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Exponential Families of Distributions

An exponential family is a statistical model having log likelihood

l(θ) = 〈y, θ〉 − c(θ)

where y is a p-dimensional vector statistic, θ is a p-dimensional

vector parameter, and

〈y, θ〉 =
p∑

i=1

yiθi = yTθ = θTy

Statistic y and parameter θ that give log likelihood of this form

are called natural.
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Exponential Family Examples

binomial and multinomial distributions

Poisson distribution

geometric and negative binomial distributions

univariate and multivariate normal distributions

exponential and gamma distributions

generalized linear models with above as response distributions

loglinear models for categorical data

aster models (http://www.stat.umn.edu/geyer/aster/)
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Exponential Family Theory

Log likelihood for natural parameter is concave.

Can always choose natural parametrization so that log likelihood

is strictly concave, in which case maximum likelihood estimate

(MLE) is unique if it exists.

Conditions for “usual” asymptotics of maximum likelihood hold

if true unknown parameter value is in interior of parameter space.
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What is this Talk About?

In exponential families for discrete data, MLE does not always

exist in the conventional sense.

When it does not, available software produces nonsense, often

with no error or warning. “Usual” asymptotics of MLE are not

good approximation to actual sampling distribution. “Usual”

hypothesis tests and confidence intervals do not work.

We now have the solution! Old theory (Barndorff-Nielsen, 1978).

New software (R contributed package rcdd, Geyer 2008, interface

to cddlib computational geometry package, Fukuda, 2008).
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Trendiness?

So isn’t this all old seventies stuff? Who cares?

The bandwagon of the oughts (this decade), small n large p,

genomics, data mining, model selection, model averaging, etc.

is what’s trendy now.

In linear models, if you have small n large p, then you have

collinearity, and old seventies stuff like ridge regression becomes

relevant again, a competitor of LASSO and the like.

In generalized linear models, if you have small n large p, then

you have nonexistence of the MLE — what this talk is about!
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Binomial Example

x is Binomial(n, p). MLE is p̂ = x/n.

Natural parameter is

θ = logit(p) = log

(
p

1− p

)
When p̂ = 0 or p̂ = 1, MLE of the natural parameter θ̂ = logit(p̂)
does not exist.

When p̂ = 0 or p̂ = 1, distribution for MLE is degenerate.

When p̂ = 0 or p̂ = 1, “usual” confidence interval

p̂± 1.96

√
p̂(1− p̂)

n

does not work.
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Natural Affine Submodels

If a is known vector and M is known matrix (offset vector and

model matrix), change-of-parameter

θ = a+Mβ

gives log likelihood

lsub(β) = 〈y, a+Mβ〉 − c(a+Mβ)

= 〈y, a〉+ 〈y,Mβ〉 − c(a+Mβ)

Term 〈y, a〉 does not contain parameters and can be dropped.

Also

yTMβ = 〈y,Mβ〉 = 〈MTy, β〉 = βTMTy

where bilinear forms have different dimensions.

8



Natural Affine Submodels (cont.)

Conclusion: natural affine submodel has log likelihood

lsub(β) = 〈MTy, β〉 − csub(β)

hence is itself exponential family with natural statistic MTy and

natural parameter β.

Exponential family theory covers not only saturated generalized

linear model, loglinear model, or aster model but also all (natural

affine) submodels too!

From now on we drop the “sub” from lsub and csub.
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Logistic Regression Example

Response vector y, predictor vector x, and yi is Bernoulli(pi) with

θi = logit(pi) = β1 + xiβ2 + x2
i β3

(quadratic logistic regression). How hard can it be?
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Logistic Regression Example (cont.)

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

If data as shown, MLE does not exist!

11



Generic Directions of Recession

A generic direction of recession (GDOR) is a vector δ such that

s 7→ l(β + sδ)

is strictly increasing function for each fixed β and there exists β̂

such that

lim
s→∞ l(β̂ + sδ) = sup

β∈Rq
l(β)

MLE “is” β̂ sent to infinity in the direction δ.

