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Ordinary Confidence Intervals

OK for continuous data, but a really bad idea for discrete data.

Why?

Coverage Probability

γ(θ) = prθ{l(X) < θ < u(X)}

=
∑

x∈S

I(l(x),u(x))(θ) · fθ(x)

As θ moves across the boundary of a possible confidence interval

(l(x), u(x)), the coverage probability jumps by fθ(x).

Ideally, γ is a constant function equal to the nominal confidence

coefficient.

But that’s not possible.
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Binomial Example

Binomial data, sample size n = 10, confidence interval calculated

by R function prop.test
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Fuzzy Tests and Confidence Intervals

• For fixed α and θ0,

x 7→ φ(x, α, θ0)

is the fuzzy decision function for the size α test of H0 : θ = θ0.

• For fixed x and α,

θ 7→ 1− φ(x, α, θ)

is (the membership function of) the fuzzy confidence interval

with coverage 1− α.

• For fixed x and θ0,

α 7→ φ(x, α, θ0)

is (the cumulative distribution function of) the fuzzy P -value

for test of H0 : θ = θ0.
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Fuzzy Confidence Interval

Binomial Example

Fuzzy confidence interval associated with the UMPU test, con-

fidence level 1− α = 0.95, sample size n = 25, data x = 17.
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Fuzzy Confidence Interval

Binomial Example (Cont.)

Fuzzy confidence interval associated with the UMPU test, con-

fidence level 1− α = 0.95, sample size n = 25, data x = 17.
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Fuzzy P-Value

Binomial Example

Cumulative distribution function of the fuzzy p-value associated

with the UMPU test, sample size n = 10, data x = 10, null

hypothesis θ0 = 0.7.
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Fuzzy P-Value

Binomial Example (Cont.)

Probability density function of the fuzzy p-value associated with

the UMPU test, sample size n = 10, data x = 10, null hypothesis

θ0 = 0.7.
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Genetic Linkage Analysis

If a disease (or other trait) runs in families, then it may be partly

genetic.

If a disease (or other trait) runs in families along with a marker

trait associated with a known location in the genome, then some

part of the trait may be associated with a nearby location in the

genome (may be linked to the marker).
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Genetic Linkage Analysis (Cont.)

Chromosomes occur in homologous pairs, one inherited from one

parent. Each may be a combination of the homologous pair in

the parent.

At each location the DNA may come from the grandfather (blue)

or the grandmother (red). The points where the origin changes

are called crossovers.

-¾

M1 M2 D M3 M4

A recombination occurs between two locations if an odd number

of crossovers occurs between them.
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Genetic Linkage Analysis (Cont.)

In the simplest model crossovers form a Poisson process and

marginal segregation probabilities at each location are 50–50.

Completely specifies probability model for inheritance patterns.

Only parameters to specify are Poisson intensity (genetic map,

recombination probabilities) and population allele frequencies for

markers.
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Nonparametric Linkage Analysis

Given possibly incomplete data Y on marker status on individu-

als in a pedigree, we can simulate the inheritance pattern X at

any genome location (http://www.stat.washington.edu/thompson/

Genepi/MORGAN/Morgan.shtml) or joint inheritance pattern X at

many locations.

If willing to hypothesize a disease model, a probability model

describing the trait given the underlying genetics, then we could

calculate a likelihood (traditional lod score analysis).

Recent work (Whittemore and Halpern, 1994; Kruglyak, Daly,

Reeve-Daly and Lander, 1996; Kong and Cox, 1997; McPeek,

1999; Nicolae and Kong, 2004; Thompson and Basu, 2003)

avoids disease models.
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Nonparametric Linkage Analysis (Cont.)

Let t(X) be a function of the inheritance pattern X at a genome

location that should be larger when the location is associated

with the disease than otherwise.

In our example t(X) is the size of the largest subset of affected

individuals who are identical by descent in the realization X.

Problem: t(X) is not observable.

Simple Solution: use w(Y ) = E{t(X) | Y } as test statistic.
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Criticism of Simple Approach

Test statistic w(Y ) = E{t(X) | Y } must be calculated by Monte

Carlo (using simulation of X given Y ).

Null distribution of w(Y ) must be calculated by two-stage Monte

Carlo

1. Simulate Y under null hypothesis.

2. For each simulated Y , simulate many X given Y and average

t(X) to calculate w(Y ).
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Criticism of Simple Approach (Cont.)

Null distribution of w(Y ) is extremely computationally intensive.

Thompson and Basu (2003) point out that mere computation of

w(Y ) loses information the distribution of t(X) given Y provides

about

• evidence Y provides about X

• evidence for linkage.

They proposed “pseudo-p-values” which were not true p-values

(not Uniform(0,1) under the null hypothesis).
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The Fuzzy Approach

X is a latent variable. t(X) is a latent test statistic.

s(x) = Pr{t(X) ≥ t(x)}

is a latent p-value.

If we could observe X = x, then s(x) would be the p-value.

Thompson and Geyer (2005) call the random variable s(X) | Y

the fuzzy p-value for the test of linkage in this situation.

The connection with Geyer and Meeden (2005) is they both have

the same equation

E[Pr{s(X) ≤ α|Y }] = α, for all α

so the fuzzy p-value is a true p-value in the sense that (marginally,

not conditionally on Y ) it is Uniform(0,1).
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Calculating Fuzzy P-Values

Need two sets of simulations

• X
(h)
0 , h = 1, . . . ,m, from the marginal distribution of X under

H0

• X(i), i = 1, . . . , n, from the conditional distribution of X given

Y under H0.

For each X(i) estimate s(X(i)) by

ŝ(X(i)) =
1

m

m
∑

h=1

I
{

t(X
(h)
0 ) ≥ t(X(i))

}

The distribution of the ŝ(X(i)) as indicated by their histogram

or empirical c. d. f. approximates the fuzzy p-value.
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Virtues of Fuzzy P-Values

• Exact randomized tests. Simple interpretation.

• No two-stage Monte Carlo required.

• Too much fuzziness in fuzzy p-value indicates more markers

needed.

• Need only model conditional distribution of Y given X un-

der H0. Do not use marginal distribution of Y (competing

methods do).
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Example Pedigree

‘A’ denotes affected. Dark shading denotes typed for at least 8

of the 10 DNA marker loci. No shading denotes no marker data

except for two individuals typed at 2 marker loci.
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Example Results
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c. d. f. of fuzzy p-values. Dashed lines are for hypothesized

disease locus at at one marker locus. Solid lines are for omnibus

test (explanation follows) corrected for multiple testing. A: using

all marker data. B: marker 6 data ignored.
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Correction for Multiple Testing

Now consider multiple simultaneous tests based on latent data

(inheritance patterns) Xλ at multiple locations λ which we collect

as the vector latent variable X.

The right way to do multiple testing is to conceptually consider

you are doing only one “omnibus” test. The procedure is con-

structed so the omnibus test rejects at level α with probability α

so its p-value is Uniform(0,1).

The natural omnibus latent test statistic is

tmax(X) = max
λ∈Λ

t(Xλ)

Except for notation tmax(X) is just like t(X) so we already know

what to do.
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