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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is simple.

You have a probability or expectation that you cannot do exactly.

So simulate, but you cannot do that exactly either.

Set up Markov chain whose equilibrium distribution is the
distribution you want to simulate (this is easy). Run it. Average
over the simulations.

MCMC gives not independent, not indentically distributed
“sample” from the distribution.



Random Walk Metropolis

If the distribution you want to sample is continuous and finite
dimensional and you can write down an unnormalized probability
density function (don’t need to know normalizing constant), you’re
done.

Write an R function that evaluates the log unnormalized density
(LUD) function. R package mcmc does everything else.

No way for the user to screw up, except for coding the LUD
function incorrectly.



Random Walk Metropolis (cont.)

R package always runs Markov chain having the equilibrium
distribution specified by the LUD function supplied assuming there
is such a distribution.

If h is LUD function, then eh is unnormalized density function, and
the assumption is that the integral of eh is finite.

If
∫

eh =∞, then all bets are off. The distribution you think you
want to sample does not exist.

MCMC does not do real analysis for you. Must do this bit
(verifying

∫
eh <∞) yourself.



Applications

Bayesian inference.

likelihood× unnormalized prior = unnormalized posterior

Sampling any conditional distribution (Bayes is special case).

unnormalized joint = unnormalized conditional

Models specified by giving unnormalized density or mass functions.
Also called Markov random field models. Widely used in spatial
statistics and social networks.



Random Walk Metropolis (cont.)

Won’t hurt if you don’t get this.

How random-walk Metropolis algorithm (RWMA) does one step of
the Markov chain (at Xn, move to Xn+1) whose equilibrium
distribution has LUD function h

Let Zn be independent draw from symmetric distribution centered
at zero (e. g., mean-zero normal). Let Un be independent draw
from Uniform(0, 1). If

log(Un) < h(Xn + Zn)− h(Xn)

set Xn+1 = Xn + Zn. Otherwise set Xn+1 = Xn.



Random Walk Metropolis (cont.)

Support of equilibrium distribution does not have to be whole
space (just have LUD function return -Inf for points not in the
support).

Initial state X1 must be in support (LUD function returns finite
value).

Operation of Metropolis algorithm assures chain stays in support
when started in support.



Random Walk Metropolis (cont.)

How to code a LUD function. Suppose state vector has three
components, last of which must be positive. Start like this

ludfun <- function(theta) {

stopifnot(length(theta) == 3)

stopifnot(is.numeric(theta))

stopifnot(is.finite(theta))

boo <- theta[1]

foo <- theta[2]

moo <- theta[3]

if (moo <= 0) return(-Inf)

# now (boo, foo, moo) is in support

# calculate LUD function and return (finite) value

}



Foolproof (?!)

The referees for Annals of Statistics would not let us use the word
“foolproof” for this algorithm and R package.

Indeed we have already mentioned two ways users can screw up

Code up the LUD function incorrectly.

The putative LUD function isn’t (
∫

eh =∞).

But there is no other way the user can screw up (other than
misreport the output), and we claim that this is as foolproof as it
is possible for an MCMC package to be.



Geometric Ergodicity

Remember that the Markov chain X1, X2, . . . is a not independent
and not identically distributed “sample” from the equilibrium
distribution. The scare quotes remind you that this isn’t your
grandfather’s notion of “random sample”.

So if X1, X2, . . . do not have the same distribution, how can they
be a “sample” from the equilibrium distribution?

Do have
L(Xn)→ L

(the law of Xn converges to the equilibrium distribution L).

The distribution of Xn is never exactly L, but it gets closer and
closer to L as n→∞.



Geometric Ergodicity (cont.)

Won’t hurt if you don’t get this.

In theory-speak, this invokes the aperiodic ergodic theorem for
Harris recurrent Markov chains

‖L(Xn)− L‖ → 0

where the norm here is total variation norm (stronger than
convergence in distribution).

