Stat 5421 Lecture Notes: Graphical Models

Charles J. Geyer

December 13, 2021

Contents

1	License	1
2	R	1
3	Introduction	2
4	Undirected Graphs	2
5	Undirected Graphs and Probability	3
6	R Package glmbb	4
7	Directed Graphs	11
8	Directed Acyclic Graphs and Probability	12
9	Directed Acyclic Graphs and Causality	13
10	Drawing Graphs	14
11	Drawing the Graph for a Formula	17
Bi	bliography	26

1 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0/).

2 R

- The version of R used to make this document is 4.1.2.
- The version of the rmarkdown package used to make this document is 2.11.
- The version of the glmbb package used to make this document is 0.5.1.
- The version of the CatDataAnalysis package used to make this document is 0.1.3.
- The version of the network package used to make this document is 1.17.1.
- The version of the utils package used to make this document is 4.1.2.

```
library(glmbb)
library(CatDataAnalysis)
library(network)

##

## 'network' 1.17.1 (2021-06-12), part of the Statnet Project

## * 'news(package="network")' for changes since last version

## * 'citation("network")' for citation information

## * 'https://statnet.org' for help, support, and other information

library(utils)
```

3 Introduction

Graphical models come in many kinds. There are graphical models where all the variables are categorical (Lauritzen (1996); Chapter 4). There are graphical models where the variables are jointly multivariate normal (Lauritzen (1996); Chapter 5). There are graphical models where some of the variables are categorical and the rest are conditionally jointly multivariate normal given the categorical ones (Lauritzen (1996); Chapter 6).

Since this is a course in categorical data, we will only be interested in graphical models having only categorical variables.

4 Undirected Graphs

An undirected graph consists of a set whose elements are called nodes and a set whose elements are called edges and which are unordered pairs of nodes. We write G = (N, E) where G is the graph, N is the node set, and E is the edge set.

Figure 1: An Undirected Graph

Figure 1 is an example. The nodes are U, V, W, X, and Z and the edges are the line segments.

A graph is called *simple* if it has no repeats of its edges, which our insistence that the edges are a set (which cannot have repeats) rather than a multiset (which can) already rules out, and if it has no loops (edges of the form (n, n)). We are only interested in simple graphs. The graph in Figure 1 is simple.

A graph (N_1, E_1) is a *subgraph* of (N_2, E_2) if $N_1 \subset N_2$ and $E_1 \subset E_2$, where \subset means subset (we do not use \subseteq to mean subset, so $A \subset B$ includes the case A = B).

A graph is *complete* if every pair of nodes is connected by an edge (Lauritzen (1996); Section 2.1.1).

A clique in a graph is the node set of a maximal complete subgraph, one that is not a subgraph of another complete subgraph (Lauritzen (1996); Section 2.1.1). The cliques in Figure 1 are $\{U\}$, $\{V,W\}$, and $\{W,X,Z\}$.

A path in an undirected graph is a sequence of edges $(n_i, n_{i+1}), i = 1, ..., k$. For example,

is a path in the graph in Figure 1. We can say that this path goes from V to Z or from Z to V. Since the edges are undirected, there is no implied direction.

If A, B, and C are sets of nodes of a graph, then we say that C separates A and B if every path from a node in A to a node in B goes through C (has an edge, one of whose nodes is in C). In the graph in Figure 1, the node set $\{W\}$ separates the node sets $\{U, V\}$ and $\{X, Z\}$.

5 Undirected Graphs and Probability

A log-linear model for a contingency table is any model having one of the "sampling schemes" (Poisson, multinomial, product multinomial) described in the Chapter 1 notes and in much more detail in the notes on sampling schemes.

Such a model is *hierarchical* if for every interaction term in the model all main effects and lower-order interactions involving variables in that term are also in the model.

The interaction graph for a hierarchical model is an undirected graph that has nodes that are the variables in the model and an edge for every pair of variables that appear in the same interaction term (Lauritzen (1996); Section 4.3.3).

A hierarchical model is *graphical* if its terms correspond to the cliques of its interaction graph (Lauritzen (1996); Section 4.3.3). Repeating what we said in the preceding section, the cliques the graph in Figure 1

are $\{U\}$, $\{V,W\}$, and $\{W,X,Z\}$. So the graphical model having this graph has formula

$$\sim U + V * W + W * X * Z.$$

Not every hierarchical model is graphical. For example, the hierarchical model with formula

$$\sim U + V * W + W * X + X * Z + Z * W$$

has the same interaction graph. But it is not graphical because it does not have the term W * X * Z.

