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Ordinary Confidence Intervals

OK for continuous data, but a really bad idea

for discrete data.

Why?

Coverage Probability

γ(θ) = prθ{l(X) < θ < u(X)}
=

∑

x∈S
I(l(x),u(x))(θ) · fθ(x)

As θ moves across the boundary of a possible

confidence interval (l(x), u(x)), the coverage

probability jumps by fθ(x).

Ideally, γ is a constant function equal to the

nominal confidence coefficient.

But that’s not possible.
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Binomial Example

Binomial data, sample size n = 10, confidence

interval calculated by R function prop.test
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Recent Literature

Agresti and Coull (Amer. Statist., 1998)

Approximate is better than “exact” for interval

estimation of binomial proportions.

Brown, Cai, and DasGupta (Statist. Sci., 2001)

Interval estimation for a binomial proportion

(with discussion).

Casella (Statist. Sci., 2001)

Comment on Brown, et al.

All recommend different intervals. All recom-

mended intervals are bad, just slightly less bad

than other possibilities.

Ordinary confidence intervals for discrete data

are irreparably bad.
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Randomized Tests

Randomized test defined by critical function

φ(x, α, θ).

• observed data x.

• significance level α

• null hypothesis H0 : θ = θ0

Decision is randomized: reject H0 with proba-

bility φ(x, α, θ0).

Since probabilities are between zero and one,

so is φ(x, α, θ).

Classical uniformly most powerful (UMP) and

UMP unbiased (UMPU) tests are randomized

when data are discrete.
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Randomized Test Example

Observe X ∼ Binomial(20, θ). Test

H0 : θ = 0.5

H1 : θ < 0.5

Distribution of X under H0.

x f(x) F(x)

4 0.0046 0.0059
5 0.0148 0.0207
6 0.0370 0.0577
7 0.0739 0.1316

Nonrandomized test can have α = 0.0207 or

α = 0.0577, but nothing in between.

Randomized test that rejects with probability

one when X ≤ 5 and with probability 0.7928

when X = 6 has α = 0.05.

Pr(X ≤ 5) + 0.7928 · Pr(X = 6)

= 0.0207+ 0.7928 · 0.0370
= 0.0500
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Fuzzy Sets

Indicator function IA of ordinary set A

0.0

1.0

IA(x)

x

Membership function IB of fuzzy set B

0.0

1.0

IB(x)

x

Membership function IB(x) indicates degree to

which x is to be considered to be in set B.

Ordinary sets are special case of fuzzy sets

called crisp sets.

7



Fuzzy Tests and Confidence Intervals

• For fixed α and θ0,

x 7→ φ(x, α, θ0)

is the fuzzy decision function for the size α

test of H0 : θ = θ0.

• For fixed x and α,

θ 7→ 1− φ(x, α, θ)

is (the membership function of) the fuzzy

confidence interval with coverage 1− α.

• For fixed x and θ0,

α 7→ φ(x, α, θ0)

is (the cumulative distribution function of)

the fuzzy P -value for test of H0 : θ = θ0.
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Binomial Example

Sample size n = 10, fuzzy confidence interval

associated with UMPU test, confidence level

1− α = 0.95.

Data x = 0 (solid curve) x = 4 (dashed curve)

and x = 9 (dotted curve).
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Binomial Example

Sample size n = 10, fuzzy confidence interval

associated with UMPU test, confidence level

1− α = 0.95.

Data x = 0.
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Binomial Example

Sample size n = 10, fuzzy confidence interval

associated with UMPU test, confidence level

1− α = 0.95.

Data x = 4.
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Binomial Example

Sample size n = 10, fuzzy confidence interval

associated with UMPU test, confidence level

1− α = 0.95.

Data x = 9.
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Exactness

UMP and UMPU tests are exact

Eθ{φ(X,α, θ)} = α, for all α and θ

Fuzzy confidence intervals inherit exactness

Eθ{1− φ(X,α, θ)} = 1− α, for all α and θ
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Fuzzy P -values

For P -values to even be definable a test must

have nested fuzzy critical regions,

α1 ≤ α2 implies φ(x, α1, θ) ≤ φ(x, α2, θ).

For any such test for discrete data and for any

x and θ

α 7→ φ(x, α, θ) (∗)

is a continuous non-decreasing function that

maps [0,1] onto [0,1].

So (∗) is the cumulative distribution function

of a continuous random variable P , which we

call the fuzzy P -value of the test.
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Exactness Again

UMP and UMPU tests are exact

Eθ{φ(X,α, θ)} = α, for all α and θ

By definition of fuzzy P -value

pr{P ≤ α | X} = φ(X,α, θ0)

Hence fuzzy P -values also inherit exactness

prθ0{P ≤ α} = Eθ0{pr{P ≤ α | X}}
= Eθ0{φ(X,α, θ0)}
= α,
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Probability Density Function

Cumulative distribution of fuzzy P -value is

α 7→ φ(x, α, θ0) (∗)

Probability density function is

α 7→ ∂

∂α
φ(x, α, θ0) (∗∗)

For UMP tests, fuzzy P -values are uniformly

distributed on an interval.

