacings dt are infinitesimal and min(T ) ' −∞
and max(T ) ' ∞, then we say T is a near line.

This “dt” notation allows us to write things like∑
t∈T

e−t2/2 dt '
√

2π (4.7)

when T is a near line. (This will be proved in this section.)

Theorem 4.5. Suppose T is a near interval and suppose f and g are limited-
valued functions on T such that f(t) ' g(t) for all t ∈ T . Then∑

t∈T

f(t) dt '
∑
t∈T

g(t) dt. (4.8)

Proof. Let L be the maximum of all |f(t)| and |g(t)| for t ∈ T . The maximum
is achieved because T is finite and hence is limited by assumption. Fix ε � 0
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and define

T+ = { t ∈ T : f(t) ≥ ε }
T0 = { t ∈ T : |f(t)| < ε }
T− = { t ∈ T : f(t) ≤ −ε }

Then by Lemma 4.4 we have

f(t) ∼ g(t), t ∈ T+ ∪ T−

and hence by Theorem 4.3 and Lemma 4.4 again we have∑
t∈T+

f(t) dt '
∑
t∈T+

g(t) dt

and the same with T+ replaced by T−. Also∣∣∣∣∣∑
t∈T0

f(t) dt

∣∣∣∣∣ ≤∑
t∈T0

|f(t)| dt ≤ ε(b− a)

where a and b are the endpoints of T , and the same with f replaced by g and
ε replaced by 2ε, because |f(x)| ≤ ε implies |g(x)| ≤ 2ε. Thus from the triangle
inequality and the sum of infinitesimals being infinitesimal we obtain∣∣∣∣∣∑

t∈T

f(t) dt−
∑
t∈T

g(t) dt

∣∣∣∣∣ . 3ε(b− a)

Since ε� 0 was arbitrary and a and b are limited (by the near interval assump-
tion), this establishes (4.8).

Theorem 4.6. Suppose T is a near interval having endpoints a and b, and
suppose f is a function [a, b] → R that is Riemann integrable, has a limited
bound, and is nearly continuous on [a, b]. Then∑

t∈T

f(t) dt '
∫ b

a

f(t) dt.

Proof. Fix ε � 0. By definition of Riemann integrability, there exists a subset
S of R with endpoints a and b such that∣∣∣∣∣∑

s∈S

f(s) ds−
∫ b

a

f(t) dt

∣∣∣∣∣ ≤ ε

(where ds is the spacing of S at s), and the same holds when S is replaced by
a finer partition, in particular,∣∣∣∣∣∑

u∈U

f(u) du−
∫ b

a

f(t) dt

∣∣∣∣∣ ≤ ε
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where U = S ∪ T (and where du is the spacing of U at u).
Define h : U → R by

h(u) = f(t), t ∈ T and t ≤ u < t + dt.

By near continuity of f we have f(u) ' h(u) for u ∈ U , and hence by Theo-
rem 4.5 ∑

u∈U

f(u) du '
∑
u∈U

h(u) du =
∑
t∈T

f(t) dt.

Hence by the triangle inequality, we have∣∣∣∣∣∑
t∈T

f(t) dt−
∫ b

a

f(t) dt

∣∣∣∣∣ . ε.

Since ε� 0 was arbitrary, this finishes the proof.

Corollary 4.7. Suppose T is a near line and suppose f and g are limited-
valued functions on T such that f(t) ' g(t) for all t ∈ T . Also suppose there
exist M �∞ and α� 1 such that

|f(t)| ≤M |t|−α, |t| ' ∞ (4.9)

and similarly with f replaced by g. Then (4.8) holds.

Proof. For any appreciable δ we have

∑
t∈T

t<−a

|f(t)| dt ≤M

∫ −a

−∞
|t|−α dt

∑
t∈T
t>a

|f(t)| dt ≤M

∫ ∞

a

|t− δ|−α dt

hence ∑
t∈T
|t|>a

|f(t)| dt ≤ 2M(a− δ)−(α−1)

(α− 1)
(4.10)

and the right hand side is infinitesimal when a ' ∞ because α − 1 is non-
infinitesimal so (a − δ)α−1 is the case Xu or XY in the table for powers in
Section 3.3, hence (a− δ)−(α−1) is infinitesimal, M is limited, and 1/(α− 1) is
limited, and the product is infinitesimal. Similarly (4.10) holds with f replaced
by g. Fix ε� 0. Then∑

t∈T
|t|>a

|f(t)| dt ≤ ε and
∑
t∈T
|t|>a

|g(t)| dt ≤ ε
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holds for every a ' ∞ hence, by overspill, for some limited a. Hence by Theo-
rem 4.5 and the triangle inequality∣∣∣∣∣∑

t∈T

f(t) dt−
∑
t∈T

g(t) dt

∣∣∣∣∣ . 2ε.

Since ε� 0 was arbitrary, this finishes the proof.

Corollary 4.8. Suppose T is a near line and suppose f is a function R→ R that
is absolutely Riemann integrable, has a limited bound, and is nearly continuous
at each point of T . Also suppose there exist M �∞ and α� 1 such that (4.9)
holds. Then ∑

t∈T

f(t) dt '
∫ ∞

−∞
f(t) dt.

Proof. As in the preceding proof, condition (4.9) implies∫ −a

−∞
|f(t)| dt +

∫ ∞

a

|f(t)| dt ≤ 2Ma−(α−1)

(α− 1)

and the right hand side is infinitesimal when a ' ∞. Fix ε� 0. Then∫ −a

−∞
|f(t)| dt +

∫ ∞

a

|f(t)| dt ≤ ε (4.11)

holds for every a ' ∞ hence, by overspill, for some limited a.
Also by the argument in the preceding proof∑

t∈T
|t|>a

|f(t)| dt ≤ ε (4.12)

holds for some limited a. Moreover we can choose one limited a so that (4.11)
and (4.12) both hold.

By Theorem 4.6 ∑
t∈T
|t|≤a

f(t) dt '
∫ a

−a

f(t) dt.

Now apply the triangle inequality and the arbitrariness of ε.

The condition (4.9) is not sharp, but a sharp condition, such as asserting
that the left hand sides of (4.11) and (4.12) are infinitesimal for all a ' ∞,
would leave a lot of work to be done in applying the corollary.

The inequality exp(x) ≥ 1 + x implies exp(−t2/2) ≤ 2|t|−2. By Lemma 4.1
t 7→ exp(−t2/2) is nearly continuous, and it is bounded by 1. We know from
calculus that

∫∞
−∞ exp(−t2/2) dt =

√
2π. Applying the corollary gives (4.7),
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4.5 Derivability

If T is a subset of R, then a function g : T → R is derivable at the point
x ∈ T if there exists a limited real number L such that

g(x2)− g(x1)
x2 − x1

' L, whenever x1 ' x ' x2 and x1 6= x2 (4.13)

(it being understood that x1 and x2 are elements of T ).2

It is clear that an analogous characterization is the following: g is derivable
at x if there exists a limited real number L such that whenever x1 ' x and
h ' 0 there exists an α ' 0 such that

g(x1 + h)− g(x1) = Lh + αh, (4.14)

(it being understood that x1 and x1+h are elements of T ). To see the connection
between the two characterizations take x2 = x1+h and α the difference between
the two sides of (4.13).

Like other external notions, derivability is different from its internal analog
(differentiability) and is actually a stronger and more useful property. Suppose
g is derivable at every point of T and we define a limited-real-valued function
L on T such that

g(x2)− g(x1)
x2 − x1

' L(x), whenever x1 ' x ' x2 and x1 6= x2 (4.15)

(it being understood that x, x1, and x2 are elements of T ). Clearly the function
L is not unique, since it can be changed by an infinitesimal amount at any x
without affecting the validity of (4.15). However, it is clear from (4.15) that L
is nearly continuous on T and from (4.14) that g is nearly continuous on T .

Lemma 4.9. Suppose g is a differentiable function I → R, where I is an open
interval, and g′ is limited and nearly continuous on I. Then g is derivable on I
and we may take L(x) = g′(x) in (4.15).

Proof. For x, x1, and x2 in I such that x1 ' x ' x2 and x1 6= x2, by the mean
value theorem

g(x2)− g(x1)
x2 − x1

= g′(ξ)

where ξ is between x1 and x2 and hence ξ ' x and g′(ξ) ' g′(x) by the near
continuity assumption.

2This notion is taken from Nelson (1977, Section 5). It does not appear in Nelson (1987).
In Nelson (1977), the formula (4.13) actually defines the derivative g′(x) because for standard
g and x there is a unique standard L (by the standardization axiom of IST), which we denote
g′(x), that satisfies (4.13) and this implicitly defines derivability for nonstandard g or x (by
the transfer axiom of IST). Our “radically elementary” nonstandard analysis is too weak to
do that (having neither standardization nor transfer).
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Applying both Lemma 4.1 and Lemma 4.9 we see that a function that has
two derivatives, both limited on I, is derivable on I. And so most familiar
functions from calculus are derivable, at least on limited intervals.

Another way to look at derivability, is to note that when L(x) in (4.15)
is appreciable then ' can be replaced by ∼ by Lemma 4.4 and the result is
equivalent to

g(x2)− g(x1) ∼ L(x)(x2 − x1), whenever x1 ' x ' x2 (4.16)

(which, we reiterate, only holds when L(x) is appreciable).
As an application of this theory, we prove the following useful identity.

Theorem 4.10. For limited real numbers x and unlimited natural numbers n(
1 +

x

n

)n

' ex. (4.17)

Proof. By (near) continuity of the exponential function, it is enough to show

n log
(
1 +

x

n

)
' x. (4.18)

By derivability of the logarithm function and because its derivative at one is
appreciable, we have by (4.16) and Lemma 4.9

log(1 + h) ∼ h, h ' 0.

Hence for x and n as in the statement of the theorem,

n log
(
1 +

x

n

)
∼ n · x

n
= x

and this implies (4.18) by another application of Lemma 4.4.
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Chapter 5

Radically Elementary
Probability Theory

5.1 Introduction

Nelson (1987) invented a new formalism for probability theory in which all
random variables are defined on probability spaces that have

(i) finite sample space and

(ii) no nonempty events of probability zero.

The main point of (ii) is to assure that conditional probabilities are always well
defined. When not using conditional probability, it need not be imposed.

Point (i) implies two other restrictions.

(iii) We only use finite collections of random variables. Every stochastic process
has a finite index set.

(iv) We only use finite families of probability models. Every statistical model
has a finite parameter space.

Nelson (1987) uses (iii). Our justification of (iv) is that a likelihood is a stochas-
tic process indexed by the parameter. Hence to obey (iii) the parameter must
take values in a finite (though perhaps unlimited) set. The need for (iv) is even
more obvious if one is a Bayesian. If the parameter is a random variable, then
(i) implies (iv).

One might think (i) leaves no room for interesting advanced probability
theory. Under (i) every probability distribution is discrete. There are no truly
continuous random variables. Also under (i) it is not possible to have an infinite
sequence of independent random variables (except for the trivial special case
where the random variables are constant).

But Nelson combined this “radical” simplification with an innovation, the
use of nonstandard analysis. In “Nelson-style” probability theory, a discrete

31
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distribution in which every point has infinitesimal probability can behave much
like a continuous distribution in conventional “Kolmogorov-style” probability
theory.

In “Nelson-style” probability theory, a finite sequence X1, . . ., Xn of in-
dependent random variables (which can be defined on a finite sample space),
where n is unlimited can behave much like an infinite sequence in “Kolmogorov-
style” probability theory. For example, the law of large numbers and the central
limit theorem can hold for such sequences, where, of course, we are referring to
“Nelson-style” analogs of the conventional theorems (Nelson, 1987, Chapters 16
and 18).

5.2 Unconditional Probability

5.2.1 Probability

Probability theory on finite sample spaces having no nonempty events of
probability zero is very simple. Probability models consist of a finite set Ω (the
sample space) and a strictly positive function pr (the probability mass function)
on Ω such that

∑
ω∈Ω pr(ω) = 1.

Every subset of Ω is an event, and the probability of an event A is given by

Pr(A) =
∑
ω∈A

pr(ω). (5.1a)

There are never any questions of measurability.
Note that we distinguish between pr and Pr, the relationship being (5.1a)

going one way and
pr(ω) = Pr({ω}) (5.1b)

going the other. We can think of Pr as a probability measure. It certainly is the
Nelson-style analog of a Kolmogorov-style probability measure. However, it is
much simpler. There is no sigma-algebra (every subset of Ω is an event). And
countable additivity is vacuous (since Ω is finite, there are only finitely many
events).

5.2.2 Expectation

Random Scalars

A real-valued function on the sample space is called a random variable, and
the expectation of a random variable X is given by

E(X) =
∑
ω∈Ω

X(ω) pr(ω). (5.2)

There are never any questions of existence of expectations. The set of all random
variables is the finite-dimensional vector space RΩ.
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The indicator function of the set A is the function IA : Ω→ R defined by

IA(ω) =

{
0, ω ∈ Ω \A

1, ω ∈ A
(5.3)

The set Ω \A is called the complement of A and is also denoted Ac. Using this
notation

Pr(A) = E(IA)

(probability is expectation of indicator functions).

Random Vectors

A function from the sample space Ω to a vector space V is called a ran-
dom vector and the expectation of a random vector X is given by (5.2) where
X(ω) pr(ω) is interpreted as multiplication of the vector X(ω) by the scalar
pr(ω) and the sum is interpreted as vector addition, which is well defined be-
cause Ω is finite.

The set of all (V -valued) random vectors is V Ω. Note that even if V is
infinite-dimensional, it has a finite-dimensional subspace that contains all the
X(ω) for ω ∈ Ω because Ω is finite. Even if we are interested in a finite sequence
X1, . . ., Xn of random variables, there exists a finite dimensional subspace that
contains all the Xi(ω) for 1 ≤ i ≤ n and ω ∈ Ω. We shall never be interested in
infinite sequences or any other infinite collection of random vectors — restriction
(iii) discussed in Section 5.1. Thus without loss of generality we may assume V
is finite-dimensional.

Random Elements

A function from the sample space Ω to an arbitrary set S is called a random
element of S. The set of all random elements (of S) is SΩ. The same sort of
argument as in the last paragraph of the preceding section says that without
loss of generality we may take S to be finite.

Random elements need not have expectations. The addition and multiplica-
tion in (5.2) are not defined for an element X of an abstract set S. But if X is
a random element of S and f is a function S → R, then f ◦X, which is usually
written f(X), is a random variable and does have expectation.

5.3 Conditional Probability

For any family X of random variables define a relation X∼ on Ω by

ω1
X∼ ω2 ←→ (∀X ∈ X )

(
X(ω1) = X(ω2)

)
(5.4)

Clearly, this is an internal equivalence relation, and hence defines a partition
S of Ω. We write S = at(X ) and call the elements of S the atoms of X . By
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definition, every element of X is constant on each element of S, and S is the
coarsest partition of Ω that has this property.

The algebra generated by X is the largest family of random variables A
such that at(A) = at(X ). Clearly, it is the set of all random variables that are
constant on each element of at(X ).1

An algebra A is closed under arbitrary operations. If f is a real-valued
function with d real arguments and X1, . . ., Xd are elements of A, then Y =
f(X1, . . . , Xd) is also an element of A, where this notation is defined (as is usual
in probability theory) by

Y (ω) = f
(
X1(ω), . . . , Xd(ω)

)
, ω ∈ Ω.

(This is obvious from the definition.)

5.3.1 Conditional Expectation

Let A be a family of random variables (not necessarily an algebra), and let
Aω denote the element of at(A) containing ω. The conditional expectation of a
random variable X given the family A is the random variable Y defined by

Y (ω) =
1

Pr(Aω)

∑
ω′∈Aω

X(ω′) pr(ω′), ω ∈ Ω. (5.5)

There are never any questions of existence or uniqueness; Pr(Aω) cannot be
zero because of the assumption that pr is strictly positive.

Nelson mostly uses the notation EAX to denote the random variable defined
by (5.5) but also uses the notation E(X|A) more common in Kolmogorov-style
theory and also uses the notation E(X|Z1, . . . , Zd) when A = {Z1, . . ., Zd}.

Theorem 5.1. Suppose A and B are algebras of random variables and A ⊂ B.
Then

EA(X + Y ) = EAX + EAY, X, Y ∈ RΩ (5.6a)

EA(XY ) = XEAY, X ∈ A, Y ∈ RΩ (5.6b)
EAEB = EA (5.6c)
EEA = E (5.6d)

The meaning of (5.6c) or (5.6d) is that the two sides of the equation are
equal when applied to any random variable. The proofs are straightforward
verifications directly from the definition (5.5).

1Nelson (1987, p. 6) defines algebra differently: a family of random variables containing
the constant random variables and closed under addition and multiplication. His definition
is more “mathematical” because it justifies the name “algebra.” But he then immediately
proves that his definition characterizes the same notion as ours. As closure under addition and
multiplication are not particularly interesting in light of the comments immediately following
the footnoted text, we just take the characterization more relevant to probability theory as
our definition.
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5.3.2 Conditional Probability

As with unconditional probability, conditional probability is expectation of
indicator functions: we define conditional probability by

Pr(B|A) = PrA(B) = EA(IB). (5.7)

Consider the special case where A = {IA}, so at(A) = {A,Ac}. Then for
ω ∈ A so Aω = A, the definition (5.5) gives

1
Pr(A)

∑
ω∈A

IB(ω) pr(ω) =
Pr(A ∩B)

Pr(A)

for the value of Pr(B|A) at such an ω.
As in undergraduate probability theory we write this

Pr(B|A) =
Pr(A ∩B)

Pr(A)
(5.8)

and regard it as an independent definition of what Pr(B| · ) means when the
thingy behind the bar is an event rather than a family of random variables.
Clearly, (5.8) is well defined whenever A is nonempty (because of our rule that
nonempty events have nonzero probability).