A *Markov property* for a graph having random variables for nodes tells us something about conditional independence or factorization into marginals and conditionals. The relevant Markov property for log-linear models is the following, which is stated in Section 4.3.3 in Lauritzen (1996) and said to follow from Theorems 3.7 and 3.9 in Lauritzen (1996).

Theorem 5.1. If C separates A and B in the interaction graph, then the variables in A are conditionally independent of those in B given those in C.

The conclusion of the theorem is often written

$$A \perp \!\!\! \perp B \mid C$$
.

It means, of course, that the conditional distribution factorizes

$$f(y_{A \cup B} \mid y_C) = f(y_A \mid y_C) f(y_B \mid y_C)$$

where we have the usual abuse of notation that the three f's denote three different functions, the conditional PMF's of the indicated sets of variables, and where we are now using the notation y_S for subvectors of the response vector y of the probability model (described in the section on subvectors in the notes on sampling).

Repeating what we said in the preceding section, in the graph in Figure 1, $\{W\}$ separates $\{U, V\}$ and $\{X, Z\}$. So if Figure 1 is the interaction graph of a graphical model, we have

$$U, V \perp \!\!\!\perp X, Z \mid W$$
.

Perhaps not quite so obvious, in the same graph the empty set separates U from all the other nodes. Since there are no paths from U to any other node. Every path from U to another node (there are none of them) goes through the empty set. Thus we can also say

$$U \perp\!\!\!\perp V, W, X, Z \mid \emptyset.$$

But, since conditioning on an empty set of variables is the same as not conditioning. We can also say

$$U \perp \!\!\! \perp V, W, X, Z$$

meaning U is (unconditionally) independent of the rest of the variables.

6 R Package glmbb

R package glmbb has some functions for dealing with graphical models.

R function isGraphical says whether a formula is for a graphical model.