Theorem: MLE does not exist in the conventional sense if and

only if a GDOR exists.
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Limits in Directions of Recession

Probability density function of distribution with parameter β with

respect to distribution with parameter ψ is

fβ(ω) = e〈M
TY (ω),β−ψ〉−c(β)+c(ψ)

If δ is GDOR and y is observed data vector, define

H = {w ∈ Rp : 〈w − y,Mδ〉 = 0 }

and suppose Prβ(Y ∈ H) > 0, then

lim
s→∞ fβ+sδ(ω) =


0, 〈Y (ω)− y,Mδ〉 < 0

fβ(ω)/Prβ(Y ∈ H), 〈Y (ω)− y,Mδ〉 = 0

+∞, 〈Y (ω)− y,Mδ〉 > 0

Right-hand side is fβ(ω | Y ∈ H), and 〈Y − y,Mδ〉 ≤ 0 almost

surely.
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Limits in Directions of Recession (cont.)
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Dots are support of original family. If δ is GDOR, then limiting

conditional distribution is concentrated on H.
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Limiting Conditional Model

Limiting conditional model (LCM)

{ fβ( · | Y ∈ H) : β ∈ Rq }
has log likelihood

lcond(β) = l(β)− log Prβ(Y ∈ H)

hence is exponential family with same natural statistic MTy and
natural parameter β as the original model. Since

lcond(β) > l(β), for all β

MLE for LCM, if it exists, is MLE in Barndorff-Nielsen completion
of exponential family.

Theorem: if δ is GDOR, then MLE always exists in LCM under
regularity conditions of Brown (1986) that hold for all practical
applications.
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Finding a GDOR

> x <- 1:30

> y <- c(rep(0, 12), rep(1, 11), rep(0, 7))

> out <- glm(y ~ x + I(x^2), family = binomial, x = TRUE)

Warning messages:

1: In glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, :

algorithm did not converge

2: In glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, :

fitted probabilities numerically 0 or 1 occurred

This is the glm function’s somewhat indirect way of suggesting

the MLE may not exist.
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Finding a GDOR (cont.)

> library(rcdd)

> tanv <- out$x

> tanv[y == 1, ] <- (-tanv[y == 1, ])

> vrep <- cbind(0, 0, tanv)

> lout <- linearity(vrep, rep = "V")

> lout

integer(0)

> p <- ncol(tanv)

> hrep <- cbind(-vrep, -1)

> hrep <- rbind(hrep, c(0, 1, rep(0, p), -1))

> objv <- c(rep(0, p), 1)

> pout <- lpcdd(hrep, objv, minimize = FALSE)

> gdor <- pout$primal.solution[1:p]

> gdor

[1] -53.3636364 6.5454545 -0.1818182
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Finding a GDOR (cont.)

In the immortal words of a comment in the UNIX source code,

“you are not expected to understand this,” but the output tells

us two things:

> gdor

[1] -53.3636364 6.5454545 -0.1818182

gives the GDOR and

> lout

integer(0)

says that the LCM fixes all components of the data vector at

their observed values.
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Directions of Constancy

A direction of constancy is a vector δ such that

s 7→ l(β + sδ)

is a constant function for each fixed β, in which case β and β+sδ

correspond to the same probability distribution for all s.

Only way the MLE of an exponential family can be nonunique.

Theorem: δ is a direction of constancy if and only if 〈Y,Mδ〉 is

almost surely constant.
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Logistic Regression Example (cont.)

The LCM for our example is concentrated at one point. Hence

lcond(β) is constant function, every direction is a direction of

constancy for the LCM, and every vector β̂ is an MLE for the

LCM and satisfies

lim
s→∞ l(β̂ + sδ) = sup

β∈R3
l(β)

where δ is the GDOR found by the computer.
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Logistic Regression Example (cont.)

So what? The MLE distribution in the LCM is degenerate,

concentrated at one point. It says we could never observe data

different from what we did observe. Nobody believes that.

The sample is not the population. Estimates are not parameters.

We need confidence intervals, necessarily one-sided, saying how

close s is to infinity in β̂ + sδ and how close the corresponding

mean value parameters µi = Eβ(Yi) are to their observed values.
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One-Sided Confidence Intervals

The upper-tailed test with null hypothesis β̂+sδ and test statistic

〈Y,Mδ〉 has conservative P -value

Prβ̂+sδ(〈Y,Mδ〉 ≥ 〈y,Mδ〉) = Prβ̂+sδ(Y ∈ H)

where y is observed value of Y .

A one-sided 1− α confidence interval consists of all s such that

Prβ̂+sδ(Y ∈ H) ≥ α
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One-Sided Confidence Intervals (cont.)

Let B denote the set of all MLE for the LCM. In our logistic

regression example B = R3.

For each β ∈ B, find the one-sided confidence interval (sβ,∞) as

on the previous slide.

Since all of these confidence intervals use the same test statistic,

they have simultaneous coverage

{β + sδ : β ∈ B and s > sβ }

is a valid confidence region.
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One-Sided Intervals for Logistic Regression
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One-sided exact simultaneous 95% confidence intervals for mean
value parameters µi = Eβ(Yi) made using multiple different β̂.
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Lessons Learned from Logistic Regression Example

GDOR notion. General.