It is clear that Pr(B|A) evaluated at an ω ∈ Ac is Pr(B|Ac). Moreover, for
any family of random variables A (not just ones generated by a single indicator
function), we have

Pr(B|A)(ω) = Pr(B|Aω)

where the notation on the left hand side means the random variable Pr(B|A)
evaluated at the point ω and, as in the definition (5.5), Aω is the element of at(A)
containing ω. And this connects the two notions of conditional probability: the
undergraduate level (5.8) and the PhD level (5.7), at least “PhD level” when
done Kolmogorov-style, our Nelson-style definition using (5.5) being actually
only undergraduate level in difficulty.

Although one does not usually see the “PhD level” definition (5.7) of con-
ditional probability in undergraduate courses, one does see the so-called regres-
sion function E(Y |X1, . . . , Xp) without which one cannot understand multiple
regression. Of course, it is usually introduced without having the PhD level
Kolmogorov-style definition that makes it rigorous. Our Nelson-style definition
serves just as well to make the concept rigorous and is much lower in level of
difficulty.

5.4 Distribution Functions

A random variable X induces a distribution function F defined by

F (x) = Pr(X ≤ x), x ∈ R (5.9a)
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and probability mass function f defined by

f(x) = Pr(X = x), x ∈ R. (5.9b)

These are related by
f(x) = F (x)−max

y<x
F (y) (5.9c)

and
F (x) =

∑
y∈R
y≤x

f(y), (5.9d)

a relation denoted by f = dF .
The sum in (5.9d) is always well defined because of the assumption (i) of

Section 5.1 that all random variables are defined on finite sample spaces so f(y)
is zero for all but finitely many y. This implies that F is a step function with
only finitely many jumps. We say that the set of y such that f(y) is positive is
the support of f and also the support of F .

If h is a real-valued function on R and X is a random variable having dis-
tribution function F , then we can write

E{h(X)} =
∑
x∈R

h(x) dF (x). (5.9e)

Here too, the sum is always well defined because of the assumption of finite
support.

Recall the notation introduced in Section 4.4 in which T is a finite subset of
R and dt denotes the spacings of T .

Lemma 5.2. If F is the distribution function of a nonnegative random variable
and T is a subset of [0,∞) containing zero and the support of F (and perhaps
other points), then

E(X) =
∑
t∈T

[
1− F (t)

]
dt. (5.10)

Proof.

E(X) =
∑
x∈R

x dF (x)

=
∑
x∈R

∑
t∈T
t<x

dt dF (x)

=
∑
t∈T

∑
x∈R
x>t

dF (x) dt

=
∑
t∈T

[
1− F (t)

]
dt
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5.5 Probability Measures

A random element X of a set S induces a probability measure P defined by

P (A) = Pr(X ∈ A), A ⊂ S (5.11a)

and probability mass function p defined by

p(x) = Pr(X = x), x ∈ S. (5.11b)

These are related by
p(x) = P ({x}) (5.11c)

and
P (A) =

∑
x∈S

p(x), (5.11d)

a relation denoted by p = dP . This relationship between X and P is denoted
P = L(X), and we say P is the law of X.

The sum in (5.11d) is always well defined, even if S is an infinite set, because
of the assumption (i) of Section 5.1 that all random elements are defined on finite
sample spaces so p(x) is zero for all but finitely many x. We say that the set of
x such that p(x) is positive is the support of p and also the support of P . We
shall never be interested in measures that do not have finite support.

If h is a real-valued function on S, X is a random element of S, and P =
L(X), then we can write

E{h(X)} =
∑
x∈S

h(x) dP (x). (5.11e)

As with (5.11d), the sum in (5.11e) is always well defined because of the as-
sumption that P has finite support.
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Chapter 6

More Radically Elementary
Probability Theory

6.1 Almost Surely

The definition of “almost surely” appropriate in Nelson-style probability
theory (Nelson, 1987, Chapter 7) goes as follows: a property A holds almost
surely if for every ε� 0 there exists an event N (which may depend on ε) such
that Pr(N) ≤ ε and A(ω) is true except for ω ∈ N .

If the property A in question is internal, then the event

{ω ∈ Ω : A(ω) } (6.1)

has probability nearly equal to one, which more resembles the conventional
(Kolmogorov-style) definition.

But if the property A is external, then (6.1) is an instance of illegal set
formation (Section 2.4). It need not define a set, and hence need not have a
probability. Thus we need the more complicated definition involving a different
exception set N for every ε� 0 when we want to say an external property holds
almost surely.

Lemma 6.1. Suppose A1, . . ., An are properties that hold almost surely and n
is limited. Then A1, . . ., An hold simultaneously almost surely.

Proof. For every ε� 0, we have ε/n� 0, hence there exist events Ni such that
Pr(Ni) ≥ ε/n and Ai(ω) holds except for ω ∈ Ni. But then Pr(

⋃n
i=1 Ni) ≤ ε

and and Ai(ω) holds for i = 1, . . . , n, except for ω ∈
⋃n

i=1 Ni.

6.1.1 Infinitesimal Almost Surely

When the property A in question is X ' 0, the last bit of the definition of
almost surely becomes: and X(ω) ' 0 except for ω ∈ N .
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Lemma 6.2. The following three conditions are equivalent.

(i) X is infinitesimal almost surely.

(ii) If λ� 0, then Pr(|X| ≥ λ) ' 0.

(iii) There exists a λ ' 0 such that Pr(|X| ≥ λ) ' 0.

This is Theorem 7.1 in Nelson (1987). We do not give a proof here. The
proof is very similar to that of the lemma in the next section.

6.1.2 Limited Almost Surely

When the property A in question is |X| � ∞, the last bit of the definition
of almost surely becomes: and |X(ω)| � ∞ except for ω ∈ N .

Lemma 6.3. The following three conditions are equivalent.

(i) X is limited almost surely.

(ii) If x ' ∞, then Pr(|X| ≥ x) ' 0.

(iii) For every ε� 0 there exists a limited x such that Pr(|X| ≥ x) ≤ ε.

Proof. Assume (i). Then for every ε � 0 there exists an event N such that
X(ω) is limited except when ω ∈ N . Hence if x ' ∞ the event |X| ≥ x is
contained in N , and Pr(|X| ≥ x) ≤ ε. Since ε was arbitrary, (ii) holds. Thus
(i)⇒ (ii).

Assume (ii). Fix ε � 0. Then Pr(|X| ≥ x) ≤ ε holds for all unlimited
positive x, hence by overspill for some limited x. Thus (ii)⇒ (iii).

(iii)⇒ (i) is obvious.

The concept in Kolmogorov-style probability theory analogous to “limited
almost surely” is “tight.” In Kolmogorov-style theory, tightness is an uninter-
esting concept when applied to single random variables, because by countable
additivity every random variable is tight.

In conventional finitely-additive probability theory, non-tight random vari-
ables exist, although proof of their existence involves fancy mathematics like
the Hahn-Banach theorem. In Nelson-style probability theory, random vari-
ables that are not limited almost surely are easily constructed. For example,
take the (discrete) uniform distribution on the integers 1, . . ., n, where n is
unlimited.

6.2 L1 Random Variables

In Nelson-style theory, every random variable has a well defined expectation
given by (5.2). But, unlike the situation in Kolmogorov-style probability theory,
the mere existence of expectation proves nothing (since every random variable
has expectation, existence is vacuous).
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One might guess that the Nelson-style property analogous to Kolmogorov-
style existence of expectation is limited absolute expectation, but it turns out
that an even stronger property is needed for a random variable to be “well
behaved.”

A random variable X is L1 if E
(
|X|I(a,∞)(|X|)

)
nearly converges to zero as

a goes to infinity, meaning

E
(
|X|I(a,∞)(|X|)

)
' 0, a ' ∞. (6.2)

The analogous Kolmogorov-style definition is easily seen to define L1. If
X is a Kolmogorov-style random variable that has expectation, then the left
hand side of (6.2) converges to zero as a → ∞ by dominated convergence. On
the other hand, if X is a Kolmogorov-style random variable that does not have
expectation, then the left hand side of (6.2) is equal to +∞ for all a, because if
there existed an a for which the left hand side was finite, then we would have

E
(
|X|
)

= E
(
|X|I[0,a](|X|)

)
+ E

(
|X|I(a,∞)(|X|)

)
≤ a + E

(
|X|I(a,∞)(|X|)

)
finite, contrary to assumption.

6.2.1 The Radon-Nikodym Theorem

We don’t usually use the definition of L1 directly. More often we use the
following characterization, which is Theorem 8.1 in Nelson (1987).

Theorem 6.4 (Radon-Nikodym and converse). A random variable X is L1

if and only if E
(
|X|
)

is limited and, for all events M , if Pr(M) ' 0, then
E
(
|X|IM

)
' 0.

Thus we see that L1 is a stronger property than limited absolute expectation
(however, see Theorem 6.8 below for a criterion based on limitedness of higher
moments). Here is an example of a random variable X that has limited absolute
expectation, but is not L1. Let X be Bernoulli(p) and Y = bX with b > 0. Then
Y is nonnegative, so we may omit absolute values.

E
(
Y I(a,∞)(Y )

)
=

{
bp, a < b

0, a ≥ b

so, if b ' ∞ and bp� 0, then Y is not L1. But E(Y ) = bp, so if bp�∞, then
Y does have limited absolute expectation. For example, take p = 1/b.

The name of the theorem comes from Nelson (1987). He often labels his
theorems with names of theorems from Kolmogorov-style theory. The names
don’t mean that his theorem is the same as the Kolmogorov-style theorem (or
even a corollary of it). Rather they mean that his theorem is the analog in his
theory of the named theorem in Kolmogorov-style theory.
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In this case the analogy is the following. Suppose (Ω,A, P ) is a Kolmogorov-
style probability space and X a Kolmogorov-style L1(P ) random variable on this
probability space. Define a positive measure ν on (Ω,A) by

ν(A) =
∫

A

|X| dP.

Then P (M) = 0 implies ν(M) = 0, a property called absolute continuity of
ν with respect to P in Kolmogorov-style theory, which is the condition in the
Radon-Nikodym theorem. The condition in the Nelson-style Radon-Nikodym
theorem is P (M) ' 0 implies ν(M) ' 0.

Unlike the situation in conventional mathematics (Lebesgue-style measure
theory as well as Kolmogorov-style probability theory) L1 is not a vector space.
It is not even a set. The following

{X ∈ RΩ : X is L1 } (6.3)

is illegal set formation because L1 is an external property. In fact, we can prove
that there does not exist a subset S of RΩ such that X ∈ S if and only if X is
L1, because if this set did exist, then by Theorem 6.4, letting Y be the constant
random variable everywhere equal to one,

{ a ∈ R : aY ∈ S }

would be the set of limited real numbers, which does not exist (Theorem 3.13).
However, it immediately follows from Theorem 6.4 that

X and Y are L1 −→ X + Y is L1 (6.4a)

X is L1 and |a| � ∞ −→ aX is L1 (6.4b)

Y is L1 and |X| ≤ |Y | −→ X is L1 (6.4c)

so Nelson-style L1 behaves much like Kolmogorov-style L1. The differences are
that Kolmogorov-style theory would allow unlimited a in (6.4b) and would allow
|X| ≤ |Y | to hold only almost surely in (6.4c).

In Nelson-style theory we cannot insert “almost surely” in (6.4c) if there
exists any point ω having infinitesimal probability (that is, whenever “almost
surely” is not vacuous), because if X is L1 and we define Ya to be equal to X
everywhere except at ω where we have Ya(ω) = a, then EYa → ∞ as a → ∞
and hence Ya is not L1 for sufficiently large a, but Ya ' X almost surely.

6.2.2 The Lebesgue Theorem

Another important theorem about L1 is the following, which it gets its name
because it is the Nelson-style analog of the Lebesgue dominated convergence
theorem, monotone convergence theorem, and Fatou’s lemma. It is Theorem 8.2
in Nelson (1987).
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Theorem 6.5 (Lebesgue). If X and Y are L1 and X ' Y almost surely, then
E(X) ' E(Y ).

Note that what is a convergence in Kolmogorov-style theory has become an
external equivalence relation in Nelson-style theory. This is typical. As we shall
see, the same thing happens with convergence in probability and convergence
in distribution.

How can this one simple Nelson-style theorem replace all of that Lebesgue-
Kolmogorov-style theory? In Nelson-style theory, we only look at finite se-
quences, and existence and uniqueness of limits are not at issue: we can always
take the limit to be the last element of the sequence but the limit is never
unique. Nor can it be an issue to prove that the limit is L1. By the comment
following and concerning (6.4c), we can never prove a limit to be L1 because all
random variables almost surely equal to the limit are also limits but many of
them are not L1. Thus the only part of the dominated, monotone, and Fatou
convergence theorems that is of interest is that almost sure convergence implies
convergence of expectations, and this is assured by Theorem 6.5. Nelson-style
theory is in some respects much simpler than the competition.

Lemma 6.6. Let Z be a nonnegative random variable. If E(Z) ' 0, then Z ' 0
almost surely. Conversely, if Z is L1 and Z ' 0 almost surely, then E(Z) ' 0.

Proof. One direction is the Lebesgue theorem. The other direction is Markov’s
inequality.

Pr(Z > λ) ≤ E(Z)
λ

. (6.5)

If E(Z) ' 0, then for every λ � 0 the right hand side of (6.5) is infinitesimal
over non-infinitesimal equals infinitesimal. Hence by criterion (ii) of Lemma 6.2
Z ' 0 almost surely.

This lemma is the Nelson-style analog of the Kolmogorov-style theorem that
a nonnegative random variable Z is zero almost surely if and only if E(Z) = 0.

For any random variable X and any positive real number a define another
random variable

X(a)(ω) =


−a, X(ω) < −a

X(ω), −a ≤ X(ω) ≤ a

a, X(ω) > a

(6.6)

Lemma 6.7 (Approximation). Suppose X and Y are L1 random variables and
EX(a) ' EY (a) for all limited a. Then EX ' EY .

Proof. For every ε� 0 we have

|EX − EX(a)| ≤ ε and |EY − EY (a)| ≤ ε (6.7)

for all unlimited a and hence by overspill for some limited a. But for this a we
have EX(a) ' EY (a) and hence by the triangle inequality

|EX − EY | ≤ 3ε. (6.8)

Since (6.8) holds for every ε� 0, the left hand side must be infinitesimal.
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6.2.3 Lp Random Variables

For 1 ≤ p < ∞, we say a random variable X is Lp if |X|p is L1, and we
say a random variable X is L∞ if it is limited, that is, if |X(ω)| � ∞ for all ω
(Nelson, 1987, p. 31). And for such variables we define the norms

‖X‖p = E{|X|p}1/p (6.9a)

when 1 ≤ p <∞ and
‖X‖∞ = max

ω∈Ω
|X(ω)|. (6.9b)

In (6.9b) we can write “max” instead of “sup” (the supremum is achieved)
because Ω is a finite set. Hence, if X is L∞, then ‖X‖∞ is limited. The
analogous property, if X is Lp, then ‖X‖p is limited, holds for 1 ≤ p � ∞
because the expectation in (6.9a) is limited by the Radon-Nikodym theorem.

Theorem 6.8. Suppose 1 ≤ p� q �∞ and E(|X|q)�∞, then X is Lp.

Proof. First

|X|p =
|X|q

|X|p(q/p−1)

from which we obtain

|X|pI(a,∞)(|X|p) ≤
|X|q

aq/p−1

and

E{|X|pI(a,∞)(|X|p)} ≤
E{|X|q}
aq/p−1

.

Now q/p − 1 = (q − p)/p is appreciable over appreciable equals appreciable,
hence aq/p−1 ' ∞ whenever a ' ∞. Since E{|X|q} � ∞, we have

E{|X|pI(a,∞)(|X|p)} ' 0, a ' ∞,

so |X|p is L1 and X is Lp.

6.2.4 Conditional Expectation

There are two important theorems about L1 and conditional expectation
(Theorems 8.3 and 8.4 in Nelson, 1987) which are repeated here below.

Theorem 6.9. If 1 ≤ p ≤ ∞ and X is Lp and A is a family of random
variables, then EAX is Lp.

Theorem 6.10. If X is L1 and A is a family of random variables, then X is
L1 on almost every atom of A.
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The meaning of Theorem 6.10 is not entirely obvious. It means that for
every ε� 0 there exists a set N , which in this case may be taken to be a union
of atoms of A, such that Pr(N) ≤ ε and

EA|X|I(a,∞)(|X|) ' 0, a ' ∞ (6.10)

except on N (the conditional expectation is an element of A, hence constant on
atoms of A and the assertion is that (6.10) holds except on those atoms of A
that are contained in N).

Theorem 6.11 (Conditional Lebesgue). If X and Y are L1 random variables
such that X ' Y almost surely and A is a family of random variables, then
E(X | A) ' E(Y | A) almost surely.

