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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 Likelihood
In statistics, the word “likelihood” has a technical meaning, given it by Fisher (1912). The likelihood for a
statistical model is the probability mass function (PMF) or probability density function (PDF) thought of
as a function of parameters rather than as a function of data

𝐿𝑥(𝜃) = 𝑓𝜃(𝑥).
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The right-hand side is a function of 𝑥 that is nonnegative and sums (for a PMF) or integrates (for a PDF)
to one. The left-hand side is a function of 𝜃 that doesn’t sum or integrate to anything in particular (and
need not sum or integrate to anything finite).

Except that is not the most general notion of likelihood. We are allowed to drop multiplicative terms that
do not contain the parameter from the likelihood

𝐿𝑥(𝜃) = 𝑓𝜃(𝑥)
term that does not contain 𝜃 .

Likelihood plays a key role in frequentist statistical inference through the method of maximum likelihood
(the rest of this document) and Bayesian inference (another document). And in neither does it matter if
we to drop multiplicative terms that do not contain the parameter from the likelihood. We get the same
point estimates, hypothesis tests, and confidence intervals (for frequentist inference) and the same posterior
distributions (for Bayesian inference) whether we drop such terms or not.

In this course we are interested in statistical models for discrete data so the likelihood will always be a PMF
perhaps with multiplicative terms that do not contain the parameters dropped.

For the binomial distribution the PMF is

𝑓𝜋(𝑥) = (𝑛
𝑥)𝜋𝑥(1 − 𝜋)𝑛−𝑥

and the likelihood is either the same right-hand side or

𝐿𝑥(𝜋) = 𝜋𝑥(1 − 𝜋)𝑛−𝑥

(dropping a multiplicative term that does not contain the parameter 𝜋).

For the Poisson distribution the PMF is
𝑓𝜇(𝑥) = 𝜇𝑥

𝑥! 𝑒−𝜇

and the likelihood is either the same right-hand side or

𝐿𝑥(𝜇) = 𝜇𝑥𝑒−𝜇

(dropping a multiplicative term that does not contain the parameter 𝜇).

3 The Method of Maximum Likelihood
Fisher (1912) proposed the method of maximum likelihood which takes the parameter value with the highest
likelihood (for the observed data) to be the point estimator of the unknown parameter. Fisher (1922), the
paper that really starts mathematical statistics, giving the subject its first coherent theory, gave heuristic
arguments for why the maximum likelihood estimator (MLE) is consistent and asymptotically normal (CAN)
and efficient, where

• consistent means the estimator converges to the true unknown parameter value as sample size goes to
infinity (this is the modern definition, not Fisher’s definition),

• asymptotically normal means the distribution of the estimator converges to a normal distribution as
sample size goes to infinity, and

• efficient means the estimator is best possible in the sense of having the smallest possible variance of
its asymptotic normal distribution.

Fisher’s heuristic arguments were made completely rigorous by many later authors, although some qualifica-
tions and regularity conditions were necessary.
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3.1 Local and Global
In theory, we distinguish two kinds of MLE. We can seek the global maximizer of the likelihood or be satisfied
with a mere local maximizer. In one dimension, we can graph the function and just see where the global
maximizer is. In higher dimensions, global optimization is hard. Neither we nor our computers know how
to do it except in very special cases (another document, exponential families).

We know from calculus that, if function 𝑓 has a maximum at a point 𝑥 where it is twice differentiable, then
𝑓 ′(𝑥) = 0 and 𝑓″(𝑥) ≤ 0. So these are necessary conditions for 𝑥 to be a maximizer of 𝑓 . We also know
from calculus that 𝑓 ′(𝑥) = 0 and 𝑓″(𝑥) < 0 is a sufficient condition for 𝑥 to be at least a local maximizer
of 𝑓 . A local maximizer 𝑥 of 𝑓 maximizes 𝑓 over a (perhaps very small) neighborhood of 𝑥; every point 𝑦
sufficiently close to 𝑥 has 𝑓(𝑦) ≤ 𝑓(𝑥).
There is analogous theory from multivariable calculus. This requires that we know what multivariable
calculus considers first and second derivatives. We write ∇𝑓(𝑥) to denote the vector of first partial derivatives,
which has 𝑖-th component

𝜕𝑓(𝑥)
𝜕𝑥𝑖

(here 𝑥 is a vector having components 𝑥𝑖), and we write ∇2𝑓(𝑥) to denote the matrix of second partial
derivatives, which has (𝑖, 𝑗)-th component

𝜕2𝑓(𝑥)
𝜕𝑥𝑖𝜕𝑥𝑗

.

