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This note provides a detailed example of three fuzzy confidence intervals
proposed in Geyer and Meeden (2005) and in the comments on that paper
(Agresti and Gottard, 2005; Brown, Cai and DasGupta, 2005). We use the
binomial distribution with sample size n = 10 for our example.

� The UMPU interval proposed by Geyer and Meeden (2005), based on
the uniformly most powerful unbiased (UMPU) test Lehmann (1959).
Its membership function is the

θ 7→ 1− φ(x, α, θ) (1)

where φ is the critical function of the UMPU test (Geyer and Meeden,
2005, Section 1.4, especially 1.4.2).

� The equal-tailed interval proposed by Agresti and Gottard (2005), at-
tributed by them to Stevens (1950), although, of course, the notion of a
fuzzy confidence interval was not exactly what Stevens proposed. This
is (1) where φ is the critical function of the equal-tailed randomized
test.

� The Pratt interval proposed by Brown, Cai and DasGupta (2005), at-
tributed by them to Pratt (1961), although, of course, the notion of a
fuzzy confidence interval was not exactly what Pratt proposed. This
is (1) where φ( · , α, θ) is the critical function of the randomized likeli-
hood ratio test with null hypothesis that the data are Binomial(n, θ)
and alternative hypothesis that the data have the discrete uniform
distribution on {0, . . . , n}.

The UMPU critical function is programmed as follows, using the ump
package (available from CRAN, http://cran.r-project.org).
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> check.args <- function(x, n, alpha, theta) {

+ stopifnot(is.numeric(x))

+ stopifnot(is.numeric(n))

+ stopifnot(is.numeric(alpha))

+ stopifnot(is.numeric(theta))

+ stopifnot(length(x) == 1)

+ stopifnot(length(n) == 1)

+ stopifnot(length(alpha) == 1)

+ stopifnot(x == as.integer(x))

+ stopifnot(n == as.integer(n))

+ stopifnot(0 <= x & x <= n)

+ stopifnot(0 <= alpha & alpha <= 1)

+ stopifnot(all(0 <= theta & theta <= 1))

+ }

> library(ump)

> phi.umpu <- function(x, n, alpha, theta) {

+ check.args(x, n, alpha, theta)

+ umpu.binom(x, n, theta, alpha)

+ }

The equal-tailed critical function is programmed as follows.

> phi.eqtail <- function(x, n, alpha, theta) {

+ check.args(x, n, alpha, theta)

+ c1 <- qbinom(alpha/2, n, theta)

+ c2 <- qbinom(alpha/2, n, theta, lower.tail = FALSE)

+ P1 <- pbinom(c1 - 1, n, theta)

+ P2 <- pbinom(c2, n, theta, lower.tail = FALSE)

+ p1 <- dbinom(c1, n, theta)

+ p2 <- dbinom(c2, n, theta)

+ g1 <- (alpha/2 - P1)/p1

+ g2 <- (alpha/2 - P2)/p2

+ g1[c1 == c2] <- ((alpha - P1 - P2)/p1)[c1 ==

+ c2]

+ g2[c1 == c2] <- g1[c1 == c2]

+ phi <- rep(1, length(theta))

+ phi[c1 == x] <- g1[c1 == x]

+ phi[c2 == x] <- g2[c2 == x]

+ phi[c1 < x & x < c2] <- 0

+ phi

+ }
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The Pratt critical function is programmed as follows.

> phi.pratt.aux <- function(n, alpha, theta) {

+ x <- seq(0, n)

+ phi <- rep(1, length(x))

+ if (alpha == 1) {

+ return(phi)

+ }

+ if (alpha == 0) {

+ return(0 * phi)

+ }

+ if (theta == 0) {

+ phi[x == 0] <- alpha

+ return(phi)

+ }

+ if (theta == 1) {

+ phi[x == n] <- alpha

+ return(phi)

+ }

+ pnull <- dbinom(x, n, theta)

+ porder <- rev(order(1/pnull))

+ corder <- cumsum(pnull[porder])

+ outies <- corder < alpha

+ phi[porder[!outies]] <- 0

+ P <- sum(pnull[porder[outies]])

+ irand <- porder[!outies][1]

+ phi[irand] <- (alpha - P)/pnull[irand]

+ return(phi)

+ }

> phi.pratt <- function(x, n, alpha, theta) {

+ check.args(x, n, alpha, theta)

+ phi <- rep(1, length(theta))

+ for (i in 1:length(theta)) {

+ foo <- phi.pratt.aux(n, alpha, theta[i])

+ phi[i] <- foo[seq(0, n) == x]

+ }

+ phi

+ }

> x <- 0

> theta <- seq(0, 1, length = 1001)
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Now we are ready to look at one case. We start with x = 0 (and for all cases
n = 10 and α = 0.05).

Figure 1 is produced by the following code

> fci1 <- 1 - phi.umpu(x, n, alpha, theta)

> fci2 <- 1 - phi.eqtail(x, n, alpha, theta)

> fci3 <- 1 - phi.pratt(x, n, alpha, theta)

> fred <- theta[fci1 > 0 | fci2 > 0 | fci3 > 0]

> par(mar = c(5, 4, 0, 0) + 0.1)

> plot(theta, fci1, xlim = c(0, 1), ylim = c(0, 1),

+ type = "l", col = "red", xlab = "success probability",

+ ylab = "degree of membership", cex = 1.5, cex.axis = 1.5,

+ cex.lab = 1.5, lwd = 1.5)

> lines(theta, fci2, col = "green")

> lines(theta, fci3, col = "blue")

and appears on p. 5.

> x <- 1

Now we do x = 1. These fuzzy intervals are shown in Figure 2 on p. 6.

> x <- 2

Now we do x = 2. These fuzzy intervals are shown in Figure 3 on p. 7.

> x <- 3

Now we do x = 3. These fuzzy intervals are shown in Figure 4 on p. 8.

> x <- 4

Now we do x = 4. These fuzzy intervals are shown in Figure 5 on p. 9.

> x <- 5

Now we do x = 5. These fuzzy intervals are shown in Figure 6 on p. 10.
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Figure 1: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the
binomial distribution, x = 0, n = 10. Red is UMPU (Geyer-Meeden), green
is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).
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Figure 2: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the
binomial distribution, x = 1, n = 10. Red is UMPU (Geyer-Meeden), green
is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).

6



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

success probability

de
gr

ee
 o

f m
em

be
rs

hi
p

Figure 3: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the
binomial distribution, x = 2, n = 10. Red is UMPU (Geyer-Meeden), green
is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).
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Figure 4: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the
binomial distribution, x = 3, n = 10. Red is UMPU (Geyer-Meeden), green
is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).
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Figure 5: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the
binomial distribution, x = 4, n = 10. Red is UMPU (Geyer-Meeden), green
is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).
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Figure 6: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the
binomial distribution, x = 5, n = 10. Red is UMPU (Geyer-Meeden), green
is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).
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