UMPU, Equal-Tailed, and Pratt Fuzzy Confidence Intervals

Charles J. Geyer Glen D. Meeden

August 28, 2005

This note provides a detailed example of three fuzzy confidence intervals proposed in Geyer and Meeden (2005) and in the comments on that paper (Agresti and Gottard, 2005; Brown, Cai and DasGupta, 2005). We use the binomial distribution with sample size n=10 for our example.

• The *UMPU interval* proposed by Geyer and Meeden (2005), based on the uniformly most powerful unbiased (UMPU) test Lehmann (1959). Its membership function is the

$$\theta \mapsto 1 - \phi(x, \alpha, \theta)$$
 (1)

where ϕ is the critical function of the UMPU test (Geyer and Meeden, 2005, Section 1.4, especially 1.4.2).

- The equal-tailed interval proposed by Agresti and Gottard (2005), attributed by them to Stevens (1950), although, of course, the notion of a fuzzy confidence interval was not exactly what Stevens proposed. This is (1) where ϕ is the critical function of the equal-tailed randomized test.
- The Pratt interval proposed by Brown, Cai and DasGupta (2005), attributed by them to Pratt (1961), although, of course, the notion of a fuzzy confidence interval was not exactly what Pratt proposed. This is (1) where $\phi(\cdot, \alpha, \theta)$ is the critical function of the randomized likelihood ratio test with null hypothesis that the data are Binomial (n, θ) and alternative hypothesis that the data have the discrete uniform distribution on $\{0, \ldots, n\}$.

The UMPU critical function is programmed as follows, using the ump package (available from CRAN, http://cran.r-project.org).

```
> check.args <- function(x, n, alpha, theta) {
      stopifnot(is.numeric(x))
      stopifnot(is.numeric(n))
+
+
      stopifnot(is.numeric(alpha))
      stopifnot(is.numeric(theta))
      stopifnot(length(x) == 1)
      stopifnot(length(n) == 1)
      stopifnot(length(alpha) == 1)
      stopifnot(x == as.integer(x))
      stopifnot(n == as.integer(n))
+
      stopifnot(0 \le x \& x \le n)
      stopifnot(0 <= alpha & alpha <= 1)</pre>
+
      stopifnot(all(0 <= theta & theta <= 1))</pre>
+
+ }
> library(ump)
> phi.umpu <- function(x, n, alpha, theta) {
      check.args(x, n, alpha, theta)
      umpu.binom(x, n, theta, alpha)
+ }
   The equal-tailed critical function is programmed as follows.
> phi.eqtail <- function(x, n, alpha, theta) {</pre>
      check.args(x, n, alpha, theta)
      c1 <- qbinom(alpha/2, n, theta)</pre>
      c2 <- qbinom(alpha/2, n, theta, lower.tail = FALSE)
      P1 \leftarrow pbinom(c1 - 1, n, theta)
      P2 <- pbinom(c2, n, theta, lower.tail = FALSE)
+
      p1 <- dbinom(c1, n, theta)
      p2 <- dbinom(c2, n, theta)
      g1 <- (alpha/2 - P1)/p1
      g2 \leftarrow (alpha/2 - P2)/p2
      g1[c1 == c2] \leftarrow ((alpha - P1 - P2)/p1)[c1 ==
           c2]
+
      g2[c1 == c2] \leftarrow g1[c1 == c2]
      phi <- rep(1, length(theta))</pre>
      phi[c1 == x] \leftarrow g1[c1 == x]
      phi[c2 == x] \leftarrow g2[c2 == x]
      phi[c1 < x & x < c2] < 0
      phi
+ }
```