It also requires that we know what the terms positive semidefinite, positive definite, negative semidefinite,
and negative definite mean as descriptions of symmetric matrices. A symmetric matrix is

• positive semidefinite if all its eigenvalues are nonnegative,

• positive definite if all its eigenvalues are positive,

• negative semidefinite if all its eigenvalues are nonpositive, and

• negative definite if all its eigenvalues are negative.

The necessary condition for a maximum of 𝑓 at a point 𝑥 where 𝑓 is twice differentiable is ∇𝑓(𝑥) = 0 and
∇2𝑓(𝑥) is a negative semidefinite matrix. The sufficient condition for a local maximum of 𝑓 at a point 𝑥
where 𝑓 is twice differentiable is ∇𝑓(𝑥) = 0 and ∇2𝑓(𝑥) is a negative definite matrix.

The R function eigen calculates eigenvalues and eigenvectors. Suppose we have already defined a symmetric
matrix m. Then
v <- eigen(m, symmetric = TRUE, only.values = TRUE)$values
all(v < 0)

## [1] TRUE

says TRUE if and only if m is negative definite (modulo inexactness of computer arithmetic — if m has
eigenvalues very close to zero, it may give the wrong answer). If we wanted to check for negative semidefinite,
we would replace all(v < 0) with all(v <= 0).

So we and our computers know how to find local maximizers (the computer goes uphill on 𝑓 until it finds
a point 𝑥 that satisfies the sufficient condition to within the inexactness of computer arithmetic or gives up
and emits an error if it cannot find such a point).

3.2 Global
Under the “usual regularity conditions” for consistency of MLE (Wald (1949); Kiefer and Wolfowitz (1956);
Wang (1985)) the global MLE is consistent. (Statisticians say “usual regularity conditions” to refer to some
unspecified regularity conditions for some theorem in some paper or textbook that they may have seen in
some theory class or just in their reading or only have heard about without getting into the gory details. The
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reason is that there are no simple necessary and sufficient conditions for either consistency or asymptotic
normality of MLE, so every theorem in every paper or textbook has somewhat different conditions. The
conditions that are easier to understand are not as sharp. The sharp conditions are harder to understand. So
authors have produced a lot of variants. No conditions are easy to understand. That is why the “easier” above.
All tend to be a long laundry list of unmotivated technicalities that are assumed just to make a particular
method of proof work. So no such regularity conditions are easily motivated or explained. The cited papers
are difficult to read. Ferguson (1996), Chapter 17, gives a simpler theorem, but still one appropriate for Stat
8112, which is several levels above this course, but not as sharp as the theory in the cited papers, where “not
as sharp” means Ferguson’s regularity conditions do not apply to as many statistical models as those of the
papers cited.)

So this lends support to the idea that MLE should mean the global maximizer of the likelihood. It also
corresponds to the naive notion: maximum means maximum (not some technicality like local maximum). It
also corresponds to Fisher (1912) and Fisher (1922) who did not discuss local and global maximizers and
thus lead people to believe he meant global.

Under the “usual regularity conditions” for asymptotic normality of MLE (Cramér (1946), Chapters 32 and
33; Ferguson (1996), Chapters 16–18, Vaart (1998), Chapters 5–7, Le Cam and Yang (2000), Chapters 6–7,
Geyer (2013)) the global MLE, if consistent,1 is asymptotically normal. Moreover it is efficient (LeCam
(1953); Vaart (1998), Section 8.6). In short the MLE is consistent, asymptotically normal, and efficient.

But these theorems also assert that even if the global MLE is not consistent (this can happen) or does not
even exist (this can also happen) that a “good” local maximizer of the likelihood (a local MLE) will also be
consistent, asymptotically normal, and efficient. So the question becomes how to find such a “good” local
maximizer. Theory says start at a “good enough” estimator (more on this below) and then go uphill to a
local maximum2 and this will produce an estimator (a local MLE) that is consistent, asymptotically normal,
and efficient.

An estimator is a “good enough” starting point for finding a local MLE if it is what the jargon calls
√𝑛-

consistent, that is, if it obeys what a textbook formerly used for Stat 1001 Freedman et al. (2007) calls the
“square root law” (statistical precision varies inversely with sample size).3

4 One-Parameter Example
This example is not categorical data, because as we will eventually find out (exponential families notes) that
maximum likelihood estimation is much easier for most models in categorical data analysis than for general
models. This is not about continuous versus discrete. The model in the follow-on notes for these notes also
needs good starting points for maximum likelihood to work. But that model has two parameters and we
want to start with something simpler.

