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1 Introduction

We do a very simple one-parameter model for which everything is trivial,
the Cauchy location model. This model is mildly notorious among theoreti-
cians because the likelihood is multimodal and the multimodality does not
go away as n goes to infinity (Reeds, 1985). It’s not that there is any theory
that leads one to expect that multimodality should go away as n goes to
infinity, but just that the Cauchy model is simple enough to analyze and in
it one can see that indeed what theory doesn’t lead one to expect actually
doesn’t happen.

So let’s make up some data. Since the model is translation invariant, it
doesn’t matter what we choose at the “simulation truth” parameter value

> set.seed(42)

> n <- 30

> theta0 <- 0

> x <- theta0 + rcauchy(n)

To do maximum likelihood using local optimization we need a good start-
ing point for Newton’s method. The obvious starting point for the Cauchy
location model is the sample median, easily calculated, highly robust, guar-
anteed

√
n-consistent.

Minus the log likelihood (minus because nlm does minimization rather
than maximization)

> mlogl <- function(theta, x) sum(-dcauchy(x, theta, log = TRUE))

and the MLE

> out <- nlm(mlogl, median(x), typsize = n, hessian = TRUE, x = x)

> print(out)
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$minimum
[1] 77.47065

$estimate
[1] -0.1816497

$gradient
[1] 7.39296e-08

$hessian
[,1]

[1,] 21.86743

$code
[1] 1

$iterations
[1] 2

So our MLE, observed Fisher information (we will pretend we don’t know
how to calculate expected Fisher information), and asymptotic confidence
interval calculated from them are

> theta.hat <- out$estimate

> info <- out$hessian

> conf.level <- 0.95

> crit <- qnorm((1 + conf.level)/2)

> theta.hat + crit * c(-1, 1)/sqrt(info)

[1] -0.6007801 0.2374808

Couldn’t be simpler.

2 Single Bootstrap

By“bootstrap”we mean parametric bootstrap, since we are working with
maximum likelihood.

> nboot <- 200

> save.seed <- .Random.seed

> theta.star <- double(nboot)
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> theta.star.code <- double(nboot)

> info.star <- double(nboot)

> for (iboot in 1:nboot) {

+ x.star <- theta.hat + rcauchy(n)

+ out <- nlm(mlogl, median(x.star), typsize = n, hessian = TRUE,

+ x = x.star)

+ theta.star[iboot] <- out$estimate

+ theta.star.code[iboot] <- out$code

+ info.star[iboot] <- out$hessian

+ }

> all(theta.star.code <= 3)

[1] TRUE

The pivotal quantity used to construct the confidence interval (or, more
precisely, its bootstrap approximation) is

> z.star <- (theta.star - theta.hat) * sqrt(info.star)

Figure 1 shows its Q-Q plot

> qqnorm(z.star)

> abline(0, 1)

and appears on p. 4. It looks like we are in asymptopia.
Thus there is no point in using the bootstrap distribution of the pivot

rather than the normal approximation to calculate the confidence interval.

> crit.star <- as.numeric(quantile(z.star, probs = c(0.025, 0.975)))

> theta.hat - rev(crit.star)/sqrt(info)

[1] -0.5925892 0.2072899

> theta.hat + crit * c(-1, 1)/sqrt(info)

[1] -0.6007801 0.2374808

Pretty much the same thing either way.
We should note that with this model there is no point to a double boot-

strap. Since the model is translation invariant, the single bootstrap sampling
distribution is pivotal, and there is no work for the double bootstrap to do.
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Figure 1: Q-Q Plot of Bootstrap Approximation of Pivotal Quantity. Line
has intercept zero and slope one.
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3 One-Step Newton

For this section, we’ll assume we do know the formula for the Cauchy
log likelihood and derivatives

> logl <- expression(-log(1 + (x - theta)^2))

> scor <- D(logl, "theta")

> hess <- D(scor, "theta")

> print(scor)

2 * (x - theta)/(1 + (x - theta)^2)

> print(hess)

-(2/(1 + (x - theta)^2) - 2 * (x - theta) * (2 * (x - theta))/(1 +
(x - theta)^2)^2)

> mloglfun <- function(theta, x) sum(-eval(logl))

> gradientfun <- function(theta, x) sum(-eval(scor))

