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Abstract. The optimal hypothesis tests for the binomial distribution
and some other discrete distributions are uniformly most powerful
(UMP) one-tailed and UMP unbiased (UMPU) two-tailed random-
ized tests. Conventional confidence intervals are not dual to random-
ized tests and perform badly on discrete data at small and moderate
sample sizes. We introduce a new confidence interval notion, called
fuzzy confidence intervals, that is dual to and inherits the exactness
and optimality of UMP and UMPU tests. We also introduce a new
P-value notion called, called fuzzy P-values or abstract randomized
P-values, that also inherits the same exactness and optimality.
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1 Introduction

1.1 Bad Behavior of Conventional Confidence Intervals

It has long been recognized that conventional confidence intervals, which we
also call “crisp” confidence intervals, using a term from fuzzy set theory, can
perform poorly for discrete data. A recent article (Brown, Cai, and DasGupta,
2001) reviews crisp confidence intervals for binomial models. The authors and
discussants of that paper do recommend some crisp confidence intervals (not
all recommending the same intervals), and the crisp confidence intervals they
recommend are indeed better than the intervals they dislike (for some definitions
of “better”). But even the best crisp confidence intervals behave very badly. The
actual achieved confidence level oscillates wildly as a function of both the true
unknown parameter value and the sample size. See our Figure 1, Figures 1-5,
10, and 11 in Brown, et al. (2001), Figures 4 and 5 in Agresti and Coull (1998),
and Figure 1 in Casella (2001).

It is important to recognize that the behavior of all crisp intervals for dis-
crete data must exhibit oscillatory behavior similar to that shown in Figure 1.
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Figure 1: Coverage probability of the nominal 95% confidence interval for
the binomial distribution with sample size n = 10 calculated by the func-
tion prop.test in the R statistical computing language (Thaka and Gentleman,
1996). This is the Wilson (also called, score) interval with continuity correction
and modifications when = 0 or x = n. The dashed line is the nominal level.
The solid line is the coverage probability of the interval as a function of the
success probability 6.



The fundamental reason is discreteness. When the data x are discrete, so are
the endpoints I(x) and u(x) of possible crisp confidence intervals. As the pa-
rameter # passes from just inside to just outside a possible confidence interval
(l(x),u(x)), the coverage probability jumps discontinuously by Prg(X = z).
This flaw is unavoidable, an irreconcilable conflict between crisp confidence in-
tervals and discrete data.

Standard asymptotic theory says that as the sample size goes to infinity the
oscillations get smaller in small neighborhoods of one fixed parameter value 6 in
the interior of the parameter space. For the binomial distribution, this means
the oscillations get smaller for 6 not near zero or one. But the oscillations remain
large for shockingly large sample sizes (Brown, et al., 2001) and the oscillations
remain large for all sample sizes for 0 sufficiently near zero and one. The inherent
flaws of the crisp confidence interval idea suggests that there should be a better
approach to this problem.

1.2 Randomized Tests and Confidence Intervals

The testing problem for discrete models was solved long ago by the introduc-
tion of randomized tests. For the binomial distribution and many other discrete
distributions there exist uniformly most powerful (UMP) one-tailed tests and
UMP unbiased (UMPU) two-tailed tests (Lehmann, 1959, Chapters 3 and 4).
These tests are optimal procedures.

Tests and confidence intervals are dual notions. Hence randomized confi-
dence intervals based on these tests can achieve their nominal coverage prob-
ability and inherit the optimality of these tests. For the binomial distribution
Blyth and Hutchinson (1960) gave tables for constructing such randomized in-
tervals (for sample sizes up to 50 and coverage probabilities 0.95 and 0.99). Due
to the discreteness of the tables, the randomized intervals they produce are not
close to exact, hence a computer should now be used instead of these tables (see
Sections 2 and 4 below).

These randomized tests and intervals have been little used in practice, how-
ever, because users object to a procedure that can give different answers for
the exact same data due to the randomization. It is annoying that two statisti-
cians analyzing exactly the same data and using exactly the same procedure can
nevertheless report different results. We can avoid the arbitrariness of random-
ization while keeping the beautiful theory of these procedures by a simple change
of viewpoint to what we call “fuzzy” and “abstract randomized” concepts.