Suppose we have a vector of data x that is supposed to be an independent and identically distributed (IID)
sample from a Cauchy distribution. In real life the location and scale parameters would both be unknown,
but here we just simulate some data (so we actually know the parameter values, but we pretend we don’t
know them so we can do some statistics.
set.seed(42)
x <- rcauchy(30, location = pi, scale = exp(1))

1That is, if the statistical model also satisfies the other set of ”usual regularity conditions,” the ones for consistency.
2Or even do not go all the way to the local maximum. The theory says from a ”good enough” estimator doing one step of

Newton’s method to maximize the likelihood is enough to produce an estimator that is consistent, asymptotically normal, and
efficient (@van-der-vaart, Section 5.7; @geyer-simple).

3Technically, an estimator ̃𝜃𝑛 is
√𝑛-consistent if

√𝑛( ̃𝜃𝑛 − 𝜃) is bounded in probability, where 𝑛 is the sample size and 𝜃 is
the true unknown parameter value, and where bounded in probability means for every 𝜀 > 0 there exists an 𝑟 < ∞ such that
Pr{√𝑛( ̃𝜃𝑛 − 𝜃) > 𝑟)} < 𝜀 for all sample sizes 𝑛. If

√𝑛( ̃𝜃𝑛 − 𝜃) converges in distribution to anything whatsoever (normality is
not necessary), then it is bounded in probability.
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For this example, we will pretend that we know the scale parameter. But we assume we know the wrong
value. We use the default parameter value scale = 1.

4.1 Maximum Likelihood Estimation
This log likelihood can be coded in R as follows.
mlogl <- function(mu)

sum(- dcauchy(x, location = mu, log = TRUE))

A “good enough” starting point is the sample median, which is consistent and asymptotically normal but
not efficient (Ferguson (1996), Chapter 13). Starting there and going uphill on the likelihood produces the
efficient local MLE. Here’s how to do that in R.
nout <- nlm(mlogl, median(x))
nout$code <= 2

## [1] TRUE
nout$estimate

## [1] 2.62256
median(x)

## [1] 2.610152

If the optimizer converges (if nout$code ≤ 2), then nout$estimate is the efficient local MLE. It is crucial
that we supply median(x) as the starting point, not some point that may be far away from the true unknown
parameter value.

We wrote mlogl to calculate minus the log likelihood because nlm only minimizes functions (minimizing
minus the log likelihood is the same as maximizing the log likelihood, and maximizing the log likelihood is
the same as maximizing the likelihood).

Similar code to that above works if we have multiple parameters and make mlogl a function of a vector
argument (more on this later).

We also show the median, just to show that the two estimators are different. Only theory tells us that the
MLE is a better estimator than the median.

4.2 Asymptotic Distribution
Since global and local MLE have the same asymptotic distribution under “the usual regularity conditions”
we can ignore the distinction when talking about this asymptotic distribution. If ̂𝜃𝑛 is the MLE for sample
size 𝑛 and 𝜃 is the true unknown parameter value, then

̂𝜃𝑛 ≈ Normal(𝜃, 𝐼𝑛(𝜃)−1) (1)

where the double wiggle sign means “approximately distributed as” and

𝐼𝑛(𝜃) = −𝐸𝜃{∇2𝑙𝑛(𝜃)}, (2)

where
𝑙𝑛(𝜃) = log 𝐿𝑛(𝜃),

and 𝐿𝑛 denotes the likelihood for sample size 𝑛 (what was 𝐿𝑥 before). The matrix (2) is called the Fisher
information matrix.

In this example with only one parameter, the matrix is one-by-one, so can be treated as a single number
rather than a matrix. But we will need Fisher information as a matrix by the end of these notes.
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4.3 Plug-In
The fundamental equation (1), although theoretically important, is practically useless because we don’t know
𝜃 (it is the true unknown parameter value we are trying to estimate). To use (1) we have to “plug in” a
consistent estimator for 𝜃 in the asymptotic variance, and the obvious estimator is the MLE. This gives

̂𝜃𝑛 ≈ Normal(𝜃, 𝐼𝑛( ̂𝜃𝑛)−1), (3)

and hence, if 𝜃 is a scalar parameter,
̂𝜃𝑛 ± 1.96√𝐼𝑛( ̂𝜃𝑛)−1 (4)

is a 95% approximate large-sample confidence for 𝜃 and

̂𝜃𝑛 − 𝜃
√𝐼𝑛( ̂𝜃𝑛)−1

(5)

is an approximately standard normal quantity that can be used as a test statistic for constructing hypothesis
tests.