Proof. Let Z = X − Y . Then Z is L1 and Z ' 0 almost surely. We are to
show that E(Z | A) ' 0 almost surely. Define W = E(Z | A). W is L1 by
Theorem 6.9. By the conditional Jensen inequality (Nelson, 1987, p. 8) and
iterated conditional expectation (5.6d)

E(|W |) = E
[
|E(Z | B)|

]
≤ E

[
E(|Z| | B)

]
= E(|Z|). (6.11)

Now Z is L1 if and only if |Z| is by definition of L1 and Z is infinitesimal almost
surely if and only if |Z| is because a number z is infinitesimal if and only if |z| is.
Hence |Z| is L1 and infinitesimal almost surely, so by Lemma 6.6 E(|Z|) ' 0.
Hence (6.11) implies E(|W |) ' 0, and by the other direction of Lemma 6.6 |W |
is infinitesimal almost surely, so W is infinitesimal almost surely.

6.2.5 The Fubini Theorem

Why do we have a section with this title? If expectations are always fi-
nite sums, isn’t it obvious that we can interchange the order of summation?
Yes, it is. But the Fubini theorem in Kolmogorov-style probability theory also
makes measurability and integrability assertions (some authors put these in a
preliminary lemma). The measurability assertions are vacuous in Nelson-style
probability theory, but the integrability assertions are still important (Corollary
to Theorem 8.4 in Nelson, 1987, repeated below).

Theorem 6.12 (Fubini). Suppose X is L1 on a probability space with Ω =
Ω1 × Ω2 and pr

(
(ω1, ω2)

)
= pr1(ω1) pr2(ω2), then for pr2 almost all ω2 in Ω2

the random variable ω1 7→ X(ω1, ω2) on (Ω1,pr1) is L1.
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Chapter 7

Stochastic Convergence

7.1 Almost Sure Convergence

A sequence X1, . . ., Xν of random variables converges almost surely (Nelson,
1987, p. 26) if almost surely

Xn ' Xν , n ' ∞. (7.1)

More precisely, for every ε� 0 there exists an event N (which may depend on
ε) such that Pr(N) ≤ ε and

Xn(ω) ' Xν(ω), n ' ∞, ω /∈ N.

7.2 Convergence in Probability

A sequence X1, . . ., Xν of random variables converges in probability (Nelson,
1987, p. 26) if

Xn ' Xν almost surely, n ' ∞. (7.2)

More precisely, for every n ' ∞ and ε� 0 there exists an event N (which may
depend on n and ε) such that Pr(N) ≤ ε and

Xn(ω) ' Xν(ω), ω /∈ N.

7.3 Almost Sure Near Equality

Let us define a notation for X ' Y almost surely. Random variables X and
Y are nearly equal almost surely, written X

as' Y , if X ' Y holds almost surely.
Using this notation, we can redefine convergence in probability, replacing

(7.2): a sequence . . . converges in probability if

Xn
as' Xν , n ' ∞.
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Lemma 7.1. The external relation
as' is an equivalence on RΩ.

Proof. Symmetry and reflexivity come from the corresponding properties of '.
If X

as' Y and Y
as' Z, then X

as' Z by Corollary 3.9 and Lemma 6.1.

Note that the situation here is much like what we saw with (near) conver-
gence of non-random sequences in Section 4.1. The sequence does very little
work. It is enough to understand the external equivalence relation almost sure
near equality. We never need to deal with the whole sequence; we always deal
with two elements at a time (is Xm

as' Xν or not?)
It is also much like what we saw with the Lebesgue theorem in Section 6.2.2

replacing conventional theorems about sequences (monotone convergence, dom-
inated convergence, Fatou).

The only forms of stochastic convergence in which necessarily involve se-
quences are almost sure convergence (Section 7.1 above) and the invariance
principle (Nelson, 1987, Theorem 18.1), both of which are sample path limit
theorems. The point is that in (7.1) the exception sets must work for all un-
limited n, whereas in (7.2) one may use different exception sets for each n. So
(7.1) is a statement about the whole sequence and (7.2) isn’t.

7.4 Near Equivalence

A real-valued function g is limited if every value is limited. Random variables
X and Y defined on possibly different probability spaces are nearly equivalent
(Nelson, 1987, Chapter 17), written X

w' Y , if

E{g(X)} ' E{g(Y )}

for every limited (nearly) continuous function g.

Lemma 7.2. The external relation
w' is an equivalence.

Proof. Obvious from ' being an equivalence.

7.5 Convergence in Distribution

A sequence X1, . . ., Xν of random variables defined on possibly different
probability spaces converges in distribution (also called “weak convergence” or
“convergence in law”), if

Xn
w' Xν , n ' ∞. (7.3)

The situation here is much like what we have seen with every other form
of convergence of sequences with the sole exception of almost sure convergence.
The sequence does very little work. It is enough to understand the external
equivalence relation near equivalence. We never need to deal with the whole
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sequence; we always deal with two elements at a time (is Xm
w' Xν or not?)

There is so little point to convergence in distribution (over and above near
equivalence) that Nelson (1987) does not even bother to define it.

As we saw with (near) convergence of non-random sequences in Section 4.1,
and for exactly the same reasons, Nelson-style convergence in distribution is a
much stronger property than Kolmogorov-style convergence in distribution. We
have, for instance, the same behavior of double sequences

Xij
w' Yj , i ' ∞

Xij
w' Zi, j ' ∞

implies
Xij

w' Xmn, i, j,m, n ' ∞.

That’s just the way equivalence relations behave.
The analogous property does not hold for Kolmogorov-style convergence in

distribution (it doesn’t even hold when all the random variables are constant
random variables and the convergence in distribution is convergence of non-
random sequences in disguise).

Now it might be that Nelson-style convergence in distribution is too strong?
Maybe it is hard to get? But it turns out this is not the case. We get near equiva-
lence when we expect to get it in situations analogous to when Kolmogorov-style
convergence in distribution occurs. Thus it seems that Kolmogorov-style con-
vergence in distribution is too weak. Nelson-style arguments are often simpler
and easier.

Theorem 7.3. The following are the only implications that hold between the
various modes of stochastic convergence.

(i) A sequence of random variables that converges almost surely also converges
in probability.

(ii) A sequence of random variables that converges in probability also converges
in distribution.

(iii) X
as' Y implies X

w' Y .

(The reverse implications are, in general, false.)

Proof. (i) is obvious from the definitions. (iii) obviously implies (ii). Every
limited function is L1 by the Radon-Nikodym theorem (our Theorem 6.4) and
hence (iii) holds by the Lebesgue theorem (our Theorem 6.5).

The converses to (ii) and (iii) need not hold, because X
w' Y does not even

require that X and Y be defined on the same probability space, and X
as' Y

does. Moreover, consider X having the uniform distribution on the two-point
set {−1, 1} and Y = −X, then X

w' Y is true, but X
as' Y is false.

Nelson (1987, p. 26) gives a counterexample to the converse to (i). Let X1,
. . ., Xν be independent and identically distributed Bernoulli random variables
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with Pr(Xn = 1) = c/ν, where ν is unlimited and c is appreciable. Note that,
since Xn is zero-or-one-valued, we have Xn ' 0 if and only if Xn = 0. Since c/ν

is infinitesimal, we have Xn
as' 0 for all n. Hence Xn converges in probability to

zero.
Let Aµ denote the event

Xm = 0, µ < m ≤ ν

Then
Pr(Aµ) =

(
1− c

ν

)ν−µ

and if ν − µ is unlimited, we have

Pr(Aµ) ' exp
(
−c · ν − µ

ν

)
(7.4)

by Theorem 4.10.
This makes it impossible for Xn to converge almost surely to zero, because

this requires that for every unlimited µ we have Pr(Aµ) ≥ 1− ε for every ε� 0,
hence Pr(Aµ) ' 1, which happens only if the argument of the exponential
function in (7.4) is infinitesimal for all unlimited µ, and this is not so.



Chapter 8

The Central Limit Theorem

8.1 Independent and Identically Distributed

Nelson (1987, Chapter 18 and also the discussion on p. 57) gives a theorem
that has the following obvious corollary.

Corollary 8.1 (The Central Limit Theorem). Suppose X1, X2, . . ., Xν are
independent and identically distributed L2 random variables with mean µ and
variance σ2, and suppose σ2 � 0 and ν ' ∞. Define

Xν =
1
ν

ν∑
i=1

Xi.

Then the random variable

Z =
Xν − µ

σ/
√

ν
(8.1)

is L2 and nearly equivalent to every other such random variable.

The assertion of the theorem is that, no matter what independent and iden-
tically distributed L2 sequence with appreciable variance is chosen, the distri-
bution of (8.1) is the same up to near equivalence.

We say any random variable nearly equivalent to (8.1) is standard normal.
Note that in Nelson-style theory the term “standard normal” does not name a
distribution. It is an external property that distributions may or may not have.
As with any external property, it is illegal set formation to try to form the set
of all standard normal distributions (this set does not exist).

8.2 The De Moivre-Laplace Theorem

In this section we find out more about the limiting distribution in the cen-
tral limit theorem. The Bernoulli distribution with success probability p has
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probability mass function

f(k) =

{
q, k = 0
p, k = 1

where q = 1− p. This distribution is abbreviated Bernoulli(p).
The binomial distribution for n trials with success probability p has proba-

bility mass function

f(k) =
(

n

k

)
pkqn−k, k = 0, . . . , n. (8.2)

This is the distribution of the sum of n IID Bernoulli(p) random variables. This
distribution is abbreviated Binomial(n, p).

Theorem 8.2 (De Moivre-Laplace). Suppose X has the Binomial(n, p) distri-
bution with

n ' ∞ (8.3a)
0� p� 1 (8.3b)

and
Z =

X − np
√

npq
.

Then there exists a near line T such that

Pr(Z ≤ z) ' 1√
2π

∑
t∈T
t≤z

e−t2/2 dt. (8.4)

Our proof closely follows Feller (1950, Section 7.2).

Proof. Stirling’s approximation for n! is

(2π)1/2nn+1/2e−n ≤ n! ≤ (2π)1/2nn+1/2e−n+1/(12n) (8.5)

(Feller, 1950, pp. 41–44)1 Dividing through by the left hand term in (8.5) gives

1 ≤ n!
(2π)1/2nn+1/2e−n

≤ e1/(12n) (8.6)

From the continuity of the exponential function for limited values of its
argument, we conclude 1 ' e1/(12n) whenever 1/(12n) is infinitesimal, which
is whenever n is unlimited. Thus a nonstandard analysis version of Stirling’s
approximation is

n! ∼ (2π)1/2nn+1/2e−n, n ' ∞. (8.7)
1Actually, Feller’s argument at this point in his book only establishes (8.5) with the factor

(2π)1/2 replaced by an unknown constant. It is only toward the end of the proof of the De
Moivre-Laplace theorem that we find out, by comparison with the normalizing constant for
the normal distribution, what this unknown constant is. (See footnote 3.)
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Interestingly, Feller uses the same ∼ notation in his equation for Stirling’s ap-
proximation, but, of course, he means something conventional (that the ratio of
the two sides converges to one as n goes to infinity).

Plugging Stirling’s approximation into (8.2) gives

f(k) =
(

n

k

)
pkqn−k

=
n!pkqn−k

k!(n− k)!

∼ (2π)1/2nn+1/2e−npkqn−k

(2π)1/2kk+1/2e−k(2π)1/2(n− k)n−k+1/2e−(n−k)

=
1

(2π)1/2
· nn+1/2pkqn−k

kk+1/2(n− k)n−k+1/2

=
(

n

2πk(n− k)

)1/2

·
(np

k

)k

·
(

nq

n− k

)n−k

whenever k ' ∞ and n−k ' ∞ [this is our analog of equation (2.5) in Chapter 7
of Feller (1950)].

Now (still following Feller) we define δ = k − np so k = np + δ and n− k =
nq − δ and

f(k) ∼
(

n

2π(np + δ)(nq − δ)

)1/2

· 1(
1 +

δ

np

)np+δ (
1− δ

nq

)nq−δ
(8.8)

[this is our analog of equation (2.7) in Chapter 7 of Feller (1950)].
For δ = 0 the right hand side is exactly 1/

√
2πnpq. For δ 6= 0 we use the

two-term Taylor series in η = δ/n with remainder to expand the logarithm of
the denominator of the second term

log

[(
1 +

δ

np

)np+δ (
1− δ

nq

)nq−δ
]

=
δ2

2npq
−
(

1
p∗2 −

1
q∗2

)
· δ3

6n2

where p∗ = p + δ∗/n, q∗ = 1− p∗, and |δ∗| ≤ |δ|.
By (8.3b) the term 1/p∗2−1/q∗2 on the right hand side is limited when δ/n

is infinitesimal and hence we have

log

[(
1 +

δ

np

)np+δ (
1− δ

nq

)nq−δ
]
∼ δ2

2npq
(8.9a)

whenever
δ

n
' 0 (8.9b)



54 CHAPTER 8. THE CENTRAL LIMIT THEOREM

[these are our analogs of equations (2.9) and (2.10) in Chapter 7 of Feller
(1950)].2. Equation (8.9b) together with n ' ∞ implies both k ' ∞ and
n − k ' ∞. Thus the only conditions required for (8.8) and (8.9a) to hold are
(8.3a), (8.3b), and (8.9b).

Still following Feller, (8.9b) together with (8.3b) implies np + δ ∼ np and
nq − δ ∼ nq. Hence the first term on the right hand side in (8.8) is asymptotic
to 1/

√
2πnpq, and

f(k) ∼
(

1
2πnpq

)1/2

exp
(
− δ2

2npq

)
(8.10)

[this is our analog of equation (2.11) in Chapter 7 of Feller (1950)].
We now leave Feller and do some “calculus” nonstandard analysis style. We

know from conventional probability theory that we should be interested in the
standardized variable

z =
k − np
√

npq

in terms of which
k = np + z

√
npq

and
δ = z

√
npq

Note that z takes values in the near line

T = { (k − np)ε : k = 0, . . . , n }

with regular spacing ε = 1/
√

npq, which by (8.3a) and (8.3b) is infinitesimal.
Rewriting (8.10) in terms of z gives

f(k) ∼ 1√
2π

e−z2/2 dz = φ(z) dz (8.11)

where dz = ε is the spacing of T and φ is the standard normal density function
from conventional probability theory.3

Now for any limited numbers a and b with a < b we have by Theorem 4.3

Pr(a < Z < b) ∼
∑
z∈T

a<z<b

φ(z) dz (8.12)

because, if z is limited and (8.3a) and (8.3b) hold, then

δ

n
= z

√
pq

n

2Our (8.9b) is simpler than Feller’s (2.10) because our ∼ relation is simpler than his
(because we are using nonstandard analysis).

3As mentioned in footnote 1 of this chapter, Feller’s argument establishing (8.7) leaves the
constant (2π)1/2 undetermined, and this is the same constant as the

√
2π in (8.11). Now we

see that, since the f(k) must sum to one, by (4.7), which was proved by Corollary 4.8 and the
discussion following it, the unknown constant must be nearly equal to

√
2π.
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is infinitesimal, hence (8.9b) holds and hence also (8.11). Actually, we have

Pr(a < Z < b) '
∑
z∈T

a<z<b

φ(z) dz (8.13)

because the left hand side of (8.12), being less than one, is limited and, if appre-
ciable, nearly equal to the right hand side by Lemma 4.4, and, if infinitesimal,
nearly equal to the right hand side by the definition of ∼.

Now we know from conventional probability theory (or can easily calculate)
that E(Z) = 0 and var(Z) = 1. It then follows from Chebyshev’s inequality
(Nelson, 1987, p. 5) that

Pr(|Z| ≥ a) ≤ 1
a2

.

Hence Z is limited almost surely, and by Lemma 6.3 for any ε� 0 there exists
a limited a such that Pr(|Z| ≥ a) ≤ ε. Hence for limited b∣∣∣∣∣∣∣Pr(Z < b)−

∑
z∈T
z<b

φ(z) dz

∣∣∣∣∣∣∣ . ε

and, since ε � 0 was arbitrary, we have (8.4) for all limited z. Because Z is
limited almost surely, both sides of (8.4) are infinitesmal when z ' −∞ and
nearly equal to one when z ' +∞.

Corollary 8.3. For any near line T , the distribution having distribution func-
tion F defined by

F (z) =
1
c

∑
t∈T
t≤z

e−t2/2 dt,

where
c =

∑
t∈T

e−t2/2 dt,

is standard normal, and

F (z) ' 1√
2π

∫ z

−∞
e−t2/2 dt

for all z ∈ R.

Proof. Apply Corollary 4.8.

Later, after we have learned more about distribution functions and near
equivalence, we will improve this corollary to an “if and only if” statement
(Corollary 10.6).
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Chapter 9

Near Equivalence in Metric
Spaces

9.1 Metric Spaces

Let (S, d) be a metric space, that is, S is a set and d is a metric for S.
We say points x and y of S are nearly equal and write x ' y when d(x, y) is
infinitesimal. Note that our definition of x ' y in R is a special case of this
generalization when we use the usual metric for R defined by d(x, y) = |x− y|.

Let (S, d) and (S′, d′) be metric spaces. A function h : S → S′ is nearly
continuous at a point x ∈ S if

y ∈ S and x ' y −→ h(x) ' h(y), (9.1)

and nearly continuous on a set T ⊂ S if (9.1) holds at all x ∈ T .
Random elements X and Y of a metric space (S, d) defined on possibly

different probability spaces are nearly equivalent written X
w' Y , if

E{g(X)} ' E{g(Y )}

for every limited (nearly) continuous function g : S → R.
Let d1 and d2 be two different metrics for the same set S. We say that d1

and d2 are equivalent if they agree as to the meaning of x ' y, that is, if

d1(x, y) ' 0←→ d2(x, y) ' 0.