1.3 Fuzzy Set Theory

We actually use only some concepts and terminology of fuzzy set theory,
which can be found in the most elementary of introductions to the subject
(Klir, St. Clair, and Yuan, 1997). We do not need the theory itself.

A fuzzy set A in a space S is characterized by its membership function, which
is amap I4 : S — [0,1]. The value I4(x) is the “degree of membership” of the
point x in the fuzzy set A or the “degree of compatibility ... with the concept



represented by the fuzzy set” (Klir, et al., 1997, p. 75). The idea is that we are
uncertain about whether z is in or out of the set A. The value I4(z) represents
how much we think x is in the fuzzy set A. The closer I4(z) is to 1.0, the more
we think x is in A. The closer I4(x) is to 0.0, the more we think x is not in A.

A fuzzy set whose membership function only takes on the values zero or one
is called crisp. For a crisp set, the membership function I4 is the same thing
as the indicator function of an ordinary set A. Thus “crisp” is just the fuzzy
set theory way of saying “ordinary,” and “membership function” is the fuzzy
set theory way of saying “indicator function.” The complement of a fuzzy set A
having membership function I 4 is the fuzzy set B having membership function
Ig =1—1I4 (Klir, St. Clair, and Yuan, 1997, p. 90).

If 14 is the membership function of a fuzzy set A, the y-cut of A (Klir, et al.,
1997, Section 5.1) is the crisp set

Ty={x:1s(x) >~}
Clearly, knowing all the v-cuts for 0 < v < 1 tells us everything there is to know
about the fuzzy set A. The 1-cut is also called the core of A, denoted core(A)
and the set
supp(4) = U Tg={{x:1s(x)>0}
v>0

is called the support of A (Klir, St. Clair, and Yuan, 1997, p. 100). A fuzzy set

is said to be convez if each ~y-cut is convex (Klir, St. Clair, and Yuan, 1997,
pp. 104-105).

1.4 Fuzzy and Abstract Randomized Procedures

Let ¢ be the critical function of a randomized test. This is a function from
the sample space to the interval [0, 1]. Since it is a function on the sample space,
it is usually written ¢(x), but since the function also depends on the size of the
test and the hypothesized value of the parameter, we prefer to write it ¢(z, «, 0),
where z is the data, « is the significance level (size), and 6 is the hypothesized
value of the parameter under the null hypothesis. A randomized test of size
a rejects Hy : 0 = 0y when data x are observed with probability ¢(z, a, 6)).
If the test is one-tailed with a compound null and alternative hypotheses, say
Hy : 6 < 0g versus Hy : 0 > 0, then it must be equivalent to a test of Hy : 0 = 6
versus H; : 0 > 6y in order to fit into our scheme.

The only well known examples come from UMP and UMPU theory, but the
exact form of the critical function does not matter for the discussion in this
section. Curious readers who have forgotten UMP and UMPU theory can look
at equations (3.1) and (3.4) below.

Now we come to the two main ideas of this paper. The first is that the
critical function ¢ can be viewed as three different functions

z — ¢(z, 0, 6) (1.1a)
0—1—¢(z,a,0) (1.1b)
a— ¢z, a,bp) (1.1c)



e For fixed a and 6, the function (1.1a) is called the fuzzy decision or the
abstract randomized decision for the size a test of Hy : 6 = 0.

e For fixed z and a, the function (1.1b) is called (the membership function
of) the fuzzy confidence interval with coverage 1 — a.

e For fixed z and 6y, the function (1.1c) is called (the membership func-
tion of) the fuzzy P-value or (the distribution function of) the abstract
randomized P-value for the test of Hy : 0 = 6.

The second main idea is that statistical analysis should stop with these func-
tions. They are what a statistician or scientist should report. No additional
and arbitrary randomization should be done.