Sometimes calculating the expectations in the definition of Fisher information (2) is onerous. Then we use
another consistent estimator of asymptotic variance. For large 𝑛, under the “usual regularity conditions” for
maximum likelihood

𝐼𝑛( ̂𝜃𝑛) ≈ 𝐽𝑛( ̂𝜃𝑛)
where

𝐽𝑛(𝜃) = −∇2𝑙𝑛(𝜃) (6)

(that is, (2) and (6) are the same except that in (6) we don’t take the expectation). The matrix (6) is called
the observed information matrix. Some people, including your humble author, call (2) the expected Fisher
information matrix and call (6) the observed Fisher information matrix. Thus we can replace (3), (4), and
(5) with

̂𝜃𝑛 ≈ Normal(𝜃, 𝐽𝑛( ̂𝜃𝑛)−1), (7)

̂𝜃𝑛 ± 1.96√𝐽𝑛( ̂𝜃𝑛)−1, (8)

and
̂𝜃𝑛 − 𝜃

√𝐽𝑛( ̂𝜃𝑛)−1
. (9)

The confidence intervals and hypothesis tests recommended in this section are Wald intervals and tests
because they use Fisher information evaluated at ̂𝜃𝑛 rather than at 𝜃.

If we did use 𝐼𝑛(𝜃) and 𝐽𝑛(𝜃) we would get Rao confidence intervals and hypothesis tests.

4.4 Wald Interval
The log likelihood is messy. We let R calculate it for us. We can also get R to calculate 𝐽𝑛( ̂𝜃𝑛) by using
optional argument hessian when doing maximum likelihood.
nout <- nlm(mlogl, median(x), hessian = TRUE)
nout$code <= 2

## [1] TRUE
nout$estimate

## [1] 2.62256
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nout$hessian

## [,1]
## [1,] 13.27041

R function mlogl calculates minus the log likelihood, the Hessian is the second derivative of this function,
observed Fisher information is minus the second derivative; and the two minus signs cancel.

Thus the Wald interval is
conf.level <- 0.95
crit <- qnorm((1 + conf.level) / 2)
crit

## [1] 1.959964
nout$estimate + c(-1, 1) * crit / sqrt(nout$hessian)

## Warning in c(-1, 1) * crit/sqrt(nout$hessian): Recycling array of length 1 in vector-array arithmetic is deprecated.
## Use c() or as.vector() instead.

## [1] 2.084531 3.160590

Arrrrgh! That is a truly annoying error message
nout$estimate + c(-1, 1) * crit / sqrt(c(nout$hessian))

## [1] 2.084531 3.160590

The formula we used for the wald interval is (8) above or (18) below.

4.5 Likelihood Interval
We have only an implicit formula for the likelihood interval, (19) below. Thus we must solve equations with
R function uniroot to find the endpoints of the interval.

The likelihood interval goes down from the maximum on the likelihood an amount determined by the chi-
square critical value
crit <- qchisq(conf.level, df = 1)
crit

## [1] 3.841459
sqrt(crit)

## [1] 1.959964

Of course, chi-squared with one degree of freedom is the square of a standard normal, hence the relation
between the critical value here and in the preceding section.
theta.hat <- nout$estimate
fred <- function(theta) 2 * (mlogl(theta) - mlogl(theta.hat)) - crit

uout <- uniroot(fred, interval = c(theta.hat - 1, theta.hat),
extendInt = "downX")

lower <- uout$root
uout <- uniroot(fred, interval = c(theta.hat, theta.hat + 1),

extendInt = "upX")
upper <- uout$root
c(lower, upper)
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## [1] 2.069188 3.202467

4.6 Rao (Score) Interval
We have only an implicit formula for the score interval, (20) below. Thus we must solve equations with R
function uniroot to find the endpoints of the interval.

We will use observed rather than expected Fisher information, so the interval is the set of 𝜃 values satisfying

(𝑙′𝑛(𝜃))2

𝐽𝑛(𝜃) ≤ critical value

or
(−𝑙′𝑛(𝜃))2

−𝑙″𝑛(𝜃) ≤ critical value

But now we have the additional problem that we don’t know the first and second derivatives of the log
likelihood function. (The computer knows. R function nlm is calculating them using finite-difference approx-
imation. But it doesn’t give us access to them.) R function nlm only returns the second derivative evaluated
at ̂𝜃𝑛, which is not what we need here.

Hence we turn to R package numDeriv to calculate these derivatives.
library(numDeriv)
mlogl.first <- function(theta) grad(mlogl, theta)
mlogl.second <- function(theta) hessian(mlogl, theta)

# try them out
mlogl.first(theta.hat)

## [1] -1.744026e-05
mlogl.second(theta.hat)

## [,1]
## [1,] 13.27127
# avoid that annoying warning
mlogl.second <- function(theta) c(hessian(mlogl, theta))
mlogl.second(theta.hat)

## [1] 13.27127

Now we are ready to try to compute the endpoints of the interval
fred <- function(theta) mlogl.first(theta)^2 / mlogl.second(theta) - crit

uout <- uniroot(fred, interval = c(theta.hat - 1, theta.hat),
extendInt = "downX")

lower <- uout$root
uout <- uniroot(fred, interval = c(theta.hat, theta.hat + 1),

extendInt = "upX")
upper <- uout$root
c(lower, upper)

## [1] 2.129046 3.111660
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4.7 Summary
lower upper

Wald 2.084531 3.160589
Wilks 2.069188 3.202467
Rao 2.129046 3.111660

Similar, as they must be for large sample size (asymptotic equivalence).