[1] TRUE

[1] FALSE

```
isHierarchical(\sim U + V * W + W * X + X * Z + Z * W)
## [1] TRUE
These opinions of the computer agree with our analysis above.
There is also an option graphical = TRUE to R function glmbb to tell it to only consider graphical models.
data(exercise_6.28)
sapply(exercise_6.28, class)
## Occupational_aspirations
                                                                             ΙQ
                                 Socioeconomic_status
                                                                                                Residence
                                                                       "factor"
                                                                                                 "factor"
                                             "factor"
lapply(exercise_6.28, levels)
## $Occupational_aspirations
## [1] "High" "Low"
##
## $Socioeconomic_status
## [1] "High" "Low"
##
## $IQ
## [1] "High" "Low"
## $Residence
## [1] "Large urban" "Rural"
                                    "Small urban"
##
## $Gender
## [1] "Female" "Male"
##
## $counts
## NULL
# all hierarchical models
gout <- glmbb(counts ~ (Occupational_aspirations + Socioeconomic_status +</pre>
    IQ + Residence + Gender)^5, data = exercise_6.28)
summary(gout)
##
## Results of search for hierarchical models with lowest AIC.
## Search was for all models with AIC no larger than min(AIC) + 10
## These are shown below.
##
##
     criterion weight
                           formula
##
     356.1
                0.0831068 counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
     356.8
                0.0602980 counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
##
     357.0
                0.0536192 counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
     358.0
                0.0323319 counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
##
     358.1
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
                0.0313371
##
     358.5
                0.0249027
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     358.7
                0.0231871
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Gender +
##
     358.7
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
                0.0230836
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     358.7
                0.0224651
##
     358.9
                0.0202700 counts ~ Socioeconomic_status*IQ + IQ*Gender + Occupational_aspirations*Soci
                           counts ~ Occupational_aspirations*IQ + IQ*Residence + Occupational_aspiration
##
     359.1
                0.0187457
##
     359.5
                0.0153778 counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
```

```
counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     359.7
                0.0136073
##
     359.9
                0.0126745
                           counts ~ Socioeconomic_status*IQ + IQ*Residence + Occupational_aspirations*S
##
     359.9
                0.0125381
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     359.9
                0.0125226
##
     360.0
                0.0122413
                           counts ~ IQ*Residence + IQ*Gender + Occupational_aspirations*Socioeconomic_s
##
                0.0111573
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
     360.1
##
     360.4
                0.0099215
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
     360.4
                0.0097442
##
     360.4
                0.0095619
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     360.5
                0.0095029
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
     360.5
                0.0094327
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*Residence
##
     360.5
                0.0090970
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
##
     360.6
                0.0090476
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
                0.0089172
     360.6
##
     360.7
                0.0084677
                           counts ~ Occupational_aspirations*IQ + IQ*Gender + Occupational_aspirations*
##
     360.8
                0.0081829
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
                0.0080894
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*IQ*Residence + O
     360.8
##
     360.9
                0.0076303
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
     361.0
                0.0073118
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     361.0
                0.0071361
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
##
     361.3
                0.0063734
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
     361.3
                0.0063189
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     361.3
                0.0062078
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
     361.4
##
                0.0059826
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
##
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
     361.4
                0.0057985
##
     361.5
                0.0055555
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     361.5
                0.0055362
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Residence*G
                0.0051214
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     361.7
##
     361.7
                0.0051202
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     361.8
                0.0049367
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
##
     361.8
                0.0049230
                           counts ~ Socioeconomic_status*IQ + Residence*Gender + Occupational_aspiration
##
     361.8
                0.0048778
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
##
     361.9
                0.0047338
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
     361.9
                0.0046242
##
     361.9
                0.0046220
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
                0.0046079
##
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     361.9
##
     362.0
                0.0044755
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     362.0
                0.0044448
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     362.1
                0.0042905
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Gender +
##
                0.0042713
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     362.1
##
     362.1
                0.0041569
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     362.1
                0.0041120
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     362.3
                0.0038131
##
     362.3
                0.0037570
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     362.3
                0.0037529
                           counts ~ Socioeconomic_status*IQ + IQ*Gender + Occupational_aspirations*Soci
##
     362.3
                0.0037368
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     362.4
                0.0036142
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*Residence
##
                0.0035616
     362.4
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
##
     362.4
                0.0035294
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
     362.5
                0.0034982
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Gender +
##
     362.5
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
                0.0034826
                           counts ~ Occupational aspirations*IQ + IQ*Residence + Occupational aspiration
##
     362.5
                0.0034770
##
     362.5
                0.0034442
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
     362.5
                0.0034282
```

```
counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     362.5
                0.0034229
##
     362.5
                0.0033892
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ*Residence + O
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
##
     362.5
                0.0033535
                           counts ~ Socioeconomic_status*IQ + IQ*Gender + Occupational_aspirations*IQ*R