1.4.1 Fuzzy Decisions

We think a statistician using a randomized test should just report the value
oz, a,0p). We call this a fuzzy test and the reported value a fuzzy decision.
(Or, if preferred, report the fuzzy P-value described in Section 1.4.3 below.)

A statistician preferring a classical randomized test can always generate his
or her own Uniform(0, 1) random variate U and “reject Hy” if U < ¢(z, «, bp)
and “accept Hy” otherwise.

Of course, if an actual immediate decision is required, then the randomized
test must be used. But in scientific inference, the decision is often merely
metaphorical, a way of discussing results that has no effect other than whatever
impression it makes on readers of a paper. Such metaphorical decisions more
accurately describe the data when they are left fuzzy.

If one prefers, one can also call a fuzzy decision an abstract randomized
decision emphasizing the distinction between an abstract random variable (a
mathematical object that has a probability distribution) and a realization of the
random variable (data assumed to be generated according to that probability
distribution). The random variable D that takes the value “reject Hy” with
probability ¢(x,«,8) and takes the value “accept Hy” with probability 1 —
¢(z, o, 0) is an abstract randomized decision. Generating a realization of D and
carrying out the indicated decision is what is usually called a randomized test.
But we recommend stopping with the description of D, leaving it to readers to
generate a realization if they find it helpful.

1.4.2 Fuzzy Confidence Intervals

The fuzzy confidence interval (1.1b) is a function taking values between zero
and one and is to be interpreted as (the membership function of) a fuzzy set,
the fuzzy complement of § — ¢(z, a, 0).

As with any mathematical function, a fuzzy confidence interval is best visual-
ized by plotting its graph. Figures 2 and 3 show three different fuzzy confidence
intervals in two different ways.

The dashed curve in Figure 2 is the (graph of the membership function of)
the fuzzy confidence interval for n = 10 and x = 4. It is not very different
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Figure 2: Fuzzy confidence intervals for binomial data with sample size n = 10,
confidence level 1 — a = 0.95 and observed data z = 0 (solid curve) z = 4
(dashed curve) and x = 9 (dotted curve). Note that the z = 0 curve starts at
1—aat § =0 and the x =9 curve ends at 1 — « at § = 1 (Section 3.2 below
explains this behavior). The parameter 8 is the probability of success. Compare
with Figure 3
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Figure 3: Another representation of fuzzy confidence intervals for binomial data
with sample size n = 10, confidence level 1 — a = 0.95 and observed data x = 0
(bottom) = 4 (middle) and z = 9 (top). The parameter 6 is the probability
of success. Compare with Figure 2.

from an indicator function: the rise and fall at the edges is fairly steep, its
core is the interval 0.16875 < 6 < 0.66045, and its support is the interval
0.09775 < 6 < 0.74863. So this fuzzy interval is not so different from (the
indicator function of) a crisp interval. The amount of fuzziness is fairly small
and gets smaller still for larger sample sizes.

The solid and dotted curves in the figure do not look much like (the indicator
functions) of conventional confidence intervals. In particular, the core of the
interval represented by the solid curve is empty. The cases x = 0, 1, n — 1,
and n for the binomial are unusual (more on this in Section 3.2 below), but
conventional procedures also treat these data values as special cases.

Figure 3 gives an alternative representation that is more suitable when space
is tight.

In order to interpret fuzzy confidence intervals we need a little theory. The
test having critical function ¢ is ezact if

Ep{o(X,,0)} = o, for all a and 6. (1.2)
Note that this trivially implies
Eo{l — ¢(X,,0)} =1 —q, for all « and 6. (1.3)

The left hand side of (1.3) is called the coverage probability of the fuzzy confi-
dence interval. This makes the fuzzy confidence interval inherit the exactness
of the corresponding test. Since UMP and UMPU tests are exact, so are the
corresponding fuzzy confidence intervals, such as those in Figure 2.

