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What this Talk is About

In exponential families for discrete data — logistic and Poisson
regression, log-linear models for contingency tables — MLE does
not always exist in the conventional sense.

Then available software produces nonsense, often with no error
or warning. Hypothesis tests and confidence intervals based on
“usual” asymptotics of MLE do not work.

We now have the solution! Old theory (Barndorff-Nielsen, 1978).
New software (R package rcdd, Geyer and Meeden, 2008, which
uses cddlib computational geometry package, Fukuda, 2008).



Binomial Example

x is Binomial(n,p). MLE is p = z/n.
Natural parameter is

0 = logit(p) = log (%ip)

When p = 0 or p = 1, MLE of the natural parameter § = logit(p)
does not exist.

When p =0 or p = 1, distribution for MLE is degenerate.

When p =0 or p =1, "usual” confidence interval

—
B+ 1.96\/p( p)

mn
does not work.



One-Dimensional Exponential Family Example

Black points: MLE exists. Usual
® 6 6 6 ¢ 0 o asymptotics o. k.

Red points: MLE for natural parameter does not exist. MLE
distribution degenerate. Usual asymptotics no good.



Two-Dimensional Exponential Family Example

Black points: MLE exists. Usual
asymptotics o. k.

Red points: MLE for natural pa-
rameter does not exist. MLE
distribution degenerate. Usual
asymptotics no good.



Curse of Dimensionality

For dimensions higher than two, no nice pictures, same geometry.

The higher the dimension, the more boundary points (red) where
MLE does not exist.

Curse of Dimension Reduction

GLM with data vector y and model matrix M: natural sufficient
statistic is M1y.

Relevant geometry is for MTy not y. Need linear programming
to determine points on boundary.



Generic Directions of Recession

H Black dots: possible values
of M1y. Green dot: the
observed value of M1y.

®
® ®
® o
. . \ t/ Direction of recession ¢ is
o o vector orthogonal to hyper-
o o plane H containing green dot
with all black dots in H or
¢ ¢ on side opposite to 4.
Vector § is generic direction of recession (GDOR) if fewest dots
in H of any such construction and some dots not in H.

MLE does not exist in the conventional sense if and only if a
GDOR exists.



Logistic Regression Example

Response vector y, predictor vector z, and y; is Bernoulli(p;) with

0; = logit(p;) = B1 + zif> + 283

(quadratic logistic regression). How hard can it be?



Logistic Regression Example (cont.)
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If data as shown, MLE does not exist!



Logistic Regression Example (cont.)

> x <= 1:30

> y <- c(rep(0, 12), rep(1, 11), rep(0, 7))

> out <- glm(y ~ x + I(x72), family = binomial, x =

Warning messages:
1: In glm.fit(x = X, y = Y, weights
algorithm did not converge

2: In glm.fit(x = X, y = Y, weights

weights, start

weights, start

fitted probabilities numerically O or 1 occurred

TRUE)

start, etasta:

start, etasta:

The glm function suggests — somewhat indirectly — that the

MLE may not exist.

10



Finding a GDOR

> 1library(rcdd)

> tanv <- out$x

> tanv[y == 1, ] <- (-tanv[y == 1, 1)

> vrep <- cbind(0, 0, tanv)

> 1lout <- linearity(vrep, rep = "V")

> lout

integer (0)

> p <- ncol(tanv)

> hrep <- cbind(-vrep, -1)

> hrep <- rbind(hrep, c(0, 1, rep(0, p), -1))
> objv <- c(rep(0, p), 1)

> pout <- lpcdd(hrep, objv, minimize = FALSE)
> gdor <- pout$primal.solution[1:p]

> gdor

[1] -53

.3636364  6.5454545 -0.1818182
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Finding a GDOR (cont.)

In the immortal words of a comment in the UNIX source code,
“vou are not expected to understand this,” but the output tells
us two things:

> gdor
[1] -53.3636364 6.5454545 -0.1818182

gives the GDOR and

> 1lout
integer (0)

says that hyperplane H contains no MTy except for observed

value.
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http://catb.org/jargon/html/Y/You-are-not-expected-to-understand-this.html

Limiting Conditional Model

Take limits of probability distributions

lim Pgy.s(-) =Ps(- | M'Y € H)

S— 00

set of all such limits is called limiting conditional model (LCM).
LCM is exponential family; same natural parameter and statistic.

If I is log likelihood for original model and 38 is MLE for LCM,
then

S§—00

lim (B + s6) = s%pl(ﬁ)

so can consider MLE for original model to be 38 sent to infinity
in direction 9.
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Logistic Regression Example (cont.)