In this case, a function h : S → S′ where (S′, d′) is another metric space is
(nearly) continuous when d1 is the metric for S if and only if it is continuous
when d2 is the metric. In this sense, near equivalence of random elements of
metric spaces does not depend on the metric but only on the external equivalence
relation ' induced by the metric.

57



58 CHAPTER 9. NEAR EQUIVALENCE IN METRIC SPACES

9.2 Probability Measures

A random element X of a metric space (S, d) induces a probability measure
P defined by (5.11a) and probability mass function p defined by (5.11b), a
relation denoted by p = dP . This relationship between X and P is denoted
P = L(X), and we say P is the law of X.

Since near equivalence is determined by expectations, and expectations are
determined by measures, near equivalence really depends only on measures not
on random elements (except through their measures). Thus we make the defi-
nition: measures P and Q on a metric space (having finite support) are nearly
equivalent, written P

w' Q if Ph ' Qh for every limited nearly continuous
function h : S → R, where

Ph =
∑
x∈S

h(x)dP (x)

is a shorthand for the expectation of the random variable h(X) when P = L(X).

9.3 The Prohorov Metric

If d is a metric on S we define the notation

d(x,A) = inf
y∈A

d(x, y)

for any nonempty subset A of S. Then we define the notation

Aε = {x ∈ S : d(x,A) < ε }

for any nonempty subset A of S and any ε > 0. For completeness, we define
∅ε = ∅ for ε > 0. Note that the “open” ball of radius ε centered at x can be
denoted {x}ε, and our definition for the empty set makes

Aε =
⋃

x∈A

{x}ε

hold for all A (rather than just nonempty A). The set Aε is called the ε-dilation
of A.

The triangle inequality implies (Aε)η ⊂ Aε+η because z ∈ (Aε)η when there
exist x ∈ A and y ∈ S such that d(x, y) < ε and d(y, z) < η.

Let S be a finite set with metric d and let P(S, d) denote the set of all
probability measures on S. The Prohorov metric on P(S, d) is the function
π : P(S, d) × P(S, d) → R defined so that π(P,Q) is the infimum of all ε > 0
such that

P (A) ≤ Q(Aε) + ε and Q(A) ≤ P (Aε) + ε, A ⊂ S. (9.2)

(When P and Q have finite support the infimum is achieved.)
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Note that (9.2) holds for every ε > π(P,Q) because if (9.2) holds for some
ε, then for any η > 0

P (A) ≤ P (Aη) ≤ Q
(
(Aη)ε) + ε ≤ Q(Aη+ε) + ε,

and similarly with P and Q swapped, so (9.2) also holds with ε replaced by
ε + η. Hence the set of ε for which (9.2) holds is the union of intervals of the
form [ε,∞) and hence has one of the forms (δ,∞) or [δ,∞), only the latter being
possible when P and Q have finite support. In either case δ is the Prohorov
distance between P and Q.

In the following theorem and the rest of this chapter we restrict our attention
to Nelson-style probability theory: all probability measures have finite support.

Theorem 9.1. π is a metric.

Proof. The properties symmetry, nonnegativity, and π(P, P ) = 0 are obvious.
If P 6= Q then p = dP 6= q = dQ and there exists an x such that p(x) 6= q(x).
Define B = suppP ∪ suppQ, where supp P denotes the support of P (defined
in Section 5.5). If B 6= {x}, then define

ε1 = min{ d(x, y) : y ∈ B \ {x} },

otherwise (when B = {x}) define ε1 = 1. Then ε1 > 0 because B is a finite set,
and for 0 < ε < ε1 we have

P ({x}ε) = p(x) and Q({x}ε) = q(x),

hence π(P,Q) ≥ |p(x)− q(x)|. The triangle inequality follows from

P (A) ≤ Q(Aε) + ε, ε > π(P,Q)

Q(Aε) ≤ R(Aε+η) + η, η > π(Q,R)

hence
P (A) ≤ R(Aε+η) + ε + η, ε + η > π(P,Q) + π(Q,R)

and similarly with P and R swapped.

Another useful fact about the Prohorov metric is the following (copied es-
sentially verbatim from Billingsley (1999, p. 72), because the argument uses no
measure theory so Kolmogorov-style and Nelson-style argument is the same).

Lemma 9.2. The Prohorov distance between P and Q is the infimum over all
ε such that

P (A) ≤ Q(Aε) + ε, A ⊂ S. (9.3)

Proof. First note that A ⊂ S \ Bε if and only if B ⊂ S \ Aε because either is
the same as (∀x ∈ A)(∀y ∈ B)

(
d(x, y) ≥ ε

)
. If (9.3) holds, let B = S \ Aε, and

then

P (Aε) = 1− P (B) ≥ 1−Q(Bε)− ε = Q(S \Bε)− ε ≥ Q(A)− ε

so (9.3) also holds with P and Q swapped, and hence (9.2) holds.
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9.4 Near Equivalence and the Prohorov Metric

Let (S, d) and (S′, d′) be metric spaces. A function h : S → S′ is nearly
Lipschitz continuous if there exists a limited number L such that

d′
(
h(x), h(y)

)
≤ L · d(x, y), x, y ∈ S.

Note that, the product of limited and infinitesimal numbers being infinitesi-
mal, a (nearly) Lipschitz continuous function is, as the name suggests, (nearly)
continuous.

Lemma 9.3. Let (S, d) be a metric space. For any nonempty A ⊂ S and any
ε� 0, define h : S → R by

h(x) = max
(
0, 1− d(x,A)/ε

)
.

Then h is limited and nearly Lipschitz continuous.

Proof. We first establish

|h(x)− h(y)| ≤ |d(x,A)− d(y, A)|
ε

. (9.4)

(Case I) Suppose d(x,A) = 0 so h(x) = 1. Then

h(x)− h(y) = 1− h(y) =

{
1, d(y, A) ≥ ε

d(y, A)/ε d(y, A) < ε

and in either case (9.4) holds.
(Case II) Suppose d(x,A) ≥ ε so h(x) = 0. Then

h(y)− h(x) = h(y) =

{
0, d(y, A) ≥ ε

1− d(y, A)/ε, d(y, A) < ε

and in either case (9.4) holds.
(Case III) Suppose 0 < d(x,A) < ε so 0 < h(x) < 1 and similarly with y

replacing x. Then

h(y)− h(x) =
d(y, A)− d(x,A)

ε

and again (9.4) holds. This finishes the proof of (9.4) (the other cases being like
I and II with x and y swapped).

Now for any z ∈ A we have

d(x, y) + d(y, z) ≥ d(x, z) ≥ d(x,A)

taking the infimum over all z ∈ A gives

d(x, y) + d(y, A) ≥ d(x,A)
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and similarly with x and y swapped. Hence

d(x, y) ≥ |d(y, A)− d(x,A)|

from which we see that (9.4) implies

|h(x)− h(y)| ≤ |d(x,A)− d(y, A)|
ε

≤ 1
ε
· d(x, y).

And, 1/ε being limited, this establishes the lemma (and incidentally shows that
the “Lipschitz constant” can be taken to be L = 1/ε).

Theorem 9.4. Assume P and Q are measures on (S, d) having finite support
and that Ph ' Qh holds for every limited nearly Lipschitz continuous function
h : S → R. Then π(P,Q) ' 0.

Proof. For any nonempty A ⊂ S and any ε � 0, define h : S → R as in the
lemma. Then h is limited and nearly Lipschitz continuous. So Ph ' Qh. But

P (A) ≤ Ph ≤ P (Aε)

and similarly with P replaced by Q. Hence P (A) ≤ Ph ' Qh ≤ Q(Aε) holds for
all A. Thus (9.3) holds for every ε� 0 and hence π(P,Q) is infinitesimal.

Theorem 9.5. Assume P and Q are measures on (S, d) having finite support
and π(P,Q) ' 0. Then P

w' Q.

Proof. It is enough to prove Ph ' Qh for all nearly continuous h satisfying
0 < h < 1 because for any limited nearly continuous function g there exist
limited a and b such that g = a + bh and 0 < h < 1, in which case Ph ' Qh
implies Pg ' Qg.

But for such h we have by Lemma 5.2 the representation

Ph =
∑
t∈T

P{h > t} dt

where T is a finite subset of [0, 1] containing 0, 1, and h(supp P ) and where
the notation {h > t} denotes the event h(X) > t and P{h > t} denotes the
probability of this event, where X is a random element such that P = L(X).
Note that t 7→ 1− P{h > t} is the distribution function of h(X).

For arbitrary t in [0, 1] define At = {h > t}. Fix an infinitesimal ε greater
than π(P,Q). Then for x ∈ Aε

t we have h(x) & t and hence h(x) > t− δ for any
δ � 0. Hence At ⊂ Aε

t ⊂ {h > t− δ}. Thus we have

P (At) = P{h > t} ≤ P (Aε
t) ≤ P{h > t− δ}

P (At) . Q(Aε
t)

Q(At) . P (Aε
t)

Q(At) = Q{h > t} ≤ Q(Aε
t) ≤ Q{h > t− δ}
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from which we infer

P{h > t} . Q{h > t− δ} and Q{h > t} . P{h > t− δ} (9.5a)

holds for all t in [0, 1] and all δ � 0. To simplify notation, we define U(t) =
P{h > t} and V (t) = Q{h > t} so (9.5a) becomes

U(s) & V (t) and V (s) & U(t), whenever s� t. (9.5b)

We also define U+(t) = P{h ≥ t} and V+(t) = Q{h ≥ t}.
Now for any limited n choose si such that s0 = 0, sn = 1, and

U(si) ≤
n− i

n
< U+(si), i = 1, . . . , n− 1.

It may be that some of the si are equal, so we remove duplicates. Let

{s0, s1, . . . , sn} = {s∗0, s∗1, . . . , s∗mn
}

maintaining s∗0 < s∗1 < · · · < s∗mn
.

Now for any δ � 0 we have

V (s∗i − δ) & U(s∗i − δ/2) ≥ U+(s∗i ) > U(s∗i ) & V (s∗i + δ) (9.6)

hence
V (s∗i − δ) + δ ≥ U+(s∗i ) > U(s∗i ) ≥ V (s∗i + δ)− δ (9.7)

holds for all δ � 0 and hence by overspill (9.7) must hold for some infinitesimal
δ. For this infinitesimal δ, define ri = s∗i − δ and ti = s∗i + δ for i = 1, . . .,
mn − 1, and also define r0 = t0 = 0 and rmn = tmn = 1.

Now

Ph &
mn∑
i=1

(s∗i − s∗i−1)U+(s∗i ) (9.8a)

and

Qh .
mn∑
i=1

(ri − ti−1)V (ti−1) (9.8b)

because the contributions from the infinitesimal intervals (ti, ri) are negligible.
For some integer k

V (ti−1) . U(s∗i−1) ≤
n− k + 1

n
n− k

n
< U+(s∗i )

Combining these gives

V (ti−1) . U+(s∗i ) +
1
n

(9.8c)

And combining (9.8c) with (9.8a) and (9.8b) and using the fact that s∗i −s∗i−1 '
ri − ti−1 for all i gives Qh . Ph + 1/n. The same argument with P and Q
swapped gives Ph . Qh + 1/n. Since these hold for any limited n, we must
have Ph ' Qh.
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9.5 The Portmanteau Theorem

Let (S, d) be a metric space. Define for A ⊂ S

Aε = S \ (S \A)ε.

The set Aε is called the ε-erosion of A.

Theorem 9.6. Let P and Q be measures on (S, d) having finite support and π
the Prohorov metric. The following are equivalent

(i) P and Q are nearly equivalent.

(ii) Ph ' Qh for every limited Lipschitz continuous function h : S → R.

(iii) π(P,Q) is infinitesimal.

(iv) For some ε ' 0 and for all A ⊂ S we have P (A) . Q(Aε).

(v) For every ε� 0 and for all A ⊂ S we have P (A) . Q(Aε).

(vi) For some ε ' 0 and for all A ⊂ S we have P (A) & Q(Aε).

(vii) For every ε� 0 and for all A ⊂ S we have P (A) & Q(Aε).

Proof. The implication (i) → (ii) is trivial. The implication (ii) → (iii) is
Theorem 9.4. The implication (iii)→ (i) is Theorem 9.5.

By Lemma 9.2 (iii) is equivalent to the existence of an ε ' 0 such that (9.3)
holds, which implies (iv). The implication (iv) → (v) is trivial. If (v) holds,
then (9.3) holds for every ε � 0, and hence by Lemma 9.2 (iii) holds. At this
point we have established the equivalence of (i) through (v).

The implications (iv) ←→ (vi) and (v) ←→ (vii) are just the complement
rule: write B = S \A so

P (A) = 1− P (B) and Q(Aε) = 1−Q(Bε)

and
P (A) . Q(Aε)←→ P (B) & Q(Bε)

hence if the left hand side holds for all A, then the right hand side holds for all
B and vice versa.

Let S and T be two different sets with S ⊂ T and d a metric for T and
hence also for S. Pedantically, the restriction dr of d to S × S is a metric for
S and defines (S, dr) as a metric subspace of (T, d). Then elements P and Q of
P(S, dr) are nearly equivalent if and only if they are nearly equivalent considered
as elements of P(T, d). The enclosing superspace T is irrelevant. This is clear
from (iv) of the portmanteau theorem. Since P (A) = P (A ∩ suppP ), we need
only check A ⊂ suppP in establishing (iv). So long as we are only interested in
two measures P and Q, we can take S = supp P ∪ suppQ, if we like, but any
enclosing metric space does as well.



64 CHAPTER 9. NEAR EQUIVALENCE IN METRIC SPACES

9.6 Continuous Mapping

Let A be any property that may or may not hold at points of S and let P be
a measure on (S, d) having finite support. We say A holds P -almost everywhere
if for every ε � 0 there exists a set N such that P (N) ≤ ε and A(x) holds
except for x in N .

The following lemma is Theorem 17.3 in Nelson (1987). We reprove it here
only to see how much shorter the proof gets with our extra apparatus.

Lemma 9.7. Let P and Q be elements of P(S, d) such that P
w' Q, and let

A be any property (internal or external) such that x, y ∈ S and x ' y implies
A(x) ←→ A(y). Then A holds P -almost everywhere if and only if it holds
Q-almost everywhere.

Proof. Suppose A holds P -almost everywhere. Fix ε � 0 and choose N ⊂ S
such that P (N) ≤ ε/2 and A(x) holds for all x ∈ S \ N . By (vi) of the
portmanteau theorem there is a δ ' 0 such that P (N) & Q(Nδ). So Q(Nδ) ≤ ε.
By definition S \Nδ = (S \N)δ. Hence y ∈ S \Nδ if and only if there exists an x
in S \N such that d(x, y) < δ. This implies x ' y, and hence A(y) holds. Hence
A holds on S\Nδ. Since ε� 0 was arbitrary, A holds Q-almost everywhere.

Let P be a measure on (S, d) having finite support. A function h : S → S′ is
nearly continuous P -almost everywhere if the property A(x) in the definition of
“almost everywhere” is “h is nearly continuous at x.” Note that by the lemma,
when P

w' Q we have h nearly continuous P -almost everywhere if and only if h
is nearly continuous Q-almost everywhere.

For an arbitrary map h : S → S′ and any measure P on (S, d), the image
measure P ′ ∈ (S′, d′) denoted by P ◦ h−1 is defined by

P ′(B) = P
(
h−1(B)

)
, B ⊂ S′.

If a random element X has the distribution P , then the random element h(X)
has the distribution P ◦ h−1.

Theorem 9.8 (Continuous Mapping). Let (S, d) and (S′, d′) metric spaces, and
let P,Q ∈ P(S, d). Suppose P

w' Q, and suppose h : S → S′ is nearly continuous
P -almost everywhere. Then P ◦ h−1 w' Q ◦ h−1.

Proof. Fix ε � 0 and choose N ⊂ S such that Q(N) ≤ ε/2 and h is nearly
continuous on S\N . Let B′ be an arbitrary subset of S′, and write B = h−1(B′).
Also define P ′ = P ◦ h−1 and Q′ = Q ◦ h−1.

Then P (B) = P ′(B′). By (iii) of the portmanteau theorem there exists a
δ ' 0 such that P (B) . Q(Bδ). By near continuity, h maps Bδ \ N into B′ε,
which implies Q(Bδ \N) ≤ Q′(B′ε). Hence

P ′(B′) = P (B) . Q(Bδ \N) + Q(N) ≤ Q′(B′ε) +
ε

2
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Reading from end to end we have

P ′(B′) ≤ Q′(B′ε) + ε

and since ε � 0 and B′ ⊂ S′ were arbitrary, this implies by Lemma 9.2 that
the Prohorov distance between P ′ and Q′ is infinitesimal.

Corollary 9.9. Let (S, d) and (S′, d′) metric spaces, and let X and Y be random
elements of (S, d) such that X

w' Y , and suppose h : S → S′ is nearly continuous
P -almost everywhere, where P = L(X). Then h(X)

w' h(Y ).