##
     362.7
                0.0030671
##
     362.7
                0.0030389
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
##
     362.8
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
                0.0029820
     362.8
                0.0029685
##
                           counts ~ IQ*Residence + Residence*Gender + Occupational_aspirations*Socioeco
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
     362.8
                0.0028873
##
     362.9
                0.0028482
                           counts ~ Occupational_aspirations*IQ + IQ*Residence + Socioeconomic_status*I
##
     362.9
                0.0028304
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     362.9
                0.0027478
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     363.0
                0.0027325
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     363.1
                0.0025798
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     363.1
                0.0025296
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     363.1
                0.0025179
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     363.1
                0.0024795
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
##
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
     363.2
                0.0024489
##
     363.2
                0.0024387
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
     363.2
                0.0024117
##
     363.2
                0.0023744
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*Reside
##
     363.3
                0.0023455
                           counts ~ Socioeconomic_status*IQ + IQ*Residence + Occupational_aspirations*S
##
     363.3
                0.0023235
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     363.3
                           counts ~ Residence*Gender + Occupational_aspirations*Socioeconomic_status*IQ
                0.0022864
##
                0.0022768
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
     363.3
                           counts ~ IQ*Residence + IQ*Gender + Occupational_aspirations*Socioeconomic_s
##
     363.3
                0.0022651
##
     363.3
                0.0022476
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     363.5
                0.0021289
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Gender +
##
     363.5
                0.0021194
                           counts ~ Residence*Gender + Occupational_aspirations*Socioeconomic_status*IQ
##
     363.5
                0.0021085
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
                           counts ~ Occupational_aspirations*IQ + Residence*Gender + Occupational_aspir
##
     363.5
                0.0020626
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ*Gender + Occu
##
     363.5
                0.0020529
##
     363.6
                0.0020040
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     363.7
                0.0019127
                           counts ~ Socioeconomic_status*IQ + IQ*Residence + Occupational_aspirations*I
##
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     363.7
                0.0019098
##
     363.7
                0.0018554
                           counts ~ Socioeconomic_status*IQ + IQ*Gender + Residence*Gender + Occupation
##
                0.0018494
                           counts ~ IQ*Residence + IQ*Gender + Occupational_aspirations*Socioeconomic_s
     363.7
##
     363.7
                0.0018419
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     363.7
                0.0018389
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     363.8
                0.0018187
                           counts ~ Occupational_aspirations*IQ*Residence + Socioeconomic_status*IQ*Gen
##
                0.0018030
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
     363.8
##
                0.0017981
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
     363.8
##
     363.8
                0.0017782
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Gender +
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     363.8
                0.0017703
##
     363.8
                0.0017693
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspirations
     363.8
                0.0017597
##
     363.8
                0.0017516
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*Reside
##
     363.8
                0.0017475
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
                0.0017228
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
     363.9
     363.9
##
                0.0017079
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
     363.9
                0.0016937
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
     363.9
                0.0016847
                           counts ~ Occupational aspirations*IQ + IQ*Residence + Residence*Gender + Occ
##
     363.9
                0.0016829
##
     363.9
                0.0016741
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     364.0
                0.0016547
```

```
counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
     364.0
                0.0016500
##
     364.0
                0.0016226
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     364.0
                0.0015941
                           counts ~ Socioeconomic_status*IQ + IQ*Gender + Occupational_aspirations*Soci
##
     364.1
                0.0015722
##
     364.1
                0.0015628
                           counts ~ Occupational_aspirations*IQ + IQ*Gender + Occupational_aspirations*
##
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
     364.1
                0.0015144
##
     364.2
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*IQ*Gender + Occu
                0.0014701
     364.2
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
                0.0014591
##
     364.2
                0.0014435
                           counts ~ Occupational_aspirations*IQ + IQ*Residence + Occupational_aspiration
##
     364.2
                0.0014426
                           counts ~ Occupational_aspirations*IQ*Residence + Socioeconomic_status*IQ*Res
##
     364.2
                0.0014385
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
     364.2
                0.0014328
                           counts ~ IQ*Residence + Occupational_aspirations*IQ*Gender + Socioeconomic_s
##
     364.3
                0.0013850
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                0.0013817
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
     364.3
##
     364.3
                0.0013807
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     364.3
                0.0013650
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Socioeconomic_st
##
                0.0013529
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
     364.4
##
     364.4
                0.0013453
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
                0.0013233
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
     364.4
##
     364.4
                0.0013037
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
     364.5
                0.0012896
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Gender +
##
     364.5
                0.0012838
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     364.5
                           counts ~ Occupational_aspirations*IQ + IQ*Gender + Socioeconomic_status*IQ*R
                0.0012765
     364.5
##
                0.0012719
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
     364.5
                0.0012504
##
     364.5
                0.0012494
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     364.5
                0.0012493
                           counts ~ Occupational_aspirations*IQ + Residence*Gender + Occupational_aspir
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*IQ*Residence + O
##
     364.5
                0.0012311
##
     364.6
                0.0012205
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     364.6
