Stat 5421 Lecture Notes: Overdispersion

Charles J. Geyer

October 13, 2021

Contents

1 License 1

2 R 1

3 Quasilikelihood and Estimating Equations 1
3.1 Variance Functions L e 1
3.2 Modeling without Models 2
3.3 Estimating the Dispersion Parametero o 2

4 Example: Agresti Section 4.7.4 3
4.1 Testing for Overdispersion e 7
4.2 On Not Testing for Overdispersion it 7

5 Example: Agresti Section 4.7.2 8

1 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R

¢ The version of R used to make this document is 4.1.0.

o The version of the rmarkdown package used to make this document is 2.10.

3 Quasilikelihood and Estimating Equations

3.1 Variance Functions

In linear models (fit by R function 1m) we assume the components of the response vector are independent,
normally distributed, and same variance (homoscedastic). The variance is unrelated to the mean. The mean
of each component can be any real number. The common variance of all the components can be any positive
real number.

In generalized linear models (fit by R function glm) none of these assumptions hold except the components
of the response vector are independent.

o There are constraints on the means.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

e There is only one parameter for binomial and Poisson models, so the variance and mean cannot be
separately varied.

For binomial regression,

o components of the response vector are independent Binomial(n,, 7;) distributed.

e Means p, = n;m, satisfy 0 < p, <mn,.

e Variances are a function of means

var(y;) = n;V(m;) = n;m;(1 —m;)
where
V(ir)=n(l—mn)

For Poisson regression,

o components of the response vector are independent Poisson(y;) distributed.

o Means p, satisfy 0 < p; < oo.

e Variances are a function of means

where

3.2 Modeling without Models

Everything we have done so far relied on statistical models (families of probability distributions). Now we
are going to do something different: statistics without models. We are only going to make assumptions
about means and variances, not about whole probability distributions.

In generalized linear model theory, this approach is called quasilikelihood, although the approach can be
explained without even defining this term, and we shall do so.

We assume the means are given by the same function of the parameters (“coefficients”) as in binomial and
Poisson regression. Thus we will have the same maximum likelihood estimates (MLE) of “coefficients” and
means with and without overdispersion. Except since we don’t have a model, we don’t have a likelihood,
thus these cannot be maximum likelihood estimates. We say they are maximum quasilikelihood estimates, or
just estimates. But they are the same estimates as the MLE for ordinary binomial or Poisson regression.

The difference is that we do not assume the same variance function as ordinary binomial or Poisson regression.
The variance function could be anything, but for simplicity we (like everybody else) assume the variance
function is a constant times the ordinary variance function

o The variance is ¢n,;V (w,) for binomial.
o The variance is ¢V (u;) for Poisson.

Because we assumed the estimates of coefficients and means are the same as for ordinary binomial or Poisson
regression, we can estimate the means without knowing ¢. Call those estimates fi,.

3.3 Estimating the Dispersion Parameter

For Poisson, by assumption,
(y; — m)?
Vi (1)
has variance one. Thus
zn: (y; — Mz‘)Q
V(1)

i=1 i

has variance n. Hence
2

c I i)
b== A i VA
n ; Vi (1)
would be a good estimate of ¢ except that we don’t know the p,.

So we plug in estimated values
n

PR YU A

n—p i=1 ‘/z(:[;’z)

and as usual divide by n — p instead of n where p is the number of “coefficients” (the number of parameters
needed to specify the).

This division by n—p has no exact theory justifying it. We know that in linear models, dividing by n—p gives
an unbiased estimate of variance (or so we are told, this is proved in the theory class 5102 Slides 31-38, Deck
5). But we are not doing linear models, so dividing by n — p is just an analogy, not real math. Nevertheless,
it is the conventional thing to do. (Of course, it is correct for large n, but for large n the difference between
n and n — p is inconsequential.)

For binomial, the corresponding estimate is
n

~ 1 (y; — fi;)?
o= n—p ; an(/:LL/nz)

4 Example: Agresti Section 4.7.4

library(CatDataAnalysis)
data(table_4.7)
names (table_4.7)

[1] n 1ltter" llgroup" llnll llyll
sapply(table_4.7, class)

litter group n y
"integer" "integer" "integer" "integer"

R function glm wants binomial data with sample sizes greater than one presented as a two-column matrix
whose columns are successes and failures, so we have to make that. Instead we are given y equals successes
and n equals totals (successes + failures), apparently.

with(table_4.7, all(0 <=y & y <= n))

[1] TRUE
with(table_4.7, range(n))

[1] 1 17

resp <- with(table 4.7, cbind(dead = y, alive = n - y))
resp

dead alive

[1,] 1
[2,] 4
[3,] 9
[4,] 4
[5,] 10
[6,] 9

N O O w~N ©

http://www.stat.umn.edu/geyer/5102/slides/s5.pdf#page=31
http://www.stat.umn.edu/geyer/5102/slides/s5.pdf#page=31