The Pratt critical function is programmed as follows.

```
> phi.pratt.aux <- function(n, alpha, theta) {
       x \leftarrow seq(0, n)
      phi <- rep(1, length(x))</pre>
       if (alpha == 1) {
           return(phi)
      }
       if (alpha == 0) {
           return(0 * phi)
+
       if (theta == 0) {
           phi[x == 0] \leftarrow alpha
           return(phi)
      }
       if (theta == 1) {
           phi[x == n] \leftarrow alpha
           return(phi)
+
      pnull <- dbinom(x, n, theta)</pre>
      porder <- rev(order(1/pnull))</pre>
       corder <- cumsum(pnull[porder])</pre>
      outies <- corder < alpha
      phi[porder[!outies]] <- 0</pre>
      P <- sum(pnull[porder[outies]])</pre>
       irand <- porder[!outies][1]</pre>
+
      phi[irand] <- (alpha - P)/pnull[irand]</pre>
+
      return(phi)
+ }
> phi.pratt <- function(x, n, alpha, theta) {
       check.args(x, n, alpha, theta)
      phi <- rep(1, length(theta))</pre>
      for (i in 1:length(theta)) {
           foo <- phi.pratt.aux(n, alpha, theta[i])</pre>
           phi[i] \leftarrow foo[seq(0, n) == x]
      phi
+ }
> theta <- seq(0, 1, length = 1001)
```

Now we are ready to look at one case. We start with x=0 (and for all cases n=10 and $\alpha=0.05$).

Figure 1 is produced by the following code

```
> fci1 <- 1 - phi.umpu(x, n, alpha, theta)
> fci2 <- 1 - phi.eqtail(x, n, alpha, theta)
> fci3 <- 1 - phi.pratt(x, n, alpha, theta)
> fred <- theta[fci1 > 0 | fci2 > 0 | fci3 > 0]
> par(mar = c(5, 4, 0, 0) + 0.1)
> plot(theta, fci1, xlim = c(0, 1), ylim = c(0, 1),
+ type = "l", col = "red", xlab = "success probability",
+ ylab = "degree of membership", cex = 1.5, cex.axis = 1.5,
+ cex.lab = 1.5, lwd = 1.5)
> lines(theta, fci2, col = "green")
> lines(theta, fci3, col = "blue")
and appears on p. 5.
```

> x <- 1

Now we do x = 1. These fuzzy intervals are shown in Figure 2 on p. 6.

> x <- 2

Now we do x=2. These fuzzy intervals are shown in Figure 3 on p. 7.

Now we do x=3. These fuzzy intervals are shown in Figure 4 on p. 8.

> x <- 4

Now we do x = 4. These fuzzy intervals are shown in Figure 5 on p. 9.

Now we do x = 5. These fuzzy intervals are shown in Figure 6 on p. 10.

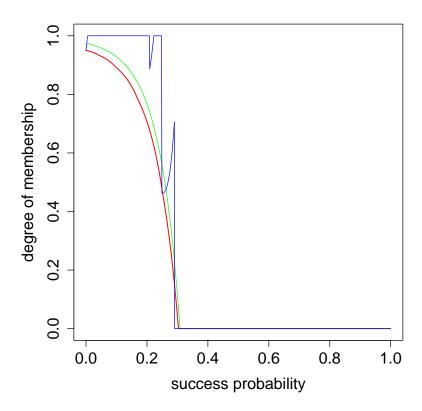


Figure 1: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the binomial distribution, $x=0,\,n=10.$ Red is UMPU (Geyer-Meeden), green is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).

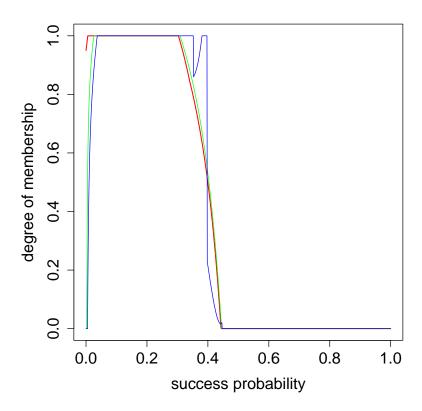


Figure 2: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the binomial distribution, $x=1,\,n=10.$ Red is UMPU (Geyer-Meeden), green is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).