Geometric ergodicity says this happens exponentially fast: there
exists r > 1 such that

∞∑
n=1

rn‖L(Xn)− L‖ <∞



Geometric Ergodicity (cont.)

Geometric ergodicity is important because RWMA is reversible
Markov chain and

Theorem (Roberts and Rosenthal, 1997)

A reversible Markov chain has a central limit theorem for all
square-integrable functionals if and only if it is geometrically
ergodic.

There are central limit theorems that don’t use geometric
ergodicity and apply to some but not all square-integrable
functionals, but their conditions are very hard to verify. Geometric
ergodicity is (fairly) easy to verify.



The Big Issue (Finally!)

RWMA is not guaranteed to be geometrically ergodic.

Has been well studied (Mengersen and Tweedie, 1996; Roberts and
Tweedie, 1996; Jarner and Hansen, 2000).

The main conclusion is that geometric ergodicity depends mainly
on the tail behavior of the LUD function (light enough tails =
geometrically ergodic).

The tail behavior of the proposal distribution (the distribution of
the Zn in our description of RWMA) does not matter for geometric
ergodicity.



Jarner-Hansen Theory

Superexponentially Light Tail Condition

lim sup
‖x‖→∞

x

‖x‖
· ∇h(x) = −∞

Curvature Condition

lim sup
‖x‖→∞

x

‖x‖
· ∇h(x)

‖∇h(x)‖
< 0

Theorem (Jarner and Hansen, 2000)

If LUD function h is strictly positive and continuously differentiable
and satisfies the Superexponentially Light Tail Condition and the
Curvature Condition, then the RWMA is geometrically ergodic.



Jarner-Hansen Theory (cont.)

Various Tail Conditions

lim sup
‖x‖→∞

x

‖x‖
· ∇h(x) = L

L = −∞ superexponentially light
−∞ < L < 0 exponentially light

L = 0 subexponentially light
L > 0 there be dragons



Jarner-Hansen Theory (cont.)

How to always have superexponentially light tails if you are a
Bayesian: put normal priors (which have e−x

2
tails) on everything.

Example of merely exponentially (not superexponentially) light
tails: discrete exponential family with natural parameters and
conjugate priors (log-linear models for categorical data, logistic
regression, Poisson regression).

Normal priors incorporate more prior information than in any finite
amount of data, no matter how much! How to justify that?

Example of subexponentially light tails: Cauchy location model
with flat prior.



Johnson-Geyer Theory

If don’t have superexponentially light tails, then we’re screwed?

Not necessarily. Change-of-variable theorem to the rescue. If
X = g(Y )

fY (y) = fX [g(y)]× |det∇g(y)|

for LUD functions

hY (y) = hX [g(y)] + log|det∇g(y)|

If hY has superexponentially light tails and satisfies the curvature
condition then RWMA for it is geometrically ergodic and

Xi = g(Yi ), n = 1, 2, . . .

is also geometrically ergodic Markov chain (though not RWMA).



Johnson-Geyer Theory (cont.)

Admittedly, very simple idea. Many people (including me) are
embarrassed we didn’t think of it years ago.

How extremely stupid not to have thought of that!
— Thomas Henry Huxley about Darwin’s theory of

evolution by natural selection

So we couldn’t just say that and have an Annals of Statistics
paper. Leif thought up and proved some theorems that make it as
easy as possible to verify that the transformed LUD function
satisfies the curvature and superexponentially light tail conditions.



Isotropic Transformations

g(x) =

{
f (‖x‖) x

‖x‖ , x 6= 0

0, x = 0

These are used merely for mathematical convenience. Many others
could be used. These simplify proofs.

The following conditions assure the LUD function for Y is strictly
positive and continuously differentiable (assuming the LUD
function for X was)

f is twice continuously differentiable with one-sided
derivatives at zero.

f ′(r) > 0 for all r .

f ′′(0) = 0.



Isotropic Transformations (cont.)

Need f (radial expansion function) that

looks linear near zero

pulls in the tails (increases faster than linear) for large r .