9.7 Product Spaces

Let (S1, d1) and (S2, d2) be metric spaces, then we make S1 × S2 into a
metric space by giving it the metric d∗ defined by

d∗
(
(x1, x2), (y1, y2)

)
= d′

(
d1(x1, y1), d2(x2, y2)

)
where d′ is any metric on R2 that is equivalent to one inducing the standard
topology, for example, we may use any of

d′(u, v) = |u|+ |v| (9.9a)

d′(u, v) =
√

u2 + v2 (9.9b)
d′(u, v) = max(|u|, |v|) (9.9c)

which are referred to as the L1, L2 and L∞ norms, respectively. We know from
the comment at the end of Section 9.5 that it does not matter which d′ we use,
since they all give the same notion of near equivalence in P(S1 × S2, d

∗).
For our purposes here (9.9c) is the most useful, because of its special property

that
(B1 ×B2)ε = Bε

1 ×Bε
2, B1 ⊂ S1, B2 ⊂ S2 (9.10)

making ε-dilations particularly easy to work with.
Let pi : S1 × S2 → Si denote the coordinate projection (x1, x2) 7→ xi. Then

for any P ∈ P(S1 × S2, d
∗) the marginals of P are the distributions P ◦ p−1

i .

Theorem 9.10 (Slutsky). Suppose P,Q ∈ P(S1 × S2, d
∗) and suppose

P ◦ p−1
i

w' Q ◦ p−1
i , i = 1, 2 (9.11)

and suppose supp(Q ◦ p−1
2 ) is a singleton. Then P

w' Q.

Proof. Suppose without loss of generality that (9.9c) is used to define d∗ so
(9.10) holds. Write P ◦ p−1

i = Pi and Q ◦ p−1
i = Qi, and write {c} = suppQ2.

Choose an infinitesimal ε greater than either of the Prohorov distances between
opposite sides of (9.11). For B ⊂ S1 × S2 define

B1 = {x1 ∈ S1 : (x1, c) ∈ B }.
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Then Q(B) = Q(B1 × {c}) = Q1(B1).
Also, Q2({c}) = 1 implies P2({c}ε) ' 1 by the portmanteau theorem and

P2(S2 \ {c}ε) ' 0. (9.12)

Moreover, B ⊃ B1 × {c} implies

Bε ⊃ (B1 × {c})ε = Bε
1 × {c}ε,

hence

P (Bε) ≥ P (Bε
1 × {c}ε)

= P1(Bε
1)− P

(
Bε

1 × (S2 \ {c}ε)
)

& P1(Bε
1)

the second term on the middle line being infinitesimal because of (9.12). Hence
we have

Q(B) = Q1(B1) . P1(Bε
1) . P (Bε),

the middle relation being an application of Lemma 9.2 and the other relations
having already been established. Since B was arbitrary, we have (iv) of the
portmanteau theorem.

Corollary 9.11. Suppose X = (X1, X2) and Y = (Y1, Y2) are random elements
of (S1 × S2, d

∗) and Y2 is a constant random element, and suppose

X1
w' Y1

X2
w' Y2

then
(X1, X2)

w' (Y1, Y2).



Chapter 10

Distribution Functions

10.1 The Lévy Metric

The Lévy metric on the set of all distribution functions (with finite support)
on R is the function λ defined so that λ(F,G) is the infimum of all ε > 0 such
that

F (x) ≤ G(x + ε) + ε and G(x) ≤ F (x + ε) + ε, x ∈ R. (10.1)

It is easy to see that λ actually is a metric.
Actually, the Lévy metric can be applied to any nondecreasing functions

R → R. We shall do this in Corollary 10.6 below, where we consider Lévy
distance between the distribution function of a Nelson-style random variable
and the distribution function Φ of the normal distribution in Kolmogorov-style
probability theory.

We say nondecreasing functions F and G are nearly equal, written F ' G,
if λ(F,G) ' 0. Caution: this does not necessarily imply that random variables
having distribution functions F and G are nearly equivalent! See Theorem 10.4
below.

Lemma 10.1. Suppose F and G are nondecreasing functions and G is nearly
continuous, Then F ' G if and only if F (x) ' G(x), for all x ∈ R.

Proof. One direction is trivial. Conversely, suppose λ(F,G) = ε ' 0. Then by
near continuity of G

G(x) ' G(x− ε)− ε ≤ F (x) ≤ G(x + ε) + ε ' G(x)

holds for all x.

Lemma 10.2. If λ is the Lévy metric and π the Prohorov metric, F and G are
distribution functions and P and Q are the corresponding measures, then

π(P,Q) ≥ λ(F,G).

67



68 CHAPTER 10. DISTRIBUTION FUNCTIONS

Proof. Fix ε > π(P,Q). Then

F (x) = P{(−∞, x]}
≤ Q{(−∞, x]ε}+ ε

= Q{(−∞, x + ε)}+ ε

= max
y<x

G(y + ε) + ε

holds for all x. In particular we have

F (x) ≤ G(x + ε) + ε (10.2)

whenever x + ε is not a jump of G. However, even if x + ε is a jump of G, there
exists a δ > 0 sufficiently small so that G has no jump in (x + ε, x + ε + δ], and,
applying (10.2) with ε replaced by ε + δ, we have

F (x) ≤ G(x + ε + δ) + ε + δ = G(x + ε) + ε + δ,

which, since δ > 0 was arbitrary, implies (10.2) even when x + ε is a jump of G.
The same argument with F and G swapped finishes the proof.

10.2 Near Equivalence

Corollary 10.3. If X and Y are random variables having distribution functions
F and G, then X

w' Y implies F ' G.

Theorem 10.4. If X and Y are random variables having distribution functions
F and G, either X or Y is limited almost surely, and F ' G, then X

w' Y .

The limited almost surely condition cannot be suppressed. Let X have the
uniform distribution on the even integers between 1 and 2ν and Y have the
uniform distribution on the odd integers between 1 and 2ν. Then if F and G
are the corresponding distribution functions, then we have

0 ≤ G(x)− F (x) ≤ 1
ν

for all x. So λ(F,G) is infinitesimal whenever ν is unlimited. But, if h is defined
by h(x) = sin2(πx), then h is a limited continuous function, and h(X) = 0 and
h(Y ) = 1 (for all ω).

Proof. Fix arbitrary appreciable ε1 and ε2. By Lemma 9.7, if one of X and Y is
limited almost surely and X

w' Y , then the other is also limited almost surely.
Hence, by Lemma 6.3, there exist limited a and b such that

F (a) ≤ ε1 (10.3a)
F (b) ≥ 1− ε1 (10.3b)
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and similarly with F replaced by G. Let h be a nearly continuous function with
limited bound M . Then

|E{h(X)I(−∞,a](X)}| ≤MF (a) ≤Mε1 (10.4a)

and
|E{h(X)I(b,∞)(X)}| ≤M

[
1− F (b)

]
≤Mε1 (10.4b)

and similarly with X replaced by Y and F replaced by G.
By near continuity of h there exists δ � 0 such that |h(x) − h(y)| ≤ ε2

whenever |x − y| ≤ δ. There exists a limited natural number n such that
(b− a)/n ≤ δ/2. Define ck = a + (k/n)(b− a) for integer k, noting that c0 = a
and cn = b. Then

|h(x)− h(ck)| ≤ ε2, ck−2 ≤ x ≤ ck+2, (10.5)

and this together with (10.4a) and (10.4b) implies∣∣∣∣∣E{h(X)} −
n+1∑
k=1

h(ck)
[
F (ck)− F (ck−1)

]∣∣∣∣∣ ≤ ε2 + 2Mε1. (10.6)

The assumption λ(F,G) ' 0 implies that there exist bk and dk such that
bk ≤ ck ≤ dk and bk ' ck ' dk and

G(bk) . F (ck) . G(dk), for all k.

The same reasoning that lead to (10.6) implies that (10.6) holds with X replaced
by Y and F replaced by G. But

n+1∑
k=1

h(ck)
[
F (ck)− F (ck−1)

]
−

n+1∑
k=1

h(ck)
[
G(bk)−G(bk−1)

]
=

n∑
k=1

[
h(ck)− h(ck+1)

]
·
[
F (ck)−G(bk)

]
+ h(cn+1)

[
F (cn+1)−G(bn+1)

]
− h(c1)

[
F (c0)−G(b0)

]
(10.7)

and 0 . F (ck)−G(bk) . G(dk)−G(bk), and the latter sum to less or equal to
one. Hence, a limited sum of infinitesimals being infinitesimal (Corollary 3.5),
the sum in (10.7) is weakly less than ε2 and weakly greater than zero. The other
terms are less than or equal to 4Mε1 in absolute value. That is,∣∣∣∣∣

n+1∑
k=1

h(ck)
[
F (ck)− F (ck−1)

]
−

n+1∑
k=1

h(ck)
[
G(bk)−G(bk−1)

]∣∣∣∣∣ ≤ ε2 + 4Mε1.

Hence by the triangle inequality

|E{h(X)} − E{h(Y )}| ≤ 3ε3 + 8Mε1.

Since ε1 and ε2 were arbitrary appreciable numbers and M is limited, we actually
have E{h(X)} ' E{h(Y )}.
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10.3 General Normal Distributions

Standard normal random variables were defined in Section 8.1. They are the
distributions that arise as limits in the central limit theorem (Corollary 8.1).
We found out more about these distributions in Theorem 8.2 and Corollary 8.3.
Here we finish the job.

Lemma 10.5. A standard normal random variable is limited almost surely.

Proof. It is established near the end of the proof of Theorem 8.2 that the random
variable Z defined in the theorem statement, which is standard normal, is limited
almost surely. Hence by Lemma 9.7 every standard normal random variable is
limited almost surely.

Corollary 10.6. A random variable is standard normal if and only if its dis-
tribution function is nearly equal to Φ defined by

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt. (10.8)

Proof. Theorem 8.2 and Corollary 8.3 assert that one particular standard nor-
mal random variable has distribution function nearly equal to Φ. Hence by
Corollary 10.3, Theorem 10.4, and Lemma 10.5 a random variable is standard
normal if and only if its distribution function is nearly equal to Φ.

Note that Φ is nearly continuous by Lemma 4.1, so by Lemma 10.1 and
the preceding lemma a random variable is standard normal if and only if its
distribution function F satisfies

F (x) ' Φ(x), x ∈ R.

If Z is a standard normal random variable, µ is a limited real number, and
σ is a positive appreciable real number, then we say X = µ + σZ is general
normal and we also apply this terminology to the distribution of X. Like
standard normality, general normality is an external property.

Analogies with Kolmogorov-style probability theory tempt us to call µ the
mean and σ the standard deviation, but in Nelson-style probability theory, this
is nonsense. A normal distribution, as we have defined the concept, need not
have moments anywhere near those of a conventional normal distribution.

Theorem 10.7. If Z is an L2 standard normal random variable and X =
µ + σZ, where µ and σ are limited and σ ≥ 0, then X is L2, E(X) ' µ, and
var(X) ' σ2.

Proof. Every standard normal random variable that arises in the central limit
theorem (Corollary 8.1) is L2. Moreover, such a random variable (8.1) has
mean zero and standard deviation one by standardization. Since the map x 7→
x(a) defined by (6.6) is limited and continuous for limited a, it follows by the
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approximation lemma (Lemma 6.7) that nearly equivalent L2 random variables
have nearly equal mean and variance. Hence E(Z) ' 0 and var(Z) ' 1.

By (6.4a) and (6.4b), X is L2. It is elementary that E(X) = µ+σE(Z) and
var(X) = σ2 var(Z). The assertion about E(X) and var(X) then follows from
Theorems 3.7 and 3.10.

Hence if we were to take L2 as part of the definition of “normal” then µ
and σ would be nearly equal to the mean and standard deviation. We have
decided to not take L2 as part of the definition, because it is easier to add it
when wanted (say “L2 and normal”) than to remove it when not wanted (say
“nearly equivalent to a normal random variable”).

Theorem 10.8. If Z is a standard normal random variable and X = µ + σZ,
where µ and σ are limited and σ ≥ 0, then the median of the distribution of X
is nearly equal to µ and the Φ(1) quantile of X is nearly equal to µ + σ, where
Φ is defined by (10.8).

Proof. Writing φ = Φ′, we have for a < b

Φ(b)− Φ(a) ≥ (b− a)φ (max(|a|, |b|))

by the law of the mean and the unimodality of φ. From φ(z) = exp(−z2/2)/
√

2π
and Theorems 3.10 and 3.11 we conclude

Φ(a)� Φ(b), whenever −∞� a� b�∞. (10.9)

Since Z is limited almost surely, its p-th quantiles for 0 � p � 1 are limited
and (10.9) implies these quantiles are unique up to near equality. In particular,
the 0.5 and Φ(1) ≈ 0.8413 quantiles are unique up to near equality, and nearly
equal to zero and one, respectively. Then Theorem 3.10 implies the 0.5 and Φ(1)
quantiles of the distribution of X are nearly equal to µ and µ + σ, respectively.
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Chapter 11

Characteristic Functions

11.1 Definitions

As always, R denotes the real number system. Now we introduce C for the
complex number system.

The characteristic function of a random variable X is a function ϕ : R→ C
defined by

ϕ(t) = E{eitX}, t ∈ R.

Complex variables play only a limited, algebraic role in the theory. By the
Euler formula

eiy = cos(y) + i sin(y)

characteristic functions are determined by two real-valued functions, which are
t 7→ E{cos(tX)}, the real part of ϕ, and t 7→ E{sin(tX)}, the imaginary part of
ϕ. The only virtue in using complex numbers is that certain identities, such as

ei(u+v) = eiueiv

are “obvious” phrased in terms of complex exponentials and not “obvious” when
phrased in terms of trigonometric identities.

For x and y in Rd we denote the standard inner product by 〈 · , · 〉, that is,

〈x, y〉 =
d∑

i=1

xiyi,

where x = (x1, . . . , xd) and similarly with x replaced by y.
The characteristic function of a random vector X taking values in Rd is a

complex-valued function ϕ defined on all of Rd by

ϕ(t) = E{ei〈t,X〉}, t ∈ Rd.
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If d is limited, we say Rd is limited-dimensional. When Rd is limited-
dimensional, an element of Rd is

• infinitesimal if and only if all its components are infinitesimal

• and limited if and only if all its components are limited.

As usual, unlimited means not limited, and appreciable means limited and non-
infinitesimal.

Clearly, a limited-dimensional random vector is infinitesimal, appreciable, or
unlimited if and only if its L∞ norm is, where this norm is defined by

‖x‖∞ = max{ |xi| : i = 1, . . . , d }.

As usual, we write x ' y to mean x− y ' 0. If we define the Lp norms by

‖x‖p =

(
d∑

i=1

|xi|p
)1/p

for 1 ≤ p <∞, then the obvious inequality

‖x‖∞ ≤ ‖x‖p ≤ d · ‖x‖∞

implies that a limited-dimensional random vector is infinitesimal, appreciable,
or unlimited if and only if its Lp norm is likewise.

When d is unlimited, the Lp norms no longer agree about which vectors are
infinitesimal, appreciable, and unlimited. Hence our original definition based
on the behavior of components no longer makes sense either. Thus we shall
see that the characteristic function theory we develop here is useful only for
limited-dimensional random vectors.

11.2 Convergence I

A famous and very important theorem of Kolmogorov-style probability the-
ory says that a sequence of random variables converges in distribution if and
only if the characteristic functions converge pointwise. In this section we start
to develop the Nelson-style analog, working on the easy direction of the “if and
only if” (the other direction is dealt with in Section 11.6).

Theorem 11.1. If two limited-dimensional random vectors are nearly equiva-
lent, then their characteristic functions are nearly equal at all limited argument
values.

Proof. For limited t, the function x 7→ ei〈t,x〉 is limited and (nearly) continuous
because of

ei〈t,x〉 − ei〈t,y〉 = ei〈t,x〉(1− ei〈t,y−x〉),
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which implies∣∣ei〈t,x〉 − ei〈t,y〉∣∣ ≤ ∣∣1− ei〈t,y−x〉∣∣
=
√∣∣1− cos

(
〈t, y − x〉

)∣∣2+∣∣sin(〈t, y − x〉
)∣∣2,

because 〈t, y − x〉 ' 0 whenever x ' y by the Cauchy-Schwarz inequality and
because sine and cosine are nearly continuous at zero (and everywhere else) by
Lemma 4.1.

We cannot ask for near equality at all t. Consider the random variable
concentrated at zero, which has characteristic function identically equal to one,
and another random variable concentrated at a nonzero infinitesimal ε, which
has characteristic function t 7→ eitε. These two random variables are nearly
equivalent, but eitε is not nearly equal to one for all t.

11.3 The Discrete Fourier Transform

Let
T = { kε : k ∈ Z, |k| ≤ n } (11.1)

where ε > 0, Z is the set of all integers, and n is a positive integer. We call such
a set T a symmetric grid ; we call ε the spacing of T and write ε = spac(T ); we
call N = 2n + 1 the cardinality of T and write N = card(T ).

If T is defined as in (11.1) then we define

T ∗ = { kε∗ : k ∈ Z, |k| ≤ n } (11.2)

where
ε∗ =

2π

Nε
(11.3)

and call T ∗ the symmetric grid conjugate to T . Of course spac(T ∗) = ε∗ and
card(T ∗) = N .

If f : T → C is any function, then

f∗(t) = ε
∑
x∈T

f(x)eitx (11.4)

defines a function T ∗ → C that we call the discrete Fourier transform of f . The
terminology “discrete Fourier transform” is also used for the mapping CT → CT∗

given by f 7→ f∗.