But the Wald interval is much easier to do and to explain.

5 Two-Parameter Example
We redo our Cauchy example with two parameters, that is, we assume both location and scale are unknown
parameters.
mlogl <- function(theta) {

stopifnot(length(theta) == 2)
stopifnot(is.numeric(theta))
stopifnot(is.finite(theta))
sum(- dcauchy(x, location = theta[1],

scale = theta[2], log = TRUE))
}
theta.twiddle <- c(median(x), IQR(x) / 2)
nout <- nlm(mlogl, theta.twiddle)
nout$code <= 2

## [1] TRUE
nout$estimate

## [1] 2.649775 2.067405
c(median(x), IQR(x) / 2)

## [1] 2.610152 1.937020

The MLE is now two-dimensional, first component location and second component scale. As before we use
the sample median as a “good enough” estimator of the location parameter. Since the interquartile range
(IQR) of the Cauchy distribution is twice the scale parameter, IQR / 2 is a consistent and “good enough”
estimator of the scale.

We output both the MLE (a two-dimensional vector) and our “good enough” estimator that we used as a
starting point only to show that they are different. Only theory tells us that the MLE is the better estimator.

If we ask nicely, the computer will also calculate the observed Fisher information matrix evaluated at the
MLE.
nout <- nlm(mlogl, theta.twiddle, hessian = TRUE)
nout$code <= 2

## [1] TRUE
nout$hessian

## [,1] [,2]
## [1,] 4.399394073 0.002009904
## [2,] 0.002009904 2.618737940

As in the one-dimensional case we can use this to easily make Wald intervals.
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Standard errors for the estimators are square roots of the diagonal elements of inverse Fisher information
se <- sqrt(diag(solve(nout$hessian)))
foo <- cbind(nout$estimate, se)
rownames(foo) <- c("location", "scale")
colnames(foo) <- c("estimate", "std. err.")
round(foo, 4)

## estimate std. err.
## location 2.6498 0.4768
## scale 2.0674 0.6180

Rather than demonstrate Wilks or Rao intervals for this example, we will leave that for a categorical data
analysis example in the follow-on notes. But Rao turned out to be too horrible to do, so only likelihood
intervals are illustrated there. Rao would be horrible in the same way for this example. Too much calculus.

6 Wald, Wilks, Rao
6.1 Nested Models
There are three kinds of tests of model comparison associated with maximum likelihood estimation. These
tests have three different test statistics but are asymptotically equivalent (a concept explained below). The
idea is that we have two nested models to compare, “nested” meaning one is a submodel of the other.

The simplest situation in which we get nested models is when some of the parameters in the bigger model are
set to zero (constrained to be zero) in the smaller model. When models are specified by regression formulas,
as when using R functions like lm and glm, this happens when all of the terms in the formula for the smaller
model are in the formula for the bigger model, but not vice versa.

More generally, for regression-like models (linear and generalized linear models, for example) models are
nested if the column space of the model matrix of the bigger model contains the column space of the model
matrix of the smaller model, but not vice versa (and offset vectors are the same, if there are offset vectors).

More generally, for general statistical models (not necessarily regression-like), models are nested if every
probability distribution in the bigger model is also in the smaller model but not vice versa. This happens
for parametric statistical models when bigger and smaller models are parameterized the same way and the
parameter space of the bigger model contains the parameter space of the smaller model but not vice versa.

It is not enough for Wald, Wilks, and Rao tests that the models are nested; they must be nested smoothly,
meaning the parameter space of the bigger model is a manifold (a possibly curved hypersurface in 𝑛-
dimensional space and the parameter space of smaller model is a submanifold of the parameter space of
the bigger model. We won’t even try to explain that condition, but be content to explain the special case
when some of the parameters of the bigger model are constrained to be equal to zero in the smaller model.
Then the submanifold requirement is that each parameter constrained to be equal to zero in the smaller model
can take any value in an open interval that includes zero in the bigger model and can do this regardless of
the values of the other parameters.

That is, we are doing two-sided rather than one-sided tests of the constrained parameters (collectively). If
we were doing the multiparameter analog of one-sided tests in which some parameters are equal to zero in
the smaller model but greater than or equal to zero in the bigger model (variance components in random
effects models, for example), then the theory for this is known but not widely understood and hard to use
(Chernoff, 1954; Geyer, 1994; Le Cam, 1970; Self and Liang, 1987).