Any interpretation of fuzzy confidence intervals that accurately reflects the
mathematics embodied in (1.3) is correct. As with conventional confidence



intervals, the hardest thing for naive users to absorb is that only the lucky
intervals cover the unknown true parameter value. It’s called a 95% confidence
interval because it misses 5% of the time. Whether any particular interval covers
or misses can never be known. We claim the fuzziness at the edges of a fuzzy
interval is a minor part of the interpretative problem, but a precise interpretation
is required. We say that when the true parameter value 6 happens to be in the
fuzzy edge of an interval this only counts as partial coverage and the degree to
which it counts is the degree to which 6 is considered to be in the fuzzy interval,
which is 1 — ¢(X, «, 0), and this is reflected in the stated confidence level (1.3).

Our definition makes conventional confidence intervals a special case of fuzzy
confidence intervals (the fuzzy intervals that just happen to be crisp). Thus our
fuzzy theory is a generalization of current theory. It includes all current results.
In particular, fuzzy confidence intervals based on UMP and UMPU tests for
continuous data are automatically crisp because those UMP and UMPU tests
are not randomized. So our theory only says new things about discrete data.
For continuous data, it’s the same old story.

There does not seem to be any simple way to treat the function (1.1b) as an
abstract random variable (see also Section 2.1 below).

1.4.3 Fuzzy and Randomized P-values

For conventional P-values to even be definable a test must have nested criti-
cal regions. For fuzzy and randomized P-values to even be definable a test must
have the fuzzy analog of nested critical regions, which is

a1 < ay implies o(z,a1,0) < od(z,aq,6), for all z and 6. (1.4)

When the data are discrete and (1.4) holds, it can easily be shown that the
fuzzy P-value (1.1c) is for each z and 0 a continuous nondecreasing function
that goes from zero to one as « goes from zero to one. Thus (1.1c) has two
possible interpretations: the membership function of a fuzzy set called the fuzzy
P-value or the distribution function of a random variable called the randomized
P-value. As with any mathematical function, (1.1c¢) is best visualized by plotting
its graph (Figure 4).

When using the alternative interpretation of Figure 4 as the distribution
function of a randomized P-value, this figure is perhaps not the best. As with
any continuous random variable, a randomized P-value is best visualized by
plotting its probability density function

0
a = %QS(‘T?O‘?&O)'

Figure 5 shows the probability density function corresponding to the distribution
function shown in Figure 4. It is a step function. As we show below (Section 3.2),
every probability density function of a randomized P-value corresponding to a
UMP or UMPU test is a step function.

Sometimes the step function has just one step, that is, the randomized P-
value is uniformly distributed on an interval. This always happens when the
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Figure 4: The Fuzzy P-value for the UMPU (two-tailed) test with binomial
data x = 10 and n = 10 and null hypothesis § = 0.7. The graph continues to
the right: ¢(x, @, 8) =1 for all « greater than 0.06. Compare with Figure 5.
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Figure 5: The Density of the Randomized P-value for the UMPU (two-tailed)
test with binomial data z = 10 and n = 10 and null hypothesis § = 0.7. The
plotted step function has five steps. The steps too small to see well are at
height 24.8 on the interval 2.0 x 107° < o < 4.3 x 10™* and at height 23.6 on
the interval 4.3 x 107* < a < 4.3 x 1073, Compare with Figure 4.
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test is UMP (one-tailed). For example, the upper-tailed UMP test for the same
same null hypothesis (6p = 0.7) and the same data (z = 10 and n = 10) used
for Figure 5 has its abstract randomized P-value uniformly distributed on the
interval (0, 0.028).

As with conventional P-values, the hardest thing for naive users to absorb
is that a P-value is in no sense a probability. Only in the special case of a point
null hypothesis can a conventional P-value be interpreted as a probability. A
better interpretation of a conventional P-value, at least better for our purposes
here, is the least « at which the null hypothesis can be rejected.

When the P-value becomes fuzzy or randomized, there is no longer a sharp
cutoff between acceptance and rejection. The fuzzy P-value gives the range of
« for which the null hypothesis can be rejected as a fuzzy set. By definition of
distribution function, if P is a randomized P-value, then

PrG{PSOZ |X}:¢(X,Oé,0), (15)
for all a and #. Hence by iterated conditional expectation

Pro{P < a} = Ep{Pro{P < a | X }}
= E9{¢(X,a,9)} (1'6)

:Oé,

Thus P is Uniform(0,1) distributed marginally (not conditioning on X), and
this is the sense in which a randomized P-value inherits the exactness of the
corresponding randomized decision.