> hessianfun <- function(theta, x) sum(-eval(hess))

So we redo the bootstrap and this time also do one-step Newton

> objfun <- function(theta, x) {

+ result <- mloglfun(theta, x)

+ attr(result, "gradient") <- gradientfun(theta, x)

+ return(result)

+ }

> .Random.seed <- save.seed

> theta.star2 <- double(nboot)

> theta.star2.code <- double(nboot)

> theta.start <- double(nboot)

> theta.onestep <- double(nboot)

> for (iboot in 1:nboot) {

+ x.star <- theta.hat + rcauchy(n)

+ theta.start[iboot] <- median(x.star)

+ out <- nlm(objfun, theta.start[iboot], typsize = n, x = x.star)

+ theta.star2[iboot] <- out$estimate

+ theta.star2.code[iboot] <- out$code

+ theta.onestep[iboot] <- theta.start[iboot] - gradientfun(theta.start[iboot],

+ x.star)/hessianfun(theta.start[iboot], x.star)

+ }

> max(abs(theta.star2 - theta.star))
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[1] 1.518016e-05

> all(theta.star2.code <= 3)

[1] TRUE

Figure 2 compares the two estimators

> err.start <- theta.start - theta.star

> err.onestep <- theta.onestep - theta.star

> plot(err.start, err.onestep, xlab = "error of starting point (sample median)",

+ ylab = "error of one-step Newton estimator")

and appears on p. 7. It looks like we are not yet in asymptopia, though
perhaps pretty close. For most of the bootstrap samples Newton’s method
nearly converges in one step (those in the black clump along the horizontal
axis). A sizeable fraction are not in the clump, however, even for points not
in the clump the one-step error is less than a tenth the starting error (except
for 5 points out of 200).

4 Quadraticity

In this section we directly investigate quadraticity over the region con-
taining a certain fraction of the MLE and starting points for Newton’s
method

> alpha <- 0.05

> foo <- quantile(theta.start, probs = c(alpha/4, 1 - alpha/4))

> bar <- quantile(theta.star2, probs = c(alpha/4, 1 - alpha/4))

> baz <- pretty(c(foo, bar))

> print(baz)

[1] -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

> .Random.seed <- save.seed

> hessians <- matrix(NaN, nboot, length(baz))

> for (iboot in 1:nboot) {

+ x.star <- theta.hat + rcauchy(n)

+ for (j in seq(along = baz)) hessians[iboot, j] <- hessianfun(baz[j],

+ x.star)

+ }
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Figure 2: Comparison of error of starting point for Newton’s method (sam-
ple median) and error of one-step Newton estimator, where “error” means
difference from MLE.
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Figure 3: Constancy of the Hessian as a function of the parameter. Lines
connect the minimum and maximum value of the Hessian for a particular
bootstrap data set at the set of points −0.8, −0.6, −0.4, −0.2, 0, 0.2, 0.4.
The abscissa of the line is the median value of the Hessian at these points.

> hess.max <- apply(hessians, 1, max)

> hess.min <- apply(hessians, 1, min)

> hess.med <- apply(hessians, 1, median)

Figure 3 compares the two estimators

> plot(c(hess.med, hess.med), c(hess.max, hess.min), type = "n",

+ xlab = "median value of Hessian", ylab = "min and max value of Hessian")

> segments(hess.med, hess.min, hess.med, hess.max)

and appears on p. 8. This plot looks like we are really not yet in asymptopia.
There is a lot of variability of the Hessian over the range.
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5 Discussion

One can experiment with this simulation in various ways.

• One can increase the sample size n set in the first code chunk and
rerun. We have done this and indeed Figures 2 and Figure 3 do indeed
look more “in asymptopia” as n increases.

• One can increase the dimension of the parameter space, going to a
Cauchy location-scale model. (Exercise: What is a good starting point
for Newton’s method in this case? The median is still a good estimate
of location. What scale estimate does one use?)

• One can move outside the class of location-scale families to a family
for which the single bootstrap is not exact. Then it is possible to
investigate

– How close the distribution of the Hessian is to invariant in law.

– How necessary (or unnecessary) double bootstrap correction of
the single bootstrap is.

This we see that this example is too simple to illustrate all aspects of
the “Le Cam Made Simple” view of asymptotics, but the aspects it does
illustrate are instructive.
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