6.2 The Tests
We also need the “usual regularity conditions” for asymptotic normality of maximum likelihood estimates in
the bigger and smaller models, which we denote ̂𝜃𝑛 and ̃𝜃𝑛, respectively.
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Then the Wilks test statistic, also called the likelihood ratio test statistic, is

𝑇𝑛 = 2[𝑙𝑛( ̂𝜃𝑛) − 𝑙𝑛( ̃𝜃𝑛)] (10)

where 𝑙𝑛 is the log likelihood for the bigger model, which means that ̂𝜃𝑛 and ̃𝜃𝑛 have the same dimension (but
some of the components of ̃𝜃𝑛 are equal to zero). And Wilks’s theorem says (assuming the ”usual regularity
conditions and the submanifold nesting condition)

𝑇𝑛 ≈ ChiSq(𝑝 − 𝑑),

where 𝑝 is the dimension of the parameter space of the model and 𝑑 is the dimension of the parameter space
of the submodel.

It is sometimes easy to calculate one of ̂𝜃𝑛 and ̃𝜃𝑛 and difficult or impossible to calculate the other. This
motivates two other procedures that are asymptotically equivalent to the Wilks test.

The Rao test statistic is
𝑅𝑛 = (∇𝑙𝑛( ̃𝜃𝑛))𝑇 𝐼𝑛( ̃𝜃𝑛)−1∇𝑙𝑛( ̃𝜃𝑛), (11)

where 𝐼𝑛(𝜃) is expected Fisher information for sample size 𝑛 given by (2). We can also replace expected
Fisher information by observed Fisher information

𝑅′
𝑛 = (∇𝑙𝑛( ̃𝜃𝑛))𝑇 𝐽𝑛( ̃𝜃𝑛)−1∇𝑙𝑛( ̃𝜃𝑛), (12)

where 𝐽𝑛(𝜃) is observed Fisher information for sample size 𝑛 given by (6). We call either (11) or (12) the
Rao test statistic.

Under the conditions for the Wilks theorem, the Rao test statistic is asymptotically equivalent to the Wilks
test statistic. Both 𝑇𝑛 − 𝑅𝑛 and 𝑇𝑛 − 𝑅′

𝑛 converge in distribution to zero as 𝑛 goes to infinity, so the
differences between the three test statistics 𝑇𝑛, 𝑅𝑛, and 𝑅′

𝑛 are negligible compared to their values for large
sample sizes 𝑛.

The test using the statistic 𝑅𝑛 called the Rao test or the score test or the Lagrange multiplier test.

An important point about the Rao test statistic is that, unlike the likelihood ratio test statistic, it only
depends on the MLE for the null hypothesis ̃𝜃𝑛.

The Wald test statistic is

𝑊𝑛 = 𝑔( ̂𝜃𝑛)𝑇 [∇𝑔( ̂𝜃𝑛)𝐼𝑛( ̂𝜃𝑛)−1(∇𝑔( ̂𝜃𝑛))𝑇 ]−1𝑔( ̂𝜃𝑛), (13)

or
𝑊 ′

𝑛 = 𝑔( ̂𝜃𝑛)𝑇 [∇𝑔( ̂𝜃𝑛)𝐽𝑛( ̂𝜃𝑛)−1(∇𝑔( ̂𝜃𝑛))𝑇 ]−1𝑔( ̂𝜃𝑛), (14)

where, as with the Rao statistic, 𝐼𝑛(𝜃) and 𝐽𝑛(𝜃) are expected and observed Fisher information given by (2)
and (6) and where 𝑔 is a vector-to-vector constraint function such that the submodel is the set of 𝜃 such that
𝑔(𝜃) = 0. In the case of interest to us, where the smaller model sets some of the parameters of the bigger
model to zero, it is usual to take 𝑔(𝜃) to be the vector of those constrained parameters, that is, 𝑔(𝜃) is the
vector of values of the parameters that are constrained to be zero in the smaller model.

Under the conditions for the Wilks theorem, the Wald test statistic is asymptotically equivalent to the Wilks
test statistic. Both 𝑇𝑛 − 𝑊𝑛 and 𝑇𝑛 − 𝑊 ′

𝑛 converge in distribution to zero as 𝑛 goes to infinity, so the
differences between the five test statistics 𝑇𝑛, 𝑅𝑛, 𝑅′

𝑛, 𝑊𝑛, and 𝑊 ′
𝑛 are negligible compared to their values

for large sample sizes 𝑛.

An important point about the Wald test statistic is that, unlike the likelihood ratio test statistic, it only
depends on the MLE for the alternative hypothesis ̂𝜃𝑛.
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6.3 Specializing to the One-Parameter Case
The formula (10) for the likelihood ratio test statistic does not simplify in the one-parameter case.