Exponentially Light to Superexponentially Light

f (r) =

{
r , r < R

r + (r − R)p, r ≥ R

Subexponentially Light to Exponentially Light

f (r) =

{
r3b3e
6 + rbe

2 , r ≤ 1
b

ebr − e
3 , r > 1

b



Leif’s Theorems

Theorem

If a LUD function is exponentially light, then the first isotropic
transformation takes us to a superexponentially light LUD function
for the transformed variable.

Theorem

If a LUD function satisfies the curvature condition (in particular if
its derivative is bounded), then the first isotropic transformation
takes us to a LUD function for the transformed variable that
satisfies the curvature condition.

Hence we only need to check the curvature and exponentially light
conditions on the original LUD function. Then variable
transformation of the first kind (with polynomial radial expansion
function) does the job.



Leif’s Theorems (cont.)

Theorem

If a LUD function h is subexponentially light and for some K
greater than the dimension of the state space and R <∞

x

‖x‖
· ∇h(x) ≤ − K

‖x‖
, ‖x‖ > R,

then the second isotropic transformation takes us to an
exponentially light LUD function.
If a LUD function h is subexponentially light and for some K
greater than the dimension of the state space and R <∞

‖∇h(x)‖ ≤ − K

‖x‖
, ‖x‖ > R,

then the second isotropic transformation takes us to an
exponentially light LUD function satisfying the conditions of the
previous curvature condition theorem.



Leif’s Theorems (cont.)

The last theorem is a bit annoying in that it doesn’t produce
superexponentially light tails in one step. So one has to apply both
transformations (one after the other) to do the job. Also the two
conditions in the theorem are not elegant, but the condition that
K is greater than the dimension of the state space is just enough
to make

∫
eh <∞, so is not restrictive.



Summary

RWMA with LUD h is “foolproof” except that you have to

prove
∫

eh <∞,

correctly code up h as R function,

understand the tail behavior of h so as to select the correct
morphism (or none if superexponentially light already).



My Favorite Application

Exponential family log likelihood

ln(θ) = nȳn · θ − nc(θ)

where

∇c(θ) = Eθ(Y )

∇2c(θ) = varθ(Y )

Log conjugate prior looks like log likelihood (Diaconis and
Ylvisaker, 1979)

p(θ) = νη · θ − νc(θ)

where η and ν are hyperparameters.



My Favorite Application (cont.)

Log unnormalized posterior (LUD function)

h(θ) = (nȳn + νη) · θ − (n + ν)c(θ)

Theorem (Diaconis and Ylvisaker (1979))∫
eh <∞ if and only if h has a unique mode, which happens if

and only if

n + ν > 0

(nȳn + νη)/(n + ν) is possible value of Eθ(Y )

Proper posterior always guaranteed by proper prior, which happens
if and only if ν > 0 and η is possible value of Eθ(Y ).



My Favorite Application (cont.)

The following all shown in Johnson and Geyer (2012).

If natural statistic vector Y is bounded in any direction, then h
does not have superexponentially light tails.

If
∫

eh <∞, the h does have exponentially light tails and satisfies
the curvature condition.

Hence isotropic transformation of the first kind produces
geometrically ergodic transformed chain.

Applications: log-linear models for categorical data, logistic
regression, Poisson regression (log link).



Leif’s Favorite Application

Univariate t distribution (RWMA not geometrically ergodic)

How to code (from vignette in R package mcmc)

lud <- function(x) dt(x, df=3, log=TRUE)

out <- morph.metrop(lud, 0, blen=100, nbatch=100,

morph=morph(b=1))

out <- morph.metrop(out, scale=4)

The later to adjust the scale to get about 20% acceptance rate.

t.test(out$batch)

gives confidence interval for “unknown” true posterior mode
(which we actually know is zero because this is a toy problem but
we wouldn’t know in a real application).



Leif’s Favorite Application (cont.)

If we use unmorphed RWMA, it doesn’t work.