So what? The MLE distribution in the LCM is degenerate,
concentrated at one point. It says we could never observe data
different from what we did observe. Nobody believes that.

The sample is not the population. Estimates are not parameters.

We need confidence intervals, necessarily one-sided, saying how
close s is to infinity in B—l— sd and how close the corresponding
mean value parameters u; = Eﬁ(Yi) are to their observed values.
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One-Sided Confidence Intervals

Let B denote set of all MLE for the LCM — affine subspace, all
points corresponding to same distribution — then

{BeB:Py(M'Y € H) > a}

iIs 1 — o confidence region saying how close natural parameter is
to infinity.
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One-Sided Intervals for Logistic Regression
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One-sided exact simultaneous 95% confidence intervals for mean
value parameters u; = Eg(Y;).
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Lessons Learned from Logistic Regression Example

GDOR notion. General.

LCM construction. General.

LCM concentrated at one point so any g is an MLE for the LCM.
Not general.

Usually LCM fixes only some, not all components of response
vector at observed values. Hence need to find MLE for LCM.
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Loglinear Model Example

2 X 2x---x 2 contingency table with seven dimensions hence
27 = 128 cells.

> dat <- read.table(

+ url ("http://www.stat.umn.edu/geyer/gdor/catrec.txt"),
+ header = TRUE)

gets the data.

> out3 <- glm(y ~ (vl + v2 + v3 + v4 + vb + v6 + v7)"3,
+ family = poisson, data = dat, x = TRUE)

fits the model. R gives no error or warning, but MLE does not

exist.
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Loglinear Model Example (cont.)

> tanv <- out3$x

> vrep <- cbind(0, 0, tanv)

> vrepl[dat$y > 0, 1] <- 1

> 1lout <- linearity(vrep, rep = "V")
> linear <- dat$y > O

> linear[lout] <- TRUE

> sum(linear)

[1] 112

> length(linear) - sum(linear)

[1] 16

The LCM fixes 16 components of the response vector at their
observed value zero and leaves 112 components random.
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Loglinear Model Example (cont.)

Fit LCM

> dat.cond <- dat[linear, ]

> out3.cond <- glm(y ~ (vl + v2 + v3 + v4 + vb + v6 + v7)"3,
+ family = poisson, data = dat.cond)

> summary(out3.cond)

Voluminous output not shown (64 regression coefficients!). This
fit out3.cond can be used to produce valid hypothesis tests and
confidence intervals about the 112 components of the response
not fixed in the LCM.

20



Loglinear Model Example (cont.)

For the 16 components of the response fixed at zero in LCM,
proceed as before. Find GDOR.

p <- ncol(tanv)

hrep <- cbind(0, 0, -tanv, 0)

hrep[!linear, ncol(hrep)] <- (-1)
hrep[linear, 1] <- 1

hrep <- rbind(hrep, c(0, 1, rep(0, p), -1))
objv <- c(rep(0, p), 1)

pout <- lpcdd(hrep, objv, minimize = FALSE)

vV V V VvV V V V V

gdor <- pout$primal.solution[1:p]

and find one-sided confidence intervals.
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One-Sided Intervals for Loglinear Model

One-sided exact simultaneous 95% confidence intervals for mean
value parameters p; = Eg(Y;) based on multinomial sampling
(not Poisson). Sample size sum(dat$y) is 544.

v1 Vo V3 V4 vUs vg vy lower upper
O O O O O o0 O 0 0.2855
O O O 1 0 0 O O 0.1404
1 1 0 0 1 0 O 0 0.2194
1 1 0 1 1 0 O 0 0.4198
O O O O O 1 o0 0 0.0892
1 1 0 1 1 0 1 0 0.2639
O 0O O O O 1 1 0 0.0665
O 0O O 1 o0 1 1 0 0.1543
1 1 0 o0 1 1 1 0 0.1406
1 1 o0 1 1 1 1 0 0.3230
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Hypothesis Tests

“Usual”’ hypothesis tests valid if MLE exists in the conventional
sense for null hypothesis.

If not, then base test on LCM for null hypothesis (S. Fienberg,
personal communication).
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More about RCDD

Exact, infinite-precision, rational arithmetic. Can be used for
computational geometry operations, including the linearity and
1pcdd functions, and for ordinary arithmetic and comparison.

When exact arithmetic is used, computer proofs are as rigorous
as pencil-and-paper proofs.

See package vignette for everything rcdd can do.
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Web Pages

Paper.

Electronic Journal of Statistics 3, (2009), 259—289 (electronic)

Two technical reports done with Sweave SO every number in the

paper and this talk is reproducible by anyone who has R. Also
slides for this talk.

http://www.stat.umn.edu/geyer/gdor/
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