The formula (11) for the Rao test statistic does simplify to

𝑅𝑛 = (𝑙′𝑛( ̃𝜃𝑛))2/𝐼𝑛( ̃𝜃𝑛) (15)

and it simplifies even further in the case of a point null hypothesis 𝜃 = 𝜃0 to

𝑅𝑛 = (𝑙′𝑛(𝜃0))2/𝐼𝑛(𝜃0) (16)

And, of course, (12) simplifies to either of the above with 𝐼𝑛 replaced by 𝐽𝑛.

How (13) simplifies depends on what the constraint function 𝑔 is. If we use the simplest form 𝑔(𝜃) = 𝜃 − 𝜃0,
where 𝜃0 is the hypothesized value under the null hypothesis, then 𝑔′(𝜃) = 1 and (13) simplifies to

𝑊𝑛 = ( ̂𝜃𝑛 − 𝜃0)2𝐼𝑛( ̂𝜃𝑛) (17)

And, of course, (14) simplifies to the above with 𝐼𝑛 replaced by 𝐽𝑛.

Inverting these hypothesis tests gives confidence intervals.

The Wald interval is
̂𝜃𝑛 ± 𝑐

√𝐼𝑛( ̂𝜃𝑛)
(18)

where 𝑐 is the critical value derived from the standard normal distribution (the square root of the critical
value derived from the chi-squared distribution with one degree of freedom).

The other two intervals have no explicit form. They are given implicitly as follows.

The likelihood interval (Wilks interval) is the set of 𝜃 values satisfying

2[𝑙𝑛( ̂𝜃𝑛) − 𝑙𝑛(𝜃)] ≤ 𝑐 (19)

where 𝑐 is the critical value derived from the chi-squared distribution with one degree of freedom.

The score interval (Rao interval) is the set of 𝜃 values satisfying

(𝑙′𝑛(𝜃))2

𝐼𝑛(𝜃) ≤ 𝑐 (20)

where 𝑐 is the critical value derived from the chi-squared distribution with one degree of freedom. And, as
always, we can replace 𝐼𝑛 with 𝐽𝑛 in the above.

6.4 Applications
All five of these are widely used. Here are some cases where 𝑇𝑛, 𝑅𝑛, and 𝑊𝑛 are widely used.

𝑇𝑛 is the hardest to calculate, since either ̂𝜃𝑛 or ̃𝜃𝑛 or both may require numerical optimization (like we saw
with the Cauchy examples). But it is nevertheless widely used when such optimization has to be done anyway.
The R generic function anova when applied to objects produced by the R function glm does likelihood ratio
tests (which it calls analysis of deviance, “deviance” being another name for the likelihood ratio test statistic
(10)). So everyone who does tests of model comparison using these R functions is doing likelihood ratio tests.

The Pearson chi-square test is a special case of the Rao test. So everyone who does tests of model comparison
using the Pearson chi-square test is doing Rao tests (also called score tests). Since this is a very old and
widely understood procedure, many users use it (in all statistical software, not just R).
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The test statistics and 𝑃 -values in the output of the R generic function summary applied to objects produced
by the R function glm are Wald tests. This is obvious from the fact that only the MLE in the big model is
computed. The relevant smaller models are those that drop the predictor for the line of the output having a
particular test statistic and 𝑃 -value. Those models are not fitted in order to print the output of the summary
function. So everyone who pays attention to test statistics and 𝑃 -values in the output of the R function
summary is doing Wald tests.

An example where 𝑅′
𝑛 or 𝑊 ′

𝑛 would be used is when we use the computer to calculate Fisher information
(the hessian component of the output of the R function nlm as in the Cauchy example). That is observed
Fisher information because the computer only knows how to approximate derivatives but does not know how
to do expectations. If we use such to make confidence intervals (as we did in the Cauchy example), those
are Wald confidence intervals (obtained by inverting Wald tests).

6.5 Binomial Examples
Recall that the log likelihood for a binomial distribution with sample size 𝑛 and parameter 𝜋 is

𝑙𝑛(𝜋) = 𝑥 log(𝜋) + (𝑛 − 𝑥) log(1 − 𝜋),

the score (first derivative) is

𝑙′𝑛(𝜋) = 𝑥
𝜋 − 𝑛 − 𝑥

1 − 𝜋
= 𝑥 − 𝑛𝜋

𝜋(1 − 𝜋) ,

the MLE is
̂𝜋𝑛 = 𝑥/𝑛,

observed Fisher information is
𝐽𝑛(𝜋) = 𝑥

𝜋2 + 𝑛 − 𝑥
(1 − 𝜋)2 ,

and expected Fisher information is
𝐼𝑛(𝜋) = 𝑛

𝜋(1 − 𝜋) .