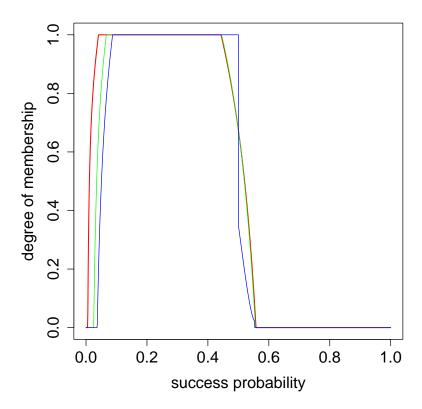


Figure 3: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the binomial distribution, $x=2,\,n=10.$ Red is UMPU (Geyer-Meeden), green is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).

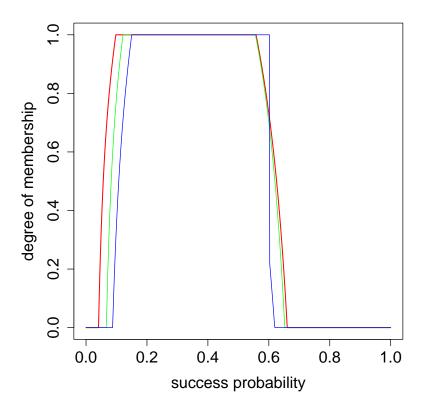


Figure 4: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the binomial distribution, $x=3,\,n=10.$ Red is UMPU (Geyer-Meeden), green is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).

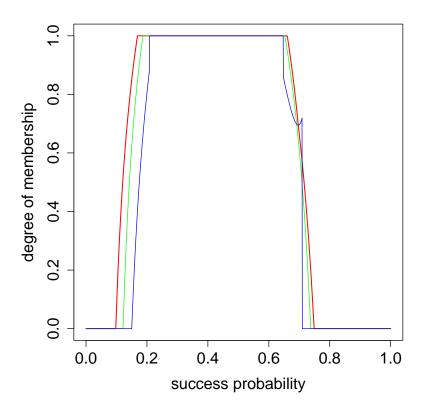


Figure 5: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the binomial distribution, $x=4,\,n=10.$ Red is UMPU (Geyer-Meeden), green is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).

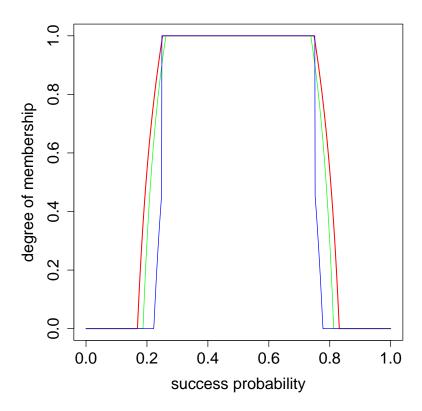


Figure 6: Fuzzy Confidence Intervals. 95% fuzzy confidence intervals for the binomial distribution, $x=5,\,n=10.$ Red is UMPU (Geyer-Meeden), green is equal-tailed (Agresti-Gotard), blue is Pratt (Brown-Cai-DasGupta).

References

- Agresti, A. and Gottard, A. (2005). Randomized confidence intervals and the mid-P approach, comment on Geyer and Meeden (2005). To appear in *Statistical Science*.
- Brown, L. D., Cai, T. T., and DasGupta, A. (2005). Comment on Geyer and Meeden (2005). To appear in *Statistical Science*.
- GEYER, C. J. and MEEDEN, G. D. (2005). Fuzzy and randomized confidence intervals and p-values (with discussion). To appear in *Statistical Science*, http://www.stat.umn.edu/geyer/fuzz.
- LEHMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York. (2nd ed., Wiley, 1986; Springer, 1997).
- Pratt, J. W. (1961). Length of confidence intervals. *Journal of the American Statistical Association*, 56, 549–567.
- Stevens, W. L. (1950). Fiducial limits of the parameter of a discontinuous distribution. *Biometrika*, 37, 117–129.