Theorem 11.2. The discrete Fourier transform f 7→ f∗ is invertible with in-
verse f∗ 7→ f given by

f(x) =
ε∗

2π

∑
t∈T∗

f∗(t)e−itx. (11.5)
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Proof. Plugging (11.4) into the right hand side of (11.5) we obtain

ε · ε∗

2π

∑
t∈T∗

∑
y∈T

f(y)eitye−itx =
1
N

∑
t∈T∗

∑
y∈T

f(y)eit(y−x)

=
∑
y∈T

f(y)
1
N

∑
t∈T∗

eit(y−x)

We now claim that
1
N

∑
t∈T∗

eit(y−x) (11.6)

is zero if y 6= x and one if y = x, which implies (11.5). To establish this claim,
suppose y − x = kε, so k is an integer and |k| ≤ 2n. Then

1
N

∑
t∈T∗

eit(y−x) =
1
N

n∑
m=−n

eiε∗mεk

=
1
N

n∑
m=−n

e2πimk/N

= e−2πink/N 1
N

2n∑
m=0

e2πimk/N

Now we have two cases. If k = 0, which happens if and only if x = y, then
the exponentials are all equal to one and this reduces to (1/N)

∑2n
m=0 1 = 1.

Otherwise, k 6= 0, and, recall, |k| ≤ 2n < N . Define ω = exp(2πik/N). Then
0 < |k| < N implies ω 6= 1, and

2n∑
m=0

e2πimk/N =
2n∑

m=0

ωm

=
1− ωN

1− ω

Now ωN = 1, so that finishes the proof of the claim that (11.6) is zero if y 6= x
and one otherwise.

If f : T d → C is any function, then

f∗(t) = εd
∑

x∈T d

f(x)ei〈t,x〉 (11.7)

defines a function (T ∗)d → C that we call the multivariate discrete Fourier
transform of f . This terminology is also used for the mapping f 7→ f∗.

Theorem 11.3. The multivariate discrete Fourier transform f 7→ f∗ is invert-
ible with inverse f∗ 7→ f given by

f(x) =
(

ε∗

2π

)d ∑
t∈(T∗)d

f∗(t)e−i〈t,x〉. (11.8)
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Proof. Plugging (11.7) into the right hand side of (11.8) we obtain

(
ε · ε∗

2π

)d ∑
t∈(T∗)d

∑
y∈T d

f(y)ei〈t,y〉e−i〈t,x〉 =
1

Nd

∑
t∈(T∗)d

∑
y∈T d

f(y)ei〈t,y−x〉

=
∑

y∈T d

f(y)
1

Nd

∑
t∈(T∗)d

ei〈t,y−x〉

=
∑

y∈T d

f(y)
d∏

k=1

1
N

∑
tk∈T∗

eitk(yk−xk)

where t = (t1, . . . , tk) and similarly for x and y. Now we know from the proof of
Theorem 11.2 that the innermost average is zero unless yk = xk, in which case
it is one. Thus the product is zero unless y = x, in which case it is one. Thus
the only nonzero term in the outermost sum is when y = x, in which case it is
f(x).

Notice that if we have a random variable concentrated on T whose proba-
bility function is given by

Pr(X = x) = εf(x), x ∈ T,

then the restriction of the characteristic function to T ∗ is the discrete Fourier
transform f∗. Similarly, if we have a random vector concentrated on T d whose
probability function is given by

Pr(X = x) = εdf(x), x ∈ T d,

then the restriction of the characteristic function to (T ∗)d is the discrete Fourier
transform f∗.

11.4 The Double Exponential Distribution

Let T be a symmetric grid that is also a near line, so spac(T ) is infinitesimal
and max(T ) is unlimited. Let α > 0 be a real parameter. Then we call the
distribution concentrated on T having unnormalized density

hα(x) = e−α|x|, x ∈ T,
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double exponential with rate parameter α. The normalizing constant for this
distribution is calculated as follows

c(α) = ε
∑
x∈T

e−α|x|

= ε

n∑
k=−n

e−αε|k|

= ε

(
2

n∑
k=0

e−αεk − 1

)

= ε

(
2 · 1− e−αε(n+1)

1− e−αε
− 1
)

= ε · 1− 2e−αε(n+1) + e−αε

1− e−αε

= ε · 1− 2An+1 + A

1−A

(11.9)

where we have introduced A = e−αε, and the normalized density is given by

fα(x) =
hα(x)
c(α)

, x ∈ T.

Lemma 11.4. A double exponential distribution with unlimited rate parame-
ter is infinitesimal almost surely. A double exponential distribution with non-
infinitesimal rate parameter is limited almost surely.

Proof. Suppose X has the double exponential distribution with rate parameter
α. Then for 0 < m < n.

Pr(|X| ≥ mε) =
2ε

c(α)

n∑
k=m

e−αεk

=
2ε

c(α)
· e−αεm

n−m∑
k=0

e−αεk

=
2ε

c(α)
· e−αεm · 1− e−αε(n−m+1)

1− e−αε

=
2ε

c(α)
· A

m(1−An−m+1)
1−A

=
2Am(1−An−m+1)

1− 2An+1 + A

If mε � 0 and α is unlimited, then by the rules of exponentiation (Sec-
tion 3.3) A ≤ 1 and Am ' An+1 ' 0. Since 0 ≤ An−m+1 ≤ 1, we have

Pr(|X| ≥ mε) ' 0. (11.10)
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So the first statement follows from condition (ii) of Lemma 6.2.
If mε ' ∞ and α � 0, then A ≤ 1 and Am ' An+1 ' 0 again follow

from the rules of exponentiation, and we obtain (11.10) again. So the second
statement follows from condition (ii) of Lemma 6.3.

The characteristic function of the double exponential distribution with rate
parameter α is given by

ϕα(t) =
ε

c(α)

∑
x∈T

e−α|x|+itx

=
ε

c(α)

n∑
k=−n

e−αε|k|+itεk

=
ε

c(α)

(
n∑

k=0

e−(α−it)εk +
n∑

k=0

e−(α+it)εk − 1

)

=
ε

c(α)

(
1− e−(α−it)ε(n+1)

1− e−(α−it)ε
+

1− e−(α+it)ε(n+1)

1− e−(α+it)ε
− 1
)

Since a double exponential distribution is symmetric about zero, the char-
acteristic function is real, which is obvious from the fact that the two fractions
in the large parentheses in the form above are complex conjugates of each other
and hence their sum is real.

Using eiw = cos(w) + i sin(w) and clearing complex quantities from the
denominator by multiplying numerator and denominator by their complex con-
jugates gives (after much formula manipulation, which has been checked using
a computer algebra system)

ϕα(t) =
ε

c(α)
· 1− 2e−αε(n+1) cos[(n + 1)εt] + 2e−αε(n+2) cos(nεt)− e−2αε

1− 2e−αε cos(εt) + e−2αε

=
ε

c(α)
· 1− 2An+1 cos[(n + 1)εt] + 2An+2 cos(nεt)−A2

1− 2A cos(εt) + A2

=
1 +

2An+1[1− cos((n + 1)εt)−A + A cos(nεt)]
(1−A)(1− 2An+1 + A)

1 +
2A[1− cos(εt)]

(1−A)2

(11.11)

We need the following bounds for sine and cosine

x− x3

3!
≤ sin(x) ≤ x, x ≥ 0 (11.12a)

1− x2

2
≤ cos(x) ≤ 1− x2

2
+

x4

4!
, x ≥ 0 (11.12b)

These are easily proved in order of degree of the bound. The function f1(x) =
x − sin(x) has derivative 1 − cos(x), which is nonnegative, hence f1 is non-
decreasing and greater than or equal to f1(0) = 0 for x ≥ 0. The function
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f2(x) = cos(x)− 1 + x2/2 has derivative f1(x), which is nonnegative, hence f2

is nondecreasing and greater than or equal to f2(0) = 0 for x ≥ 0. The function
f3(x) = sin(x)− x + x3/3! has derivative f2(x), which is nonnegative, hence f3

is nondecreasing and greater than or equal to f3(0) = 0 for x ≥ 0. The function
f4(x) = 1 − x2/2 − x4/4! − cos(x) has derivative f3(x), which is nonnegative,
hence f4 is nondecreasing and greater than or equal to f4(0) = 0 for x ≥ 0.
Since both sides of each inequality in (11.12b) are symmetric functions of x, we
actually have

1− x2

2
≤ cos(x) ≤ 1− x2

2
+

x4

4!
, x ∈ R. (11.13)

hence

1− cos(x) ∼ x2

2
, x ' 0. (11.14)

For non-infinitesimal x we use the bounds, also from (11.13),

1− x2

2
≤ cos(x) ≤ 1− x2

2

(
1− π4

12

)
, |x| ≤ π. (11.15)

Lemma 11.5. Let ϕα denote the discrete Fourier transform of the double ex-
ponential density with appreciable rate parameter α defined on a symmetric grid
T that is also a near line and satisfies

spac(T ) ·max(T ) ' ∞. (11.16)

Then
ϕα(t) ' 1

1 + t2

α2

, |t| � ∞ (11.17)

and
0 < ϕα(t) ≤ 2

1 + t2

6α2

, t ∈ T ∗. (11.18)

The near equality (11.17) is mildly interesting, in that we derive it without
reference to the right hand side being the Kolmogorov-style characteristic func-
tion of the Kolmogorov-style (continuous) double exponential distribution with
rate parameter α. Of course, it could also be derived from Corollary 4.8 and
the Kolmogorov-style result.

The bounds (11.18) will be crucial in our proof of the characteristic function
convergence theorem in Section 11.6.

The condition (11.16) is inelegant but harmless, because we only use this
lemma as a technical tool and can always assure that the condition is satisfied.
For example, if we want max(T ) = M , then we can choose n = dM3/2e and
ε = spac(T ) = M/n ∼M−1/2.

Proof. Recall that ϕα(t) is given by (11.11), and that A = e−αε. It follows from
the rules of exponentiation (Section 3.3) that A ' 1 but An+1 ' 0.
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We first show that the numerator of (11.11) is nearly equal to one for t ∈ T ∗.
From |cos(x)| ≤ 1 and A ' 1 we have |1− cos((n + 1)εt)−A + A cos(nεt)| . 2,
and from An+1 ' 0 we have 1 + A + 2An+1 ' 2.

Since 1 − exp(−εα) ∼ αε by Lemma 4.9 and the following comments, and
since exp(x) ≥ 1 + x, for x ≥ 0 by the Maclaurin series for the exponential
function, we have for any appreciable positive η

An

1−A
=

exp(−nεα)
1− exp(−εα)

≤ 1 + η

αε(1 + nαε)
≤ n−1α−2ε−2(1 + η).

Hence (α being appreciable) condition (11.16) implies An/(1−A) ' 0. Putting
all this together we have the numerator of (11.11) nearly equal to one.

Using A ' 1 and 1 − A ∼ αε, which were derived above, and (11.14) we
obtain

2A[1− cos(εt)]
(1−A)2

∼ t2

α2

and combining this with our result about the numerator of (11.11) we get
(11.17), using Lemma 4.4 several times.

Since we only consider t ∈ T ∗, we have |t| ≤ nε∗, hence |εt| ≤ nεε∗ =
2πn/N < π. Thus we can apply (11.15) to the term 1− cos(εt) in the denomi-
nator of (11.11), obtaining

ε2t2

2

(
1− π2

12

)
≤ 1− cos(εt)

We know from our earlier analysis that A/(1 − A)2 ∼ 1/(αε)2. Hence for any
positive δ � 1 we have

t2

α2
· δ
(

1− π2

12

)
≤ 2A[1− cos(εt)]

(1−A)2
,

and, since 1/6� 1− π2/12, we can choose δ so this becomes

t2

6α2
≤ 2A[1− cos(εt)]

(1−A)2
.

Combining this with our result about the numerator of (11.11) gives one in-
equality in (11.18). The positivity assertion is obvious.

11.5 Convolution

For x and y in T we define x ⊕ y to be the sum “modulo T”, that is, the
unique element of T having the form x + y + kNε where N = card(T ) and k
is an integer. If nε = max(T ) so N = 2n + 1 (notation we have been using all
along), then, for example, nε⊕ ε = −nε and nε + nε = −ε.
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For x and y in T and t in T ∗ we have

exp[i(x⊕ y)t] = exp[i(x + y + kNε)t]
= exp(ixt) exp(iyt) exp(ikNεt)
= exp(ixt) exp(iyt) exp(ikmNεε∗)
= exp(ixt) exp(iyt) exp(2πikm)
= exp(ixt) exp(iyt)

for some integers k and m.
For any random variable Z concentrated on T let ϕZ denote the restriction

of its characteristic function to T ∗. This conflicts with our earlier notation,
which is still in force. If X is a random variable, then ϕX is its characteristic
function. If α is a real number, then ϕα is the characteristic function of the
double exponential distribution with rate parameter α.

If X and Y are independent random variables concentrated on T , then

ϕX⊕Y (t) = E
{
eit(X⊕Y )

}
= E

{
eitXeitY

}
= ϕX(t)ϕY (t)

Of course, except for ⊕ rather than +, this fact is familiar from classical
probability theory. So long as we are interested only in random variables that
are limited almost surely and so long as T is a near line, there is no practical
difference between X + Y and X ⊕Y . The fact proved in this section will serve
just as well as its classical counterpart.

For vectors we define ⊕ to act coordinatewise

(x1, . . . , xd)⊕ (y1, . . . , yd) = (x1 ⊕ y1, . . . , xd ⊕ yd)

Then ϕX⊕Y (t) = ϕX(t)ϕY (t) also holds where X and Y are random elements
of T d and all three characteristic functions are restricted to (T ∗)d.

11.6 Convergence II

11.6.1 One-Dimensional

We continue to let T be a symmetric grid that is also a near line and satisfies
(11.16). For any random variable X concentrated on T , we denote its density
by fX , so

Pr{X = x} = εfX(x).

We also continue to let ϕX denote the characteristic function of X.

Lemma 11.6. Let X and Y be random variables and Zα a double exponential
random variable with appreciable rate parameter α independent of X and Y , all
three random variables concentrated on T . Suppose

ϕX(t) ' ϕY (t), t ∈ T ∗, |t| � ∞.
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Then
fX⊕Zα(x) ' fY⊕Zα(x), x ∈ T. (11.19)

Proof. By (11.5)

fX⊕Zα
(x) =

ε∗

2π

∑
t∈T∗

ϕX⊕Zα
(t)e−itx

=
ε∗

2π

∑
t∈T∗

ϕX(t)ϕα(t)e−itx (11.20)

and similarly with X replaced by Y . Since ϕX(t)e−itx is bounded in modulus
by 1 and similarly with X replaced by Y and by the bound (11.18) on ϕα(t)
the sum (11.20) satisfies the conditions for Corollary 4.7 and similarly with X
replaced by Y . Thus that corollary implies (11.19).

Lemma 11.7 (Scheffé). Let X and Y be almost surely limited random variables
concentrated on the symmetric grid T that is also a near line, and suppose

fX(x) ' fY (x), x ∈ T. (11.21)

Then
ε
∑
x∈T

|fX(x)− fY (x)| ' 0 (11.22)

and for any limited function h on T

E{h(X)} = ε
∑
x∈T

h(x)fX(x) ' ε
∑
x∈T

h(x)fY (x) = E{h(Y )}. (11.23)

As usual when we take an eponym from classical probability theory, this
is not what is usually called Scheffé’s lemma (Lehmann, 1959, p. 351) but the
lemma that plays the same role in radically elementary probability theory.

Note that the conclusion (11.21) is stronger than near equivalence of X and
Y since it holds for all limited h, not just limited nearly continuous h. In
Kolmogorov-style probability theory this type of convergence (what Scheffé’s
lemma implies) is called convergence in total variation. We shall not use it
enough to need a name for it.

Proof. By (iii) of Lemma 6.3 for any η � 0 we can choose a limited a such that

Pr{|X| > a} = ε
∑
x∈T
|x|>a

fX(x) ≤ η

3

and similarly with X replaced by Y . Hence

ε
∑
x∈T
|x|>a

|fX(x)− fY (x)| ≤ 2η

3
,
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and by Theorem 4.5 and (11.21)

ε
∑
x∈T
|x|≤a

|fX(x)− fY (x)| ' 0.

Hence by the triangle inequality

ε
∑
x∈T

|fX(x)− fY (x)| . 2η

3
.

Since η � 0 was arbitrary, this gives (11.22). And (11.22) immediately implies
(11.23).

Theorem 11.8. Let X and Y be almost surely limited random variables, and
suppose

ϕX(t) ' ϕY (t), for all limited t. (11.24)

Then X and Y are nearly equivalent.

Proof. Choose a symmetric grid T that is also a near line and satisfies (11.16)
such that max(T ) is larger than the maximum of the supports of |X| and |Y |.

Define g : R → T by g(x) = max{ t ∈ T : t ≤ x }. Then g(X) ' X
always, hence almost surely, hence g(X) is nearly equivalent to X by part (iii)
of Theorem 7.3, and similarly with X replaced by Y . By Theorem 11.1 we have
ϕX(t) ' ϕg(X) for limited t, and similarly with X replaced by Y , hence we
have ϕg(X) ' ϕg(Y ) for limited t, because ' is an external equivalence relation
(Corollary 3.9).

Let Zα have the double exponential distribution on T with rate parameter
α and be independent of X and Y .

First suppose α is appreciable. It is clear that g(X) is limited almost surely.
By Lemma 11.4 so is Zα. Since x ⊕ y = x + y whenever x and y are limited,
and sum of limited is limited, it is clear that g(X) ⊕ Zα is also limited almost
surely. Then by Lemma 11.6 and by Lemma 11.7 and the comment following
it, g(X)⊕ Zα is nearly equivalent to g(Y )⊕ Zα.