We consider two-tailed tests with hypotheses

𝐻0 ∶𝜋 = 𝜋0
𝐻1 ∶𝜋 ≠ 𝜋0

The MLE in the smaller model is 𝜋0 because there are no free parameters and nothing to estimate: the
parameter is constrained to have this value.

6.5.1 Wilks

The Wilks (likelihood ratio) test statistic is

𝑇𝑛 = 2[𝑥 log( ̂𝜋𝑛) + (𝑛 − 𝑥) log(1 − ̂𝜋𝑛)] − 2[𝑥 log(𝜋0) + (𝑛 − 𝑥) log(1 − 𝜋0)]

= 2 [𝑥 log ( ̂𝜋𝑛
𝜋0

) + (𝑛 − 𝑥) log (1 − ̂𝜋𝑛
1 − 𝜋0

)]
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6.5.2 Rao

Observed and expected Fisher information are different after plug-in of the MLE for the smaller model

𝐼𝑛(𝜋0) = 𝑛
𝜋0(1 − 𝜋0)

𝐽𝑛(𝜋0) = 𝑥
𝜋2

0
+ 𝑛 − 𝑥

(1 − 𝜋0)2

= 𝑛 ̂𝜋𝑛
𝜋2

0
+ 𝑛(1 − ̂𝜋𝑛)

(1 − 𝜋0)2

so 𝑅𝑛 and 𝑅′
𝑛 are different

𝑅𝑛 = ( 𝑥 − 𝑛𝜋0
𝜋0(1 − 𝜋0))

2 𝜋0(1 − 𝜋0)
𝑛

= (𝑥 − 𝑛𝜋0)2

𝑛𝜋0(1 − 𝜋0)

𝑅′
𝑛 = ( 𝑥 − 𝑛𝜋0

𝜋0(1 − 𝜋0))
2

(𝑛 ̂𝜋𝑛
𝜋2

0
+ 𝑛(1 − ̂𝜋𝑛)

(1 − 𝜋0)2 )
−1

= (𝑥 − 𝑛𝜋0)2

𝑛 ̂𝜋𝑛(1 − 𝜋0)2 + 𝑛(1 − ̂𝜋𝑛)𝜋2
0

6.5.3 Wald

Observed and expected Fisher information are the same after plug-in of the MLE for the bigger model

𝐼𝑛( ̂𝜋𝑛) = 𝑛
̂𝜋𝑛(1 − ̂𝜋𝑛)

𝐽𝑛( ̂𝜋𝑛) = 𝑥
̂𝜋2𝑛

+ 𝑛 − 𝑥
(1 − ̂𝜋𝑛)2

= 𝑛 ̂𝜋𝑛
̂𝜋2𝑛

+ 𝑛(1 − ̂𝜋𝑛)
(1 − ̂𝜋𝑛)2

= 𝑛
̂𝜋𝑛(1 − ̂𝜋𝑛)

so 𝑊𝑛 and 𝑊 ′
𝑛 are the same. The function 𝑔 we want to use for this application of Wald tests is

𝑔(𝜋) = 𝜋 − 𝜋0,

which has derivative
𝑑𝑔(𝜋)

𝑑𝜋 = 1,
so

𝑊𝑛 = ( ̂𝜋𝑛 − 𝜋0)2 (𝐼𝑛( ̂𝜋𝑛)−1)−1

= 𝑛( ̂𝜋𝑛 − 𝜋0)2

̂𝜋𝑛(1 − ̂𝜋𝑛)

If we try these out with 𝜋0 = 1/3, 𝑛 = 200, and 𝑥 = 53, we obtain

𝑇𝑛 = 4.3708 (𝑃 = 0.0366)
𝑅𝑛 = 4.2025 (𝑃 = 0.0404)
𝑅′

𝑛 = 4.6825 (𝑃 = 0.0305)
𝑊𝑛 = 4.7947 (𝑃 = 0.0285)
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We see the asymptotic equivalence in the fact that all four tests give nearly the same results.

The test recommended by introductory statistics books has test statistic

𝑍𝑛 = ̂𝜋𝑛 − 𝜋0
√𝜋0(1 − 𝜋0)/𝑛

which has an asymptotic standard normal distribution. Since 𝑅𝑛 = 𝑍2
𝑛 and the square of a standard normal

random variable is a chi-square distribution with one degree of freedom, which is the reference distribution
for Wilks, Rao, and Wald tests in this situation with dimension zero for the smaller model and dimension
one for the bigger model, the two tests are the same. So the test recommended by introductory statistics
books for this situation is the Rao test.
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