LCM construction. General.

LCM concentrated at one point so any β is an MLE for the LCM.

Not general.

Usually LCM fixes only some, not all components of response

vector at observed values. Hence need to find MLE for LCM.
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Loglinear Model Example

2 × 2 × · · · × 2 contingency table with seven dimensions hence

27 = 128 cells.

> dat <- read.table(

+ url("http://www.stat.umn.edu/geyer/gdor/catrec.txt"),

+ header = TRUE)

gets the data.
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Loglinear Model Example (cont.)

Treat as GLM. Poisson sampling and multinomial sampling give
same MLE (known fact from categorical data analysis).

> out2 <- glm(y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^2,

+ family = poisson, data = dat, x = TRUE)

> out3 <- glm(y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^3,

+ family = poisson, data = dat, x = TRUE)

> anova(out2, out3, test = "Chisq")

Analysis of Deviance Table

Model 1: y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^2

Model 2: y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^3

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 99 191.629

2 64 31.291 35 160.338 5.819e-18
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Loglinear Model Example (cont.)

R function glm gives no error or warning, but MLE does not exist

for model with formula

y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^3

which is all 3-way interactions but no higher order interactions.

R would produce nonsense if asked for confidence intervals for

this model or if asked for hypothesis test with this model as null

hypothesis.
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Loglinear Model Example (cont.)

> tanv <- out3$x

> vrep <- cbind(0, 0, tanv)

> vrep[dat$y > 0, 1] <- 1

> lout <- linearity(vrep, rep = "V")

> linear <- dat$y > 0

> linear[lout] <- TRUE

> sum(linear)

[1] 112

> length(linear) - sum(linear)

[1] 16

The LCM fixes 16 components of the response vector at their

observed value zero and leaves 112 components random.
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Loglinear Model Example (cont.)

Fit LCM

> dat.cond <- dat[linear, ]

> out3.cond <- glm(y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^3,

+ family = poisson, data = dat.cond)

> summary(out3.cond)

Voluminous output not shown (64 regression coefficients!). This

fit out3.cond can be used to produce valid hypothesis tests and

confidence intervals about the 112 components of the response

not fixed in the LCM.
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Loglinear Model Example (cont.)

For the 16 components of the response fixed at zero in LCM,

proceed as before. Find GDOR.

> p <- ncol(tanv)

> hrep <- cbind(0, 0, -tanv, 0)

> hrep[!linear, ncol(hrep)] <- (-1)

> hrep[linear, 1] <- 1

> hrep <- rbind(hrep, c(0, 1, rep(0, p), -1))

> objv <- c(rep(0, p), 1)

> pout <- lpcdd(hrep, objv, minimize = FALSE)

> gdor <- pout$primal.solution[1:p]

and find one-sided confidence interval for s in β̂ + sδ.
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Loglinear Model Example (cont.)

One-sided exact simultaneous 95% confidence intervals for mean
value parameters µi = Eβ(Yi) based on multinomial sampling
(not Poisson). Sample size sum(dat$y) is 544.

v1 v2 v3 v4 v5 v6 v7 lower upper
0 0 0 0 0 0 0 0 0.2855
0 0 0 1 0 0 0 0 0.1404
1 1 0 0 1 0 0 0 0.2194
1 1 0 1 1 0 0 0 0.4198
0 0 0 0 0 1 0 0 0.0892
... ... ... ... ... ... ... ... ...
1 1 0 1 1 0 1 0 0.2639
0 0 0 0 0 1 1 0 0.0665
0 0 0 1 0 1 1 0 0.1543
1 1 0 0 1 1 1 0 0.1406
1 1 0 1 1 1 1 0 0.3230
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Hypothesis Tests

“Usual” hypothesis tests valid if MLE exists in the conventional

sense for null hypothesis.

If not, then base test on LCM for null hypothesis (S. Fienberg,

personal communication).
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Other Uses for RCDD

Exact, infinite-precision, rational arithmetic. Can be used for

computational geometry operations, including the linearity and

lpcdd functions, and for ordinary arithmetic and comparison.

When exact arithmetic is used, computer proofs are as rigorous

as pencil-and-paper proofs.

See package vignette for everything rcdd can do.
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Web Pages

http://www.stat.umn.edu/geyer/gdor/

Submitted paper.

Technical report done with Sweave so every number in the paper

and this talk is reproducible by anyone who has R.

Slides for this talk.

http://www.stat.umn.edu/geyer/aster/

Aster models.
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