Second suppose α is unlimited. Then by Lemma 11.4 Zα ' 0 almost surely.
Hence by Slutsky’s theorem (Theorem 9.10) the random vector

(
g(X), Zα

)
is

nearly equivalent to the random vector
(
g(X), 0

)
, and similarly with X replaced

by Y . The map (x, y) 7→ x⊕y is continuous at points (x, y) such that x and y are
limited. Hence by the continuous mapping theorem (Theorem 9.8), g(X)⊕ Zα

is nearly equivalent to g(X)⊕ 0 = g(X), and similarly with X replaced by Y .
Fix a limited nearly continuous function h : T → R, and fix η � 0. Then∣∣E{h(g(X)⊕ Zα

)}
− E

{
h
(
g(X)

)}∣∣ ≤ η

3

for all unlimited α and hence by overspill for some limited α, and similarly with
X replaced by Y , and we may use the same limited α for both. Since

E
{
h
(
g(X)⊕ Zα

)}
' E

{
h
(
g(Y )⊕ Zα

)}
,
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we have ∣∣E{h(g(X)
)}
− E

{
h
(
g(Y )

)}∣∣ . 2η

3
by the triangle inequality. Since η � 0 was arbitrary,

E
{
h
(
g(X)

)}
' E

{
h
(
g(Y )

)}
.

Since h was an arbitrary limited nearly continuous function, g(X) is nearly
equivalent to g(Y ). Since near equivalence is an external equivalence relation
(Lemma 7.2), X

w' g(X)
w' g(Y )

w' Y implies X
w' Y .

11.6.2 Limited-Dimensional

Theorem 11.9. Let X and Y be almost surely limited random vectors, taking
values in Rd for limited d, and suppose (11.24) holds. Then X and Y are nearly
equivalent.

Proof. The proof is very similar to that of Theorem 11.8. We just need the mul-
tivariate analogs of each tool used in that proof. We already have the inversion
theorem for the discrete Fourier transform (Theorem 11.3).

The analog of the symmetric grid T in the proof of Theorem 11.8 is T d

where T is a symmetric grid that is also a near line and satisfies (11.16) such
that max(T ) is larger than all values of ‖X‖∞ and ‖Y ‖∞. As usual, ε = spac(T )
and ε∗ = spac(T ∗).

The analog of the function g in the proof of Theorem 11.8 is a map from Rd

to T d that operates coordinatewise, the action on each coordinate being the g
in the proof of Theorem 11.8. We again call this map g. Then again we have
g(X) ' X almost surely, hence g(X) and X are nearly equivalent, and similarly
with X replaced by Y .

For the analog of Zα in the proof of Theorem 11.8 we use here the random
vector, also denoted Zα having independent and identically distributed compo-
nents all of which have the double exponential distribution with rate parameter
α. Lemma 6.1 and Lemma 11.4 imply Zα is almost surely zero when α ' ∞
and limited almost surely when α� 0.

The multivariate analog of Lemma 11.6 is proved much the same way, the
only additional wrinkle being external induction on the dimension. Now by
Theorem 11.3 we have

fg(X)⊕Zα
(x) =

(
ε∗

2π

)d ∑
t∈(T∗)d

ϕg(X)(t)
d∏

j=1

ϕα(tj)e−itjxj

=
ε∗

2π

∑
t1∈T∗

ϕα(t1)e−it1x1
ε∗

2π

∑
t2∈T∗

ϕα(t2)e−it2x2

· · · ε∗

2π

∑
td∈T∗

ϕα(td)e−itdxdϕg(X)(t)
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where x and t denote vectors with components xi and ti and where the sum in
the first line over (T ∗)d is replaced by d iterated sums over T ∗ in the next two
lines, and similarly with X replaced by Y . Hence

fg(X)⊕Zα
(x)− fg(Y )⊕Zα

(x) =
ε∗

2π

∑
t1∈T∗

ϕα(t1)e−it1x1
ε∗

2π

∑
t2∈T∗

ϕα(t2)e−it2x2

· · · ε∗

2π

∑
td∈T∗

ϕα(td)e−itdxd |ϕg(X)(t)− ϕg(Y )(t)|

Now by assumption ϕX(t) ' ϕY (t) for limited t, and by Theorem 11.1 we have
ϕX(t) ' ϕg(X) for limited t and similarly with X replaced by Y . Thus the
term in the absolute value above is infinitesimal for limited t. Corollary 4.7 now
shows that the bottom line above is infinitesimal when α is appreciable. Then
external induction shows that fg(X)⊕Zα

(x)−fg(Y )⊕Zα
(x) is infinitesimal (for all

x ∈ T ).
The multivariate analog of Lemma 11.7 is proved much the same way, the

only additional wrinkle being external induction on the dimension. Since X is
limited almost surely, so is g(X) by Lemma 9.7 and similarly with X replaced
by Y . Fix an appreciable α. Then g(X)⊕ Zα is also limited almost surely.

For any η � 0 there is a limited a such that the box Bd, where

B = {x ∈ T : |x| ≤ a }

satisfies Pr{g(X) ⊕ Zα ∈ Bd} ≥ 1 − η, and similarly with X replaced by Y .
Hence

ε
∑

x∈T d

|fg(X)⊕Zα
(x)− fg(Y )⊕Zα

(x)| ≤ 2η + ε
∑

x∈Bd

|fg(X)⊕Zα
(x)− fg(Y )⊕Zα

(x)|

= 2η + ε
∑

x1∈B

ε
∑

x2∈B

· · · ε
∑

xd∈B

|fg(X)⊕Zα
(x)− fg(Y )⊕Zα

(x)|

where x = (x1, . . . , xd). Theorem 4.5 implies the innermost sum is infinitesimal.
By external induction and Theorem 4.5 all sums on the right hand side are
infinitesimal. Since η � 0 was arbitrary, the left hand side is infinitesimal. As
in the one-dimensional case, it is immediate that g(X)⊕Zα and g(Y )⊕Zα are
nearly equivalent (when α is appreciable).

The rest of the proof follows that of Theorem 11.8 almost without change.
The Slutsky argument is the same, and the rest is unchanged except now h
maps T d to R.

Corollary 11.10 (Cramér-Wold). Let X and Y be random vectors taking values
in Rd where d is limited. Then X and Y are nearly equivalent if and only if
〈t, X〉 and 〈t, Y 〉 are nearly equivalent for every limited t ∈ Rd.

Proof. For scalar s and vector t

ϕ〈t,X〉(s) = E{eis〈t,X〉} = ϕX(st).
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Suppose X and Y are nearly equivalent and t is limited. Then st is limited, for
all limited s, hence

ϕ〈t,X〉(s) ' ϕ〈t,Y 〉(s), s limited.

Conversely, suppose 〈t, X〉 and 〈t, Y 〉 are limited for all limited t. Then

ϕX(t) ' ϕY (t), t limited.

Corollary 11.11. Suppose Xi and Yi are independent, limited-dimensional ran-
dom vectors for i = 1, 2 and X1

w' X2 and and Y1
w' Y2. Then

(X1, Y1)
w' (X2, Y2).

The simple proof using characteristic functions and Theorems 11.1 and 11.9
is left as an exercise.
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Part III

Statistics
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Chapter 12

De Finetti’s Theorem

12.1 Exchangeability

Fix a positive integer ν, and let I = {1, . . . , ν}. Fix an arbitrary set S, and
let X1, . . ., Xν be random elements of S. Let Π be the set of all permutations
(bijective functions) π : I → I. We say the sequence X1, . . ., Xν is exchangeable
if

Pr(Xi = si, i ∈ I) = Pr(Xi = sπ(i), i ∈ I) (12.1)

for all π ∈ Π and any choice of s1, . . ., sν in S.
It simplifies discussion if we consider the sequence as single object: a random

tuple X = (X1, . . . , Xν), which we take to be a random element of the space
SI . We will also consider SI , as in set theory, to be the set of all functions
I → S. Then, if s ∈ SI and π ∈ Π, it makes sense to write s ◦ π, a composition
of functions I → I → S and hence also an element of SI .

The exchangeable algebra on SI is the family F of functions f : SI → R
satisfying

f(s) = f(s ◦ π), s ∈ SI , π ∈ Π.

The atoms of F are the equivalence classes

[s] = { s ◦ π : π ∈ Π }.

A random element X of SI is exchangeable if

Pr(X = s) = Pr(X = s ◦ π), s ∈ S, π ∈ Π, (12.2)

which says the same thing as (12.1) in different notation, or, what is equivalent,
if

Pr(X = s1) = Pr(X = s2), s1 ∈ S, s2 ∈ S, [s1] = [s2]. (12.3)

The exchangeable algebra on the sample space induced by X is

E = { f ◦X : f ∈ F }.

The atoms of E are the nonempty events of the form X−1([s]), the nonempty
preimages of atoms of F .

91
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12.2 A Simple De Finetti Theorem

We write Xi for the i-th component of X defined by Xi(ω) = X(ω)(i) and
indicate this relationship by X = (X1, . . . , Xν), and this gets us back to the
simple notation used in (12.1).

Theorem 12.1 (De Finetti). Let X = (X1, . . . , Xν) be exchangeable with ν
unlimited. Let E be the exchangeable algebra on the sample space induced by X.
Then for any limited functions h1, . . ., hn from S to R with n limited

E

{ n∏
i=1

hi(Xi)
∣∣∣∣ E} ' n∏

i=1

E
{
hi(Xi)

∣∣ E} (12.4a)

and

E

{ n∏
i=1

hi(Xi)
}
' E

[
n∏

i=1

E
{
hi(Xi)

∣∣ E}]. (12.4b)

The condition that the hi are limited functions means that every value is
limited. It also means they have a simultaneous limited bound because, the
sample space being finite, the maximum of

∣∣hi

(
Xj(ω)

)∣∣ over all i, j, and ω is
achieved, hence limited.

In (12.4a) the two sides of the equation are random variables, call them YL

and YR. What the equation means is YL(ω) ' YR(ω) for all ω ∈ Ω.

Lemma 12.2. Suppose X is an exchangeable random element of SI and P is
a uniformly distributed random element of Π independent of X. Then X and
X ◦ P are equal in law.

Elements of SI are maps I → S and elements of Π are maps I → I. Hence
X ◦ P is a map I → I → S, which is an element of SI . More precisely,
X(ω) ◦ P (ω) is, for each ω, a map I → I → S. The equal in law assertion is
that

Pr(X = s) = Pr(X ◦ P = s), s ∈ SI . (12.5)

Proof. Fix s ∈ SI and let K be the number of elements in [s]. Then it is clear
from (12.3) that

Pr(X = s) =
1
K

Pr(X ∈ [s])

From the bijectivity of permutations and (12.2) and the observation above

Pr(X ◦ P = s) = Pr(X = s ◦ P−1)

= Pr(X = s ◦ P−1 ◦ π)

=
1
K

Pr(X ∈ [s ◦ P−1 ◦ π])

but the last term is Pr(X ∈ [s]) by the definition of [ · ].
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Lemma 12.3. With the setup of the theorem, let En denote the algebra generated
by X1, . . ., Xn and E. Then

E
{
hn(Xn)

∣∣ En−1

}
' E

{
hn(Xn)

∣∣ E} (12.6)

holds for each limited integer n ≥ 2.

Proof. The conditional distributions involved in (12.6) are very simple. Fix an
ω in Ω. Write X(ω) = s = (s1, . . . , sν). The atom of E containing ω is

Aω = {ω′ ∈ Ω : X(ω′) ∈ [s] }. (12.7a)

On this atom we have

E
{
hn(Xn)

∣∣ E} =
1
ν

ν∑
i=1

hn(si) (12.7b)

because by Lemma 12.2 hn(Xn) has the same distribution on this atom as
hn(sP (i)) where P is a uniformly distributed random permutation and P (i)
puts equal probability on the points 1, . . ., ν.

The atom of En−1 containing ω is

Bω = {ω′ ∈ Aω : Xi(ω′) = si, i = 1, . . . , n− 1 }. (12.8a)

On this atom,

E
{
hn(Xn)

∣∣ En−1

}
=

1
ν − n + 1

ν∑
i=n

hn(si) (12.8b)

by an argument similar to that establishing (12.7b). We must show that the
right hand sides of (12.7b) and (12.8b) are nearly equal.

Each of the hi is limited, hence by the comment following the statement of
the theorem we may assume there is a simultaneous limited bound a for all of
them, and ∣∣∣∣∣

n−1∑
i=1

hn(si)

∣∣∣∣∣ ≤ (n− 1)a,

which implies
1
ν

ν∑
i=1

hn(si) '
1
ν

ν∑
i=n

hn(si) (12.9a)

because (n− 1)a/ν is infinitesimal.
Also,∣∣∣∣∣ 1

ν − n + 1

ν∑
i=n

hn(si)−
1
ν

ν∑
i=n

hn(si)

∣∣∣∣∣ = n− 1
ν(ν − n + 1)

∣∣∣∣∣
ν∑

i=n

hn(si)

∣∣∣∣∣
≤ (n− 1)a

ν
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is infinitesimal, which implies

1
ν

ν∑
i=n

hn(si) '
1

ν − n + 1

ν∑
i=n

hn(si). (12.9b)

Putting (12.9a) and (12.9b) together finishes the proof.

Lemma 12.4. For any random variables X and Y and any algebra A, X ' Y
implies EAX ' EAY and EX ' EY .

Proof. For any ε � 0 we have X − ε ≤ Y ≤ X + ε, which implies EAX − ε ≤
EAY ≤ EAX + ε and this can hold for every ε � 0 only if EAX − EAY is
infinitesimal. The proof for unconditional expectation is similar.

Proof of the theorem.

E

{ n∏
i=1

hi(Xi)
∣∣∣∣ E} = E

[
E

{ n∏
i=1

hi(Xi)
∣∣∣∣ En−1

} ∣∣∣∣∣ E
]

= E

[
n−1∏
i=1

hi(Xi) · E
{
hn(Xn)

∣∣ En−1

} ∣∣∣∣∣ E
]

' E

[
n−1∏
i=1

hi(Xi) · E
{
hn(Xn)

∣∣ E} ∣∣∣∣∣ E
]

= E
{
hn(Xn)

∣∣ E} · E{n−1∏
i=1

hi(Xi)
∣∣∣∣ E}

(12.10)

the first equality being EEEEn−1 = EE , the second and third equalities being
EAXY = Y EAX when Y ∈ A for A = En−1 and A = E , respectively, and the
near equality being Lemmas 12.3 and 12.4. Then (12.4a) follows from (12.10) by
external induction, and (12.4b) follows by another application of Lemma 12.4.

12.3 Philosophical Interpretation

The philosophical interpretation of the theorem is that the random variables
X1, X2, . . . Xν are “nearly” conditionally independent given the exchangeable
algebra by (12.4a) and (exactly) marginally identically distributed (condition-
ally and unconditionally) by exchangeability, and their joint conditional distri-
bution is “nearly” determined by the marginal distributions by (12.4b).

Hence, if we adopt a Bayesian statistical model for data X1, . . ., Xn that
assumes they are exactly conditionally independent and identically distributed
given the exchangeable algebra, then we make only infinitesimal errors.

This setup is a bit more abstract than most discussions of Bayesian theory
(but no more abstract than most discussions of de Finetti theorems). It is hard
to see the exchangeable algebra playing the role of a Bayesian parameter. But at
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least in Nelson-style theory there is no heavy probabilistic abstraction to wade
through. We know that the exchangeable algebra E induces a partition at(E)
on the sample space. If θ is a random element of any space that induces the
same partition, then we can write E{ · |θ} in place of E{ · |E} and things will
look more Bayesian just from the change of notation.

Thus the philosophical import of de Finetti’s theorem is that independent
and identically distributed (IID) assumptions arise in quite different ways for
the Bayesian and the frequentist. The frequentist must assume that the data
actually are IID, which is a very strong assumption. The Bayesian only “as-
sumes” that the data are exchangeable, a much weaker assumption. Moreover,
for a subjective Bayesian, exchangeability is not really an assumption but merely
a lack of knowledge that would allow one to treat X differently from X◦P (using
the notation of Lemma 12.2).

12.4 A Fancier De Finetti Theorem

Theorem 12.5 (De Finetti II). Let X = (X1, . . . , Xν) be exchangeable with ν
unlimited. Let E be the exchangeable algebra on the sample space induced by X.
Then for any functions h1, . . ., hn from S to R with n limited such that h1(X1),
. . . , hn(Xn) and

∏n
i=1 hi(Xi) and

∏n
i=1 E

{
hi(Xi)

∣∣ E} are L1

E

{ n∏
i=1

hi(Xi)
∣∣∣∣ E} ' n∏

i=1

E
{
hi(Xi)

∣∣ E}, almost surely, (12.11a)

and

E

{ n∏
i=1

hi(Xi)
}
' E

[
n∏

i=1

E
{
hi(Xi)

∣∣ E}]. (12.11b)

In (12.11a) the two sides of the equation are random variables, call them YL

and YR. What the equation means is for every ε � 0 there exists an event N
such that Pr(N) ≤ ε and YL(ω) ' YR(ω) except for ω in N .

Proof. Equation (12.11b) is implied by (12.4b) and Lemma 6.7. By Theo-
rem 6.10 h1(X1), . . . , hn(Xn) and

∏n
i=1 hi(Xi) are L1 on almost every atom of

E . On such atoms equation (12.11a) is implied by (12.4a) and Lemma 6.7.

Whether one prefers Theorem 12.1 or Theorem 12.5 is a matter of taste.
The restriction to limited functions (the external analog of bounded functions)
makes the statement of Theorem 12.1 much simpler, only involving nonstandard
analysis through the basic idea of the existence of infinitesimals. Theorem 12.5
is stronger, but only in a rather trivial way involving Lemma 6.7, and involves
the more complicated concepts almost surely and L1 that use much more non-
standard analysis.