The interpretation of a randomized P-value is much like a conventional one.
The null hypothesis is to be accepted for all @« > P, but P is now random
rather than deterministic. Property (1.6) assures that this test is exact when
the randomness in both X and P are accounted for.

2 Realized Randomized Procedures

To each fuzzy or abstract randomized concept in the trio of decisions, con-
fidence intervals, and P-values, there is an analogous realized randomized con-
cept. The first two of these have existing literature cited in the introduction. We
do not actually recommend any of these realized randomized procedures, prefer-
ring their fuzzy or abstract randomized analogs. But we need to be clear about
the relationship between fuzzy, abstract randomized, and realized randomized
procedures, if for no other reason, to avoid confusion.

By a realized randomized decision we mean the decision of a conventional
randomized test. Since this is well known, we need say no more about it.

2.1 Randomized Confidence Intervals

Let
I.L(e) =1- d)(ﬂ?, Q, 9)
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be the fuzzy confidence interval with coverage 1 — « for observed data x. Then
the realized randomized confidence interval we recommend is the U-cut UIy of
the fuzzy interval, where U is a uniform(0, 1) random variate.

By construction

Pro{ € UIx | X} = BEp{Ix(0) | X} =1 — ¢(X,,0).

So
Prg{0 € VIx} = Eg{Ix(0)} =1 -«

and the randomized confidence interval inherits exactness from the fuzzy confi-
dence interval.

Interestingly, this is not the randomized confidence interval recommended by
Blyth and Hutchinson (1960). Their intervals can be related to fuzzy confidence
intervals as follows. Generate two randomized confidence intervals, which in
our notation are YTy and 1~UIy. Then construct a new interval taking the left
endpoint from one of these and the right endpoint from the other. This only
works when the fuzzy confidence interval is convex, but that is the usual case.

Yet a third recipe for generating randomized confidence intervals that also
only works when the fuzzy interval is convex also generates two randomized
confidence intervals, which in our notation are YIx and VIx, where U and V
are independent Uniform(0, 1) random variates. Then construct a new interval
taking the left endpoint from one of these and the right endpoint from the other.

There is, of course, no difference in performance between these three recipes,
and many other recipes with identical performance are possible. Since we do
not expect that randomized procedures will find much use, there is little point
in trying to justify any particular recipe, but the first does have a simpler
relationship to fuzzy intervals.

2.2 Randomized P-values

A realized randomized P-value is a number P generated by a mechanism that
gives it the probability distribution of the abstract randomized P-value, that is,
the distribution with distribution function (1.1c). Property (1.6) assures us that
the test that rejects Hy when P < « is the traditional randomized test.

We show in Section 3.2 below that for UMP and UMPU tests the fuzzy P-
value is a continuous random variable having piecewise constant density, hence
a mixture of uniforms and trivial to simulate given a uniform random number
generator.

3 UMP and UMPU Fuzzy Procedures

3.1 UMP

Lehmann (1959, pp. 68-69) says for a one-parameter model with likelihood
ratio monotone in the statistic T'(X) there exists a UMP test having null hypoth-
esis Hy = {¢ : ¥ < 6}, alternative hypothesis H; = {9 : ¥ > 0}, significance
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level «, and critical function ¢ defined by

1, T(x)>C
d(r,0,0) =<, T(z)=C (3.1)
0, T(x)<C

where the constants v and C are determined by
Eo{o(X,,0)} = .

The description of the analogous lower-tailed test is the same except that all
inequalities are reversed.