[7,] 9
[8,] 11
[9,] 10
[10,] 7
[11,] 12
[12,]
[13,]
[14,]
[15,]
[16,]
[17,] 14
[18,] 7
[19,] 9
[20,] 8
[21,] 5
[22,] 10
[23,] 10
[24,] 8
[25,] 10
[26,] 3 1
[27,] 13

~N > © 00 ©

N OOWWOFr O, OUINOWOWUNOUUOONNNOKEKOWOOO

[28,] 3

[29,] 8

[30,] 5

[31,] 12

[32,] 1

[33,] 1

[34,] 1 12
[35,] 0 12
[36,] 4 10
[37,] 2 7
[38,] 2 11
[39,] 1 15
[40,] 0 11
[41,] 0 4
[42,] 0 1
[43,] 0 12
[44,] 0 8
[45,] 1 10
[46,] 0 14
[47,] 1 13
[48,] 0 11
[49,] 0 3
[50,] 0 13
[51,] 2 7
[52,] 2 15
[53,] 0 15
[54,] 0 2
[55,] 1 13
[56,] 0 8
[57,] 0 6
[58,] 0 17

Variable litter is just sequence numbers

with(table_4.7, identical(litter, seq(along = litter)))

[1] TRUE

Group is numeric but we need to make it a factor.

dat <- transform(table_4.7, group = as.factor(group))

Now just for comparison, we will fit logistic regression

gout.logistic <- glm(resp ~ group,
summary (gout.logistic)

data = dat, family = binomial)

= dat)

0.1

#it

Call:

glm(formula = resp ~ group, family = binomial, data
##

Deviance Residuals:

Min 1Q Median 3Q Max

-4.4295 -0.9750 -0.0285 1.4024 2.7826

#i#

Coefficients:

#it Estimate Std. Error z value Pr(>|z]|)

(Intercept) 1.1440 0.1292 8.855 < 2e-16 **x
group2 -3.3225 0.3308 -10.043 < 2e-16 *x*x
group3 -4.4762 0.7311 -6.122 9.22e-10 **x*
groupd -4.1297 0.4762 -8.672 < 2e-16 **x*
-—-

Signif. codes: O '#*x' 0.001 '*xx' 0.01 'x' 0.05 '.'
#it

(Dispersion parameter for binomial family taken to be 1)
#i#

H# Null deviance: 509.43 on 57 degrees of freedom

Residual deviance: 173.45 on 54 degrees of freedom

AIC: 252.92
##

Number of Fisher Scoring iterations: 5

Now allow for overdispersion

gout.over <- glm(resp ~ group, data

summary (gout . over)

"1

= dat, family = quasibinomial)

glm(formula = resp ~ group, family = quasibinomial, data =

3Q Max

t value Pr(>ltl)
5.231 2.81e-06
-5.933 2.18e-07
-3.617 0.000656

##

Call:

##

Deviance Residuals:

Min 1Q Median

-4.4295 -0.9750 -0.0285 1.4024 2.7826
##

Coefficients:

Estimate Std. Error
(Intercept) 1.1440 0.2187
group2 -3.3225 0.5600
group3 -4.4762 1.2375
group4 -4.1297 0.8061

-5.123 4.14e-06

k%%
* % %
* % %
k%%

dat)

##H ——

Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

##

(Dispersion parameter for quasibinomial family taken to be 2.864945)
##

Null deviance: 509.43 on 57 degrees of freedom
Residual deviance: 173.45 on 54 degrees of freedom
AIC: NA

##

Number of Fisher Scoring iterations: 5

We see that we do have exactly the same coefficients

all.equal(coef (gout.logistic), coef(gout.over))

[1] TRUE

And exactly the same mean values

all.equal(fitted(gout.logistic), fitted(gout.over))

[1] TRUE

Now try predicted values

pout.over <- predict(gout.over, newdata = data.frame(group = factor(1:4)),
type = "response", se.fit = TRUE)
pout.over

$fit

1 2 3 4
0.75840979 0.10169492 0.03448276 0.04807692
##

$se.fit

1 2 3 4
0.04006599 0.04709542 0.04055320 0.03550672
##

$residual.scale

[1] 1.692615

Are these the same as the predicted values for logistic regression?

pout.logistic <- predict(gout.logistic,
newdata = data.frame(group = factor(1:4)),
type = "response", se.fit = TRUE)
pout.logistic

$fit

1 2 3 4
0.75840979 0.10169492 0.03448276 0.04807692
##

$se.fit

#i 1 2 3 4
0.02367106 0.02782406 0.02395890 0.02097744
##

$residual.scale

[1] 1

all.equal(pout.logistic$fit, pout.over$fit)

[1] TRUE
pout.over$se.fit / pout.logistic$se.fit

1 2 3 4
1.692615 1.692615 1.692615 1.692615

What is that?

phi.hat <- summary(gout.over)$dispersion
phi.hat

[1] 2.864945
sqrt (phi.hat)

[1] 1.692615

Indeed we are just inflating the estimated variance by a factor of 2.864945 and the estimated standard
deviation by a factor of 1.692615.