For UMPU tests, (∗) is piecewise linear and

(∗∗) is piecewise constant (a step function).
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Binomial Example

Sample size n = 10, fuzzy P -value associated

with UMPU test, null hypothesis θ0 = 0.7, data

x = 10.
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Fuzzy and Randomized Concepts

Decisions

Fuzzy decision reports φ(x, α, θ0).

Randomized decision generates Uniform(0,1)

random variate U , and reports “reject H0” if

U < φ(x, α, θ0) and “accept H0” otherwise.

P -values

Fuzzy P -value is the theoretical random vari-

able having the cumulative distribution func-

tion α 7→ φ(x, α, θ0).

Randomized P -value is a realization (simulated

value) of this random variable.
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Fuzzy and Randomized Concepts

(Continued)

γ-Cuts

If IB is the membership function of a fuzzy set

B, the γ-cut of B is the crisp set

γIB = {x : IB(x) ≥ γ }.

Confidence Intervals

Fuzzy confidence interval is the fuzzy set B

with membership function

IB(θ) = 1− φ(x, α, θ).

Randomized confidence interval is the crisp set
UIB, where U is uniform (0,1) random variate.
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Situations with UMP and UMPU Tests

• Binomial

• Poisson

• Negative Binomial

• Two Binomials p1(1− p2)/p2(1− p1)

• Two Poissons µ1/µ2

• Two Negative Binomials (1− p2)/(1− p1)

• McNemar p12/(p12 + p21)

• Fisher p11p22/p12p21
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Summary

• Fuzzy decisions, confidence intervals, and

P -values based on UMP and UMPU tests

are the Right Thing (exact and uniformly

most powerful).

• Crisp confidence intervals are the Wrong

Thing (for discrete data).

• UMP and UMPU for any exponential family

with single parameter of interest.

• Fuzzy outside classical UMP and UMPU?

• Fuzzy or Randomized?
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Appendix: UMP

For one-parameter exponential family having

canonical statistic T (X) and canonical param-

eter θ there exists UMP test with hypotheses

H0 = {ϑ : ϑ ≤ θ }
H1 = {ϑ : ϑ > θ }

significance level α, and critical function

φ(x, α, θ) =















1, T (x) > C

γ, T (x) = C

0, T (x) < C

where γ and C are determined by

Eθ{φ(X,α, θ)} = α.

The analogous lower-tailed test is the same

except that all inequalities are reversed.
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Appendix: UMPU

For one-parameter exponential family having

canonical statistic T (X) and canonical param-

eter θ there exists UMPU test with hypotheses

H0 = {ϑ : ϑ = θ }
H1 = {ϑ : ϑ 6= θ }

significance level α, and critical function

φ(x, α, θ) =







































1, T (x) < C1

γ1, T (x) = C1

0, C1 < T (x) < C2

γ2, T (x) = C2

1, C2 < T (x)

where C1 ≤ C2 and γ1, γ2, C1, and C2 are

determined by

Eθ{φ(X,α, θ)} = α

Eθ{T (X)φ(X,α, θ)} = αEθ{T (X)}
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Appendix: More Bad Crisp Intervals I

Performance of usual (Wald) interval

p̂± 1.96

√

p̂(1− p̂)

n

for Binomial(30, p). Dotted line is nominal

level (0.95).
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Appendix: More Bad Crisp Intervals II

Performance of score interval






p : |p̂− p| < 1.96

√

p(1− p)

n







for Binomial(30, p). Dotted line is nominal

level (0.95).
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Appendix: More Bad Crisp Intervals III

Performance of likelihood interval
{

p : 2
[

ln(p̂)− ln(p)
]

< 1.962
}

where ln is log likelihood for Binomial(30, p).

Dotted line is nominal level (0.95).
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Appendix: More Bad Crisp Intervals IV

Performance of variance stabilized interval

g−1

(

g(p̂)± 1.96√
n

)

where g(p) = 2 sin−1(
√
p) for Binomial(30, p).

Dotted line is nominal level (0.95).
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Appendix: More Bad Crisp Intervals V

Performance of Clopper-Pearson “exact” in-

terval for Binomial(30, p). Dotted line is nom-

inal level (0.95).

0.0 0.2 0.4 0.6 0.8 1.0

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Nominal 95% Clopper−Pearson Interval, n = 30

p

co
ve

ra
ge

 p
ro

ba
bi

lit
y

28



Appendix: An Early Randomized Interval

Performance of Blyth-Hutchinson randomized

interval for Binomial(30, p). Dotted line is nom-

inal level (0.95).

Would be exact except for rounding error. Ran-

domization variate U rounded to one sig. fig.

Interval endpoints rounded to two sig. fig.
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Appendix: Old Literature

Blyth and Hutchinson (Biometrika, 1960)

Table of Neyman-shortest unbiased confidence

intervals for the binomial parameter.

Lehmann and Scheffé (Sankyā, 1950, 1955)

Completeness, similar regions, and unbiased

estimation.

Eudey (Berkeley Tech. Rept., 1949)

On the treatment of discontinuous random vari-

ables.

Wald (Econometrica, 1947)

Foundations of a General Theory of Sequential

Decision Functions.

von Neumann and Morgenstern (1944)

Theory of Games and Economic Behavior.
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