The constant C'is clearly any (1 —«)-th quantile of the distribution of T'(X)
for the parameter value 6. If C' is not an atom of this distribution, then the test
is effectively not randomized and the value of + is irrelevant. Otherwise

a—Prg{T(X) > C}

TT T P{T(X)=C) (3.2)

In considering the distribution function which is the fuzzy P-value, we look
at ¢(x, @, 0) as a function of « for fixed x and 6, hence at (3.2) in the same way.
Now T'(z) will be a (1 — «)-th quantile if

Pro{T(X) > T(2)} < < Prg{T(X) > T(x)}. (3.3)

Since (3.2) is linear in «, so is the distribution function of the fuzzy P-value
(where it is not zero or one). Hence the fuzzy P-value is uniformly distributed
on the interval (3.3).

3.2 UMPU

Lehmann (1959, pp. 126-127) says for a one-parameter exponential family
model with canonical statistic 7'(X) and canonical parameter 6 there exists a
UMPU test having null hypothesis Hy = {4 : ¥ = 0}, alternative hypothesis
Hy = {9 : 9 +#0}, significance level a, and critical function ¢ defined by

1, T(x)<C
v, T(x)=0C
o(r,0,0) =<0, Cy<T(x)<Cy (3.4)
Yo, T(x)=Cy
1, Cy<T(z)

where C7 < Cs and the constants 1, 72, C1, and Cy are determined by

Eo{o(X,a,0)} = (3.5a)
Eo{T(X)p(X,0,0)} = aEp{T(X)} (3.5b)
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If C; = Cy =C in (3.4) then 41 = 2 =« also. This occurs only in a very
special case. Define

p=Pro{T(X)=C} (3.6a)
b= Bo{T(X)) (3.6b)

Then in order to satisfy (3.5a) and (3.5b) we must have

(3.7a)
C=upu (3.7b)

Thus this special case occurs only when p an atom of the distribution of 7'(X) for
the parameter value 6, and then only for very large significance levels: a > 1—p.
Hence this special case is of no practical importance although it is of some
computational importance to get every case right.

Returning to the general case, assume for a second that we have particular
Cy and Cy that work for some z, o, and 0. With p still defined by (3.6b) and
with the definitions

P12 = PI‘@{Cl < T(X) < 02} (38b)
miz = Eo{T(X)I(cy,0 [T(X)]} (3.8¢)

(3.5a) and (3.5b) solved for v; and 2 become

(1—a)(Cy — p) +miz — Capiz

=1- .

n b1 (CZ - C1) (3 9a)
_ . A=a)(p—C1) —miz + Cipio

Yo =1 22(Cs = Cl) (3.9b)

These equations are valid over the range of « (if any) such that both equations
give v and v, values between zero and one.

Since (3.9a) and (3.9b) are linear in a (when they are valid), the distri-
bution function of the fuzzy P-value is piecewise linear, and the density is a
step function. A more complete description of this phenomenon amounting to a
tight algorithmic proof is given in the documentation for the R implementation
(Geyer and Meeden, 2004).

The UMPU test is not well defined when the null hypothesis is on the bound-
ary of the parameter space. But equations (3.4), (3.5a), and (3.5b) still make
sense and define a test. Since the probability and the expectation in those equa-
tions are continuous in 6 this also characterizes the behavior as 6 converges to a
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boundary point (which we need to know to calculate fuzzy confidence intervals,
which involve all 6 in the parameter space).

Suppose that, in addition to the setup for UMPU tests described at the
beginning of this section, the canonical statistic T(X) of the exponential family
has a topologically discrete distribution (concentrated on a countable set of
atoms that are topologically isolated, integer valued, for example). Suppose the
range of T(X) is bounded below (as with the binomial or Poisson distribution).
As the canonical parameter goes to —oo, the critical function ¢(z, a, 8) converges
to « for x such that T'(x) is equal to either of its two smallest values and
converges to one for all other x. A proof is given in the documentation for
the R implementation (Geyer and Meeden, 2004). By symmetry, the analogous
thing happens for the two largest values when there is an upper bound. This
endpoint behavior is clearly shown for the binomial distribution in Figure 2.

4 Computation

To present a fuzzy or abstract randomized decision, confidence interval, or
P-value one needs to be able compute ¢(x, a, §) for every set of possible values.
We have written an R package that does this for the binomial model (Geyer and
Meeden, 2004).