4.1 Testing for Overdispersion

One might think that, since we have no model, we cannot do hypothesis tests about the dispersion. But
hypothesis tests only need a distribution under the null hypothesis, and we do have that. Null hypothesis is
ordinary binomial; alternative hypothesis is overdispersed binomial.

We can do the test by simulation, as we did in the section on the parametric bootstrap in the notes on
Chapter 9.

set random number generator seed for reproducibility
set.seed(42)

n <- dat$n

nboot <- 999

mu.hat <- fitted(gout.logistic)

phi.star <- double(nboot)

for (iboot in 1:mboot) {
y.star <- rbinom(length(n), n, mu.hat)
resp.star <- cbind(dead = y.star, alive = n - y.star)
gout.over <- glm(resp.star ~ group, data = dat, family = quasibinomial)
phi.star[iboot] <- summary(gout.over)$dispersion

}

all.phi.values <- c(phi.star, phi.hat)

mean(all.phi.values >= phi.hat)

[1] 0.001

None of the simulated dispersion values are as large as the observed value. This is very strong evidence for
overdispersion.

4.2 On Not Testing for Overdispersion

But the natural idea of only using family = quasibinomial when there seems to be evidence for it using
the test in the preceeding section is actually the Wrong Thing.

When one does a composite procedure having two or more steps, one must consider the composite procedure
as the procedure. This seems obvious: what one does is what one does. But that is not what most people

ch9.html#parametric-bootstrap
ch9.html#parametric-bootstrap
http://www.catb.org/jargon/html/W/Wrong-Thing.html

do when doing composite procedures they invented. In this example, the idea is to use ordinary binomial
if the test of overdispersion accepts the null hypothesis and to use overdispersed binomial if the test of
overdispersion rejects the null hypothesis, where “use ordinary binomial” or “use overdispersed binomial”
means pretend no pretest had been done. This is clearly the Wrong Thing. The composite procedure is not
the simple procedure that is the second step of the composite procedure.

Hence the conclusion is that if you want to use overdispersion, then use it. Always. Don’t use a composite
procedure that is the Wrong Thing.

5 Example: Agresti Section 4.7.2

We refit the horseshoe crab data from Section 4.3.2 allowing for overdispersion.

clean up R global environment
rm(list = 1s())

data(table_4.3)
names (table_4.3)

[1] "color" ‘"spine" '"width" ‘"satell" "weight" "y"

We found out in homework 3 that the apparent best fitting model when we did not use overdispersion was

gout.no.over <- glm(satell ~ color + weight, family = poisson, data = table_4.3)
summary (gout.no.over)

#i#

Call:

glm(formula = satell ~ color + weight, family = poisson, data = table_4.3)
##

Deviance Residuals:

Min 1Q Median 3Q Max

-2.9785 -1.9159 -0.5471 0.9181 4.8338

##

Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

(Intercept) 2.614e-01 3.008e-01 0.869 0.38496

color -1.728e-01 6.155e-02 -2.808 0.00499 *x*
weight 5.459e-04 6.749e-05 8.088 6.05e-16 *xx*
##H -

Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

(Dispersion parameter for poisson family taken to be 1)
##

Null deviance: 632.79 on 172 degrees of freedom

Residual deviance: 552.79 on 170 degrees of freedom
AIC: 914.09

#i#

Number of Fisher Scoring iterations: 6

If we allow for overdispersion

gout.over <- glm(satell ~ color + weight, family = quasipoisson,
data = table_4.3)
summary (gout . over)

##

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
glm(formula = satell ~ color + weight, family = quasipoisson,
data = table_4.3)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.9785 -1.9159 -0.5471 0.9181 4.8338

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.2613642 0.5370711 0.487 0.627

color -0.1728172 0.1098793 -1.573 0.118

weight 0.0005459 0.0001205 4.531 1.1e-05 *xx*

Signif. codes: 0 'x**x' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 3.18719)

Null deviance: 632.79 on 172 degrees of freedom
Residual deviance: 552.79 on 170 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

we see that everything is the same except that we are allowing for a lot of overdispersion.

	License
	R
	Quasilikelihood and Estimating Equations
	Variance Functions
	Modeling without Models
	Estimating the Dispersion Parameter

	Example: Agresti Section 4.7.4
	Testing for Overdispersion
	On Not Testing for Overdispersion

	Example: Agresti Section 4.7.2