Theorem 12.1 only involves master’s level calculations. Both the statement
and the proof are elementary. The key issue is that (12.7b) is very close to
(12.8b) whenever ν is much larger than n. Everything else is just applying
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rules of probability theory that are no different in Nelson-style theory from
Kolmogorov-style theory (master’s level or PhD level).



Chapter 13

Almost Sure Convergence

We introduced almost sure convergence in Section 7.1. Now we apply it to
a few things.

13.1 The Law of Large Numbers

Theorem 16.3 in Nelson (1987) is the law of large numbers.

Theorem 13.1 (The Law of Large Numbers). Suppose X1, X2, . . ., Xν are
IID L1 random variables with mean µ. Define

Xn =
1
n

n∑
i=1

Xi. (13.1)

Then Xn converges to µ almost surely.

We do not usually deal with almost sure convergence by directly applying the
definition. What we usually use is the following theorem, which is Theorem 7.2
in Nelson (1987).

Theorem 13.2. Let X1, . . ., Xν be random variables, then Xn converges almost
surely to zero if and only if

Pr
{

sup
µ≤n≤ν

|Xn| ≥ λ

}
' 0, µ ' ∞, λ� 0. (13.2)

13.2 The Glivenko-Cantelli Theorem

Suppose X1, . . ., Xν are IID random variables defined on a finite sample
space having common (marginal) distribution function F , and F̂n is the empir-
ical distribution function defined by

F̂n(x) =
1
n

n∑
i=1

I(−∞,x](Xi), x ∈ R.

97
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Then for each fixed x the random variable F̂n(x) is a “sample mean” of the form
(13.1) with “population mean” F (x) = E{F̂n(x)}. Also F̂n(x) is a limited, hence
L1, random variable. Thus the law of large numbers applies and gives almost
surely ∣∣∣F̂n(x)− F (x)

∣∣∣ ' 0, n ' ∞, (13.3a)

which by Theorem 13.2 holds if and only if

Pr
{

sup
µ≤n≤ν

∣∣∣F̂n(x)− F (x)
∣∣∣ ≥ λ

}
' 0, µ ' ∞, λ� 0. (13.3b)

These statements (13.3a) and (13.3b) are different statements for each fixed x.
In (13.3a) the exception sets may depend on x.

The Glivenko-Cantelli theorem says these statements hold uniformly in x.

Theorem 13.3 (Glivenko-Cantelli). Suppose X1, . . ., Xν are IID random vari-
ables defined on a finite sample space having common (marginal) distribution
function F , and suppose F̂n is the empirical distribution function for sample
size n. Then almost surely

sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ ' 0, n ' ∞. (13.4a)

By Theorem 13.2 the statement (13.4a) holds almost surely if and only if

Pr
{

sup
µ≤n≤ν

sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ ≥ λ

}
' 0, µ ' ∞, λ� 0. (13.4b)

As in the usual proof of the Kolmogorov-style Glivenko-Cantelli theorem, the
proof starts with the statements (13.3a), one for each fixed x, which are implied
by the law of large numbers. These statements do not obviously imply (13.4a)
because the exception sets in (13.3a) depend on x. Some device must be used to
reduce an uncountable infinity of exception sets to a limited number. Actually
we work with the statements that do not explicitly involve “almost surely” and
want to derive the one statement (13.4b) from the many statements (13.3b), but
here too, the implication is not obvious. As in the usual Kolmogorov-style proof,
the device we use is monotonicity of distribution functions and compactness of
the unit interval.

Proof. Let T be the support of F . To simplify notation choose ε > 0 smaller
than any spacing in T so we always have

F (x− ε) = sup
y∈T
y<x

F (y)

whenever x ∈ T . Fix µ ' ∞ and λ � 0, and choose a limited natural number
k such that 1/k ≤ λ/4. Then there are unique points xi ∈ T determined by

F (xi − ε) <
i

k
≤ F (xi), i = 1, . . . , k
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(meaning for each i there is a unique element of T that can be xi and not
meaning that the xi are distinct—it may be that xi = xi′ when i < i′, in which
case xi = xj for i ≤ j ≤ i′). Also, since T is finite, there exists a (nonunique)
point x0 satisfying F (x0) = 0.

Now for i = 1, . . ., k and xi−1 < x < xi we have

F̂n(x) ≥ F (x) + λ −→ F̂n(xi − ε) ≥ F (xi−1) + λ

−→ F̂n(xi − ε) ≥ F (xi − ε) +
λ

2

the last implication holding because of

F (xi−1) ≥
i− 1

k
> F (xi)−

2
k

> F (xi − ε)− 2
k
≥ F (xi − ε)− λ

2
,

the interpretation of these statements being “omega by omega,” that is, F̂n(x)
is a random variable defined by

F̂n(x)(ω) =
1
n

n∑
i=1

I(−∞,x]

(
Xi(ω)

)
and the implications mean that the set of ω such that F̂n(x)(ω) ≥ F (x) + λ

holds is included in the set of ω such that F̂n(xi − ε)(ω) ≥ F (xi − ε) + λ
2 holds.

Similarly,

F̂n(x) ≤ F (x)− λ −→ F̂n(xi−1) ≤ F (xi − ε)− λ

−→ F̂n(xi−1) ≤ F (xi−1)−
λ

2

the last implication holding because of

F (xi − ε) <
i

k
≤ F (xi−1) +

1
k
≤ F (xi−1) +

λ

4
.

Putting these together and using monotonicity and subadditivity of probability
gives

Pr

 sup
µ≤n≤ν

sup
x∈R

xi−1<x<xi

∣∣∣F̂n(x)− F (x)
∣∣∣ ≥ λ


≤ Pr

{
sup

µ≤n≤ν

∣∣∣F̂n(xi − ε)− F (xi − ε)
∣∣∣ ≥ λ

2

}
+ Pr

{
sup

µ≤n≤ν

∣∣∣F̂n(xi−1)− F (xi−1)
∣∣∣ ≥ λ

2

}
and since we also obviously have

Pr
{

sup
µ≤n≤ν

∣∣∣F̂n(xi)− F (xi)
∣∣∣ ≥ λ

}
≤ Pr

{
sup

µ≤n≤ν

∣∣∣F̂n(xi)− F (xi)
∣∣∣ ≥ λ

2

}
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we get

Pr

 sup
µ≤n≤ν

sup
x∈R

x0≤x<xk

∣∣∣F̂n(x)− F (x)
∣∣∣ ≥ λ


≤

k∑
i=1

Pr
{

sup
µ≤n≤ν

∣∣∣F̂n(xi − ε)− F (xi − ε)
∣∣∣ ≥ λ

2

}

+
k∑

i=1

Pr
{

sup
µ≤n≤ν

∣∣∣F̂n(xi−1)− F (xi−1)
∣∣∣ ≥ λ

2

}
(13.5)

and we are done except for two minor points. First, since F (x0) = 0 and
F (xk) = 1 it is never possible to have Xi outside the interval (x0, xk] and
we have F̂n(x0) = 0 and F̂n(xk) = 1 for all n (for all ω). Hence the inner
supremum on the left hand side of (13.5) can run over all of R rather than
just the interval [x0, xk) without changing the event whose probability is being
calculated. Second, by Corollary 3.8, if all the terms on the right hand side of
(13.5) are infinitesimal, then their sum is infinitesimal.

Caution: Lemma 10.1 and Theorem 10.4 say that F̂n converging to F im-
plies convergence in distribution of (the distribution determined by) F̂n to (the
distribution determined by) F , if (a very big “if”) random variables having this
limiting distribution (determined by F ) are almost surely limited! The (Nelson-
style analog of the) Glivenko-Cantelli theorem is true regardless of whether or
not F has this property, but it doesn’t say what you might think it says from
the analogy with Kolmogorov-style theory.

13.3 Prohorov Consistency

We want a theorem analogous to the Glivenko-Cantelli theorem that applies
when X1, . . ., Xν are random elements of an arbitrary metric space having
common (marginal) probability measure P , and P̂n is the empirical measure
defined by

P̂n(A) =
1
n

n∑
i=1

IA(Xi), A ⊂ S.

Then (just like we saw for empirical distribution functions in the preceding
section) for each fixed A the random variable P̂n(A) is a “sample mean” of
the form (13.1) with “population mean” P (A) = E{P̂n(A)}. Also P̂n(A) is a
limited, hence L1, random variable Thus the law of large numbers applies and
gives almost surely ∣∣∣P̂n(A)− P (A)

∣∣∣ ' 0, n ' ∞, (13.6a)
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which holds if and only if

Pr
{

sup
µ≤n≤ν

∣∣∣P̂n(A)− P (A)
∣∣∣ ≥ λ

}
' 0, µ ' ∞, λ� 0. (13.6b)

These statements (13.6a) and (13.6b) are different statements for each fixed A.
In (13.6a) the exception sets may depend on A.

We investigate the conditions under which P̂n converges to P . In order to
discuss convergence, we need a metric for convergence of probability measures.
The natural one to use is the Prohorov metric, which was defined in Section 9.3.

We say P̂n converges almost surely to P (in the Prohorov metric) if almost
surely

π
(
P̂n, P

)
' 0, n ' ∞, (13.7a)

which holds if and only if

Pr
{

sup
µ≤n≤ν

π
(
P̂n, P

)
≥ λ

}
' 0, µ ' ∞, λ� 0. (13.7b)

We say P is nearly tight if for every ε � 0 there exists a set F of limited
cardinality such that P (F ε) ≥ 1− ε, where F ε, the ε-dilation of F , was defined
in Section 9.3.

Note that a random variable X that is limited almost surely is nearly tight
because for any ε � 0, there exists a limited a such that Pr(|X| ≥ a) ≤ ε. So,
if we define

F = { kε : k ∈ Z, |kε| ≤ a },

then F has limited cardinality and F ε covers [−a, a]. Hence Pr(F ε) ≥ 1− ε.

Theorem 13.4. Suppose X1, . . ., Xν are IID random elements of a metric
space having common (marginal) probability measure P and P̂n is the empirical
measure for sample size n, then a necessary and sufficient condition for P̂n to
converge almost surely to P (in the Prohorov metric) is that P is nearly tight.

Proof. Let π denote the Prohorov metric. Then, by Lemma 9.2 and the com-
ments on page 58 about the behavior of this metric,

π
(
P̂n, P

)
≥ λ←→ (∀ε > 0)(∃A ⊂ S)

(
P̂n(A) > P (Aλ) + λ− ε

)
←→ sup

A⊂S

(
P̂n(A)− P (Aλ)

)
≥ λ

the arrows meaning that the statements are equivalent “omega by omega,” that
is if one holds at some point in the sample space, then so do the others. Hence
(13.7b) is equivalent to

Pr
{

sup
µ≤n≤ν

sup
A⊂S

(
P̂n(A)− P (Aλ)

)
≥ λ

}
' 0, µ ' ∞, λ� 0. (13.8)

First, we prove necessity. Assume (13.8), and suppose to get a contradiction
that P is not nearly tight. Hence there is an ε � 0 such that we do not have
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P (F ε) ≥ 1 − ε for any set F of limited cardinality. Let An = {X1, . . . , Xn },
that is, An is the support of P̂n, so P̂n(An) = 1. Then a necessary condition
that (13.8) hold is

Pr {1− P (Aε
n) ≥ ε} ' 0, n ' ∞. (13.9)

This implies

Pr {1− P (Aε
n) ≥ ε} <

1
2

(13.10)

holds for all unlimited n, hence by overspill for some limited n. But this is
a contradiction because An has at most n points and by our choice of ε, this
implies P (Aε

n) < 1−ε always (for all omega) and hence Pr {1− P (Aε
n) > ε} = 1.

That finishes the proof of the necessity of near tightness.
Now, we prove sufficiency. Assume near tightness. Fix λ� 0, and choose a

set F = {x1, . . . , xm} of limited cardinality such that P (Fλ/3) ≥ 1− λ/3.
Disjointify the balls {xi}λ/3 defining recursively

Bi = {xi}λ/3 \
i−1⋃
j=1

Bj .

Then the nonempty Bi partition Fλ/3.
Let I be the set of all subsets of {1, . . . ,m}, and define

AI =
⋃
i∈I

Bi, I ∈ I.

We do not need A∅ as a notation for the empty set, so let us reuse the notation,
redefining this to be

A∅ = S \ Fλ/3.

Note that the diameter of each Bi is less than λ, so if a set A contains even one
point of Bi, then Aλ contains all of Bi. Hence

A ⊂ AI −→ AI ⊂ Aλ, I ∈ I \∅.

By the law of large numbers (13.3b)

Pr
{

sup
µ≤n≤ν

∣∣∣P̂n(AI)− P (AI)
∣∣∣ ≥ λ

3

}
' 0, µ ' ∞, I ∈ I.

Consider a point in the sample space (an omega) such that

sup
µ≤n≤ν

sup
I∈I

∣∣∣P̂n(AI)− P (AI)
∣∣∣ < λ

3
,

holds. Then for any A ⊂ S define

I =
{

i ∈ {1, . . . ,m} : A ∩Bi 6= ∅
}
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so when µ ≤ n ≤ ν we have

P̂n(A)− P (Aλ) = P̂n(A \ Fλ/3) + P̂n(A ∩AI)− P (Aλ)

≤ P̂n(A∅) + P̂n(AI)− P (AI)

<
2λ

3
+ P̂n(AI)− P (AI)

< λ

Hence for µ ' ∞

Pr
{

sup
µ≤n≤ν

sup
A⊂S

(
P̂n(A)− P (Aλ)

)
≥ λ

}
≤
∑
I∈I

Pr
{

sup
µ≤n≤ν

∣∣∣P̂n(AI)− P (AI)
∣∣∣ ≥ λ

3

}
Since I has limited cardinality (less than 2m, which is limited by Theorem 2.4),
this sum is infinitesimal by Corollary 3.8, and, since λ � 0 was arbitrary, we
have (13.8) and are done.

13.4 Discussion

13.4.1 Kolmogorov-Style Pathology

The concept we call “near tightness” that plays such an important role
in Theorem 13.4 is the Nelson-style analog of what van der Vaart and Wellner
(1996, p. 17) call pre-tightness. Their Lemma 1.3.2 says that a Borel probability
measure on a metric space is pre-tight if and only if it is separable. A Borel
probability measure P on a metric space is separable when it has a separable
support, that is, there exists a Borel measurable set A such that P (A) = 1 and
A has a countable dense subset.

So far this is fairly simple, but, according to the discussion on p. 24 of
van der Vaart and Wellner (1996), it is undecidable under the usual axioms
of set theory whether nonseparable Borel probability measures can exist. It is
known that one could add to mathematics the axiom that they do not exist
without causing inconsistency (that is, if mathematics is inconsistent with this
new axiom, then it is already inconsistent before this axiom is added). But
it is “apparently unknown” (say van der Vaart and Wellner, 1996) whether
nonseparable probability measures can consistently exist (whatever that means).

It is incredible what a morass we sink into with this notion. Countable
additivity is supposed to make things simple. Here it seems to make things
about as complicated as they can possibly be. Kolmogorov-style probability
theory allows an incredible amount of pathology and requires extreme technical
virtuosity to navigate around it.

In Nelson-style theory these things are simple. Non-tight (not nearly tight)
probability measures exist, and there are very simple examples of them, such as
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the discrete uniform distribution on the integers 1, . . ., ν with ν unlimited. It
is clear in Theorem 13.4 what (near) tightness does and why it is needed.

13.4.2 Near Tightness and Topology

On a slightly different point, why did we choose to make our concept near
tightness the analog of Kolmogorov-style pre-tightness rather than tightness.
The reason is that Kolmogorov-style tightness involves compact sets, and it
is not possible to define compact sets in “radically elementary” nonstandard
analysis. It is possible to define compact sets in the full theory of nonstandard
analysis (Nelson, unpublished, p. 13 for the definition of compact subsets of R
and p. 15 for the definition of compact subsets of general topological spaces),
but we don’t want to use the full theory. Thus we avoid topology and the
notions compact, closed, and open. The same issue is why closed and open sets
do not appear in our version of the portmanteau theorem (Theorem 9.6) and
are replaced by ε-dilations and ε-erosions.

13.4.3 Prohorov Consistency and Glivenko-Cantelli

Although we drew an analogy between Theorems 13.3 and 13.4, and they
are quite analogous in their conditions and their proofs, the Kolmogorov-style
analog of Theorem 13.4 is not what is called a uniform Glivenko-Cantelli theorem
(see van der Vaart and Wellner, 1996, Chapter 2.4).

13.4.4 Statistical Inference

Whatever the Prohorov-consistency theorem is called, it does show in what
sense statistical estimation is possible with no assumptions about the true un-
known distribution except near tightness. We know from Theorem 13.4 that,
in the language of statistics, P̂n is a consistent estimator of the true unknown
distribution P .

This remains true for the “minimum Prohorov distance estimator.” If we
have a statistical model P, which we take to be a finite family of probability
distributions and we let P̃n be any estimator — that is, a function of the data
X1, . . ., Xn taking values in P — that satisfies

π(P̃n, P̂n) . min
P∈P

π(P, P̂n),

then P̃n is a consistent estimator of the true unknown distribution P by the
triangle inequality.

Admittedly, “minimum Prohorov distance estimators” are very hard to cal-
culate and not used in practical applications. We will have to do a lot more to
get a useful Nelson-style theory of statistics. But it’s a start.
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