5 Discussion

We claim that fuzzy set theory combined with UMPU testing theory gives
an elegant and simple solution to a well recognized problem with conventional
confidence intervals for discrete data (Brown, Cai, and DasGupta, 2001, and
discussion). Admittedly, our solution requires a picture like our Figure 2 or 3,
but conventional confidence intervals also need a picture like our Figure 1 to
accurately describe their performance. Those who object to statistics that re-
quires graphics could at least report the core and support of the fuzzy interval
(see the example in Section 1.4.2). This is a crude approximation to the fuzzy
interval but is still more informative than any crisp interval.

Although randomized confidence intervals may be more familiar to statisti-
cians than fuzzy intervals, there are two reasons why fuzzy intervals are prefer-
able. First, non-statistician users may find them more understandable, ran-
domization being a notoriously tricky concept. Second, randomized intervals
are not unique, as we explained in Section 2.1, whereas the fuzzy interval (1.1b)
is unique.

We also claim that fuzzy and abstract randomized P-values are solution to
a problem that, although not yet widely recognized, is just as important. We
have no preference between the two (one of us prefers fuzzy, the other prefers
abstract randomized). Abstract randomized P-values do have the nice property
that they are uniform on an interval and hence can be described by two numbers

15



all the time for UMP one-tailed tests and roughly half the time for UMPU two-
tailed tests.

The picture for a fuzzy confidence interval or fuzzy or abstract randomized
P-value is no more complicated than a histogram and just as easy to produce
using a computer. They could be taught in elementary courses. In our experi-
ence most students have a very hard time understanding conventional confidence
intervals and P-values. It is not obvious that fuzzy intervals and P-values are
harder to understand. The fuzzy edges of a fuzzy confidence interval may help
the student understand that the confidence interval doesn’t capture the un-
known # in an all-or-nothing way. The fuzzy edge of a fuzzy P-value may help
the student understand that the number 0.05 has no magical properties.

Statisticians, especially subjective Bayesians, naturally assume that fuzzy
set theory can be replaced by probability theory. However from the origins of
the subject more than 30 years ago fuzzy set theorists have taken great pains
to distinguish their subject from probability theory, and the least acquaintance
with the manipulations done in fuzzy set theory reveals no resemblance at all
to those of probability theory. We stress this point because it is so natural
for statisticians (certain statisticians anyway) to try to find priors or posteriors
somewhere in our discussion. Let us assure all readers that this paper is entirely
non-Bayesian and that whatever fuzzy confidence intervals and P-values may be,
they aren’t Bayesian. We don’t say this because we’re anti-Bayes. We’ve looked
for the Bayes angle and satisfied ourselves that it just isn’t there. This shouldn’t
be surprising. There are few less Bayesian areas of statistics than confidence
intervals and P-values. Making them fuzzy doesn’t make them Bayesian.

Finally it is important to emphasize that the fuzzy or abstract randomized
approach is not restricted to the binomial case. There is a UMP or UMPU test
for any one-parameter exponential family, for example, for Poisson and negative
binomial data. In multiparameter exponential families, in which the parameter
of interest is a canonical parameter, one gets a UMP or UMPU conditional test
based on the one-parameter exponential family obtained by conditioning on
the canonical statistics for the nuisance parameters. Thus there are UMP and
UMPU tests and the analogous fuzzy and abstract randomized procedures for
comparison of two independent binomials or two independent Poissons or two
independent negative binomials. In large contingency tables, there isn’t usually
a single parameter of interest, but in two-by-two tables, there are the UMP and
UMPU competitors of Fisher’s exact test and McNemar’s test.

There’s nothing that says you can’t use fuzzy confidence intervals and P-
values whenever you have discrete data. We don’t know how to extend the
UMP and UMPU constructions outside of exponential families. But the idea
of randomized tests and their associated fuzzy tests, confidence intervals, and
P-values is perfectly general. In principle, they can be applied to any discrete
data.
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