With same LUD function (lud) as before.

out <- metrop(lud, 0, blen=100, nbatch=100)

out <- metrop(out, scale=6)

out <- metrop(out, blen=1e6, nbatch=1e3)

Total run length for last run

batch length (blen)× number of batches (nbatch) = 109



Leif’s Favorite Application (cont.)

Batch means should be normally distributed if batch length
b = 106 is long enough to be “large” in the Markov chain central
limit theorem (MCCLT)

√
b(Xb − µ)

D−→ Normal(0, σ2)



Leif’s Favorite Application (cont.)
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Leif’s Favorite Application (cont.)

The generalized MCCLT (GMCCLT) says for 1 < α ≤ 2

b1−1/αs(b)(Xb − µ)
D−→ Stable(α, β, γ, 0)

where s is a slowly varying function.

The ordinary MCCLT is α = 2 special case (α is index, β is
skewness, γ is scale). Here we expect β = 0 by symmetry of
equilibrium distribution.

Unknown (to me) if GMCCLT actually holds in this case or what α
would be if it does hold.



Leif’s Favorite Application (cont.)
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Appendix I
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Appendix II

Details of bounding the tail behavior for exponential families.∫
eh <∞ if and only if h has a unique mode θ̃n.

By strict concavity ∇h is strictly multivariate monotone function[
∇h(θ1)−∇h(θ2)

]
· (θ1 − θ2) < 0, whenever θ1 6= θ2

and
∇h(θ) · (θ − θ̃n) < 0, whenever θ 6= θ̃n

and

∇h(θ) · θ − θ̃n
‖θ − θ̃n‖

< 0, whenever θ 6= θ̃n

Since left hand side is continuous function of θ, its supremum over
any compact set is negative. Let −ε be the supremum over the
boundary of the ball of radius one centered at θ̃n.



Appendix II (cont.)

For any θ1 in the exterior of the ball of radius one centered at θ̃n,
define

θ2 =
θ1 − θ̃n
‖θ1 − θ̃n‖

and

∇h(θ1) · θ1 − θ̃n
‖θ1 − θ̃n‖

=
[
∇h(θ1)−∇h(θ2)

]
· θ1 − θ̃n
‖θ1 − θ̃n‖

+∇h(θ2) · θ1 − θ̃n
‖θ1 − θ̃n‖

The first term on the right hand side is negative because of
multivariate monotonicity and the fact that θ1 − θ̃n is parallel to
θ1 − θ2 and the second term is less than or equal to −ε.



Appendix II (cont.)

We have now established

∇h(θ1) · θ1 − θ̃n
‖θ1 − θ̃n‖

≤ −ε, whenever θ1 ∈ E

where E is the exterior of the ball of radius one centered at θ̃n.

Taking the limit superior as θ1 →∞ establishes that h has
exponentially light tail behavior.



Appendix II (cont.)

For an exponential family with bounded sufficient statistic (logistic
regression, log-linear models for categorical data), the curvature
condition is trivial (Leif’s theorem has boundedness as one
condition).

For other exponential families (Poisson regression with log link),
the curvature condition takes some work. Multivariate
monotonicity also implies

∇h(θ)

‖∇h(θ)‖
· θ − θ̃n
‖θ − θ̃n‖

< 0, whenever θ 6= θ̃n

and the proof starting here is almost the same as the one for
exponentially light.
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in the random-walk Metropolis algorithm.
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Geometric ergodicity of Metropolis algorithms.
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Geometric ergodicity and hybrid Markov chains.
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Ibragimov, I. A. and Linnik, Yu. V. (1971).
Independent and Stationary Sequences of Random Variables.
Walters-Nordhoff, Gronigen.
(Generalized CLT for stationary stochastic processes

is Theorem 18.1.1.)

Tierney, L. (1994).
Markov chains for exploring posterior distributions

(with discussion).
Annals of Statistics, 22, 1701–1762.
(Named RMWA, showed Harris ergodicity).
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