                0.0012203
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     364.6
                0.0012200
                           counts ~ Socioeconomic_status*IQ + IQ*Residence + Residence*Gender + Occupat
##
     364.6
                0.0011950
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     364.6
                0.0011899
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
     364.6
                0.0011724
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     364.6
                0.0011707
##
                0.0011363
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
     364.7
##
     364.7
                0.0011318
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     364.7
                0.0011281
                           counts ~ IQ*Residence + IQ*Gender + Residence*Gender + Occupational_aspirati
##
     364.7
                0.0011228
                           counts ~ Socioeconomic_status*IQ + IQ*Gender + Occupational_aspirations*Soci
##
                0.0011136
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     364.7
##
                0.0011125
                           counts ~ Residence*Gender + Occupational_aspirations*Socioeconomic_status*Re
     364.8
##
     364.8
                0.0011121
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
                           counts ~ Occupational_aspirations*IQ*Gender + Socioeconomic_status*IQ*Gender
##
     364.8
                0.0011031
##
                           \verb|counts - IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + S| \\
     364.8
                0.0010841
##
                           counts ~ Occupational_aspirations*IQ + IQ*Residence + Occupational_aspiration
     364.8
                0.0010641
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     364.9
                0.0010435
##
     364.9
                0.0010304
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                0.0010297
                           counts ~ Socioeconomic_status*IQ + IQ*Residence + Occupational_aspirations*S
     364.9
##
     365.0
                0.0010059
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
##
     365.0
                0.0010036
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
                0.0009984
##
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     365.0
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + IQ*Residenc
##
     365.0
                0.0009927
##
     365.1
                0.0009578
                           counts ~ IQ*Residence + IQ*Gender + Occupational_aspirations*Socioeconomic_s
##
     365.1
                0.0009541
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
```

```
##
     365.1
                0.0009477
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     365.1
                0.0009459
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Occupationa
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     365.1
                0.0009450
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     365.1
                0.0009449
##
     365.1
                0.0009202
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
                0.0009136
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
     365.1
##
     365.2
                0.0009109
                           counts ~ IQ*Residence + Residence*Gender + Occupational_aspirations*Socioeco
                           counts ~ Occupational_aspirations*IQ*Residence + Occupational_aspirations*IQ
##
     365.2
                0.0008983
##
     365.2
                0.0008947
                           counts ~ Socioeconomic_status*IQ + Residence*Gender + Occupational_aspiration
##
                           counts ~ Residence*Gender + Occupational_aspirations*Socioeconomic_status*Re
     365.2
                0.0008779
##
     365.2
                0.0008689
                           counts ~ IQ*Gender + Residence*Gender + Occupational_aspirations*Socioeconom
##
     365.2
                0.0008672
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
                           counts ~ Occupational_aspirations*IQ + IQ*Residence + Occupational_aspiration
##
     365.3
                0.0008613
##
                0.0008411
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
     365.3
##
     365.3
                0.0008307
                           counts ~ Residence*Gender + Occupational_aspirations*Socioeconomic_status*IQ
##
     365.3
                0.0008281
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                0.0008187
                           counts ~ IQ*Gender + Residence*Gender + Occupational_aspirations*Socioeconom
     365.4
##
     365.4
                0.0008066
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
                0.0008064
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     365.4
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     365.4
                0.0007974
##
     365.4
                0.0007916
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     365.4
                0.0007894
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     365.4
                           counts ~ Socioeconomic_status*IQ + Residence*Gender + Occupational_aspiration
                0.0007875
##
                0.0007796
                           counts ~ Occupational_aspirations*IQ + IQ*Gender + Residence*Gender + Occupa
     365.5
##
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ*Residence + S
     365.5
                0.0007785
##
     365.5
                0.0007771
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*Residence
##
     365.5
                0.0007727
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Socioeconomic_st
                0.0007568
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     365.5
##
     365.5
                0.0007473
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
     365.6
                0.0007451
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
     365.6
                0.0007377
##
     365.6
                0.0007333
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     365.6
                0.0007324
                           counts ~ Socioeconomic_status*IQ + IQ*Residence + Occupational_aspirations*S
##
                           counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ*Gender + IQ*R
     365.6
                0.0007294
##
     365.7
                0.0007058
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                0.0007039
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
     365.7
##
     365.7
                0.0006985
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
     365.7
                0.0006939
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     365.7
                0.0006914
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                0.0006853
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     365.7
##
                0.0006839
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
     365.7
##
     365.7
                0.0006828
                           counts ~ IQ*Residence + IQ*Gender + Occupational_aspirations*Socioeconomic_s
                0.0006752
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
     365.8
##
     365.8
                0.0006713
                           counts ~ Residence*Gender + Occupational_aspirations*Socioeconomic_status*Re
##
                0.0006678
     365.8
                           counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*Residence
##
     365.8
                0.0006661
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
##
     365.8
                0.0006648
##
                0.0006633
                           counts ~ Socioeconomic_status*IQ + Occupational_aspirations*Socioeconomic_st
     365.8
##
     365.8
                0.0006612
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*IQ + O
                           counts ~ Occupational_aspirations*IQ + IQ*Gender + Occupational_aspirations*
##
     365.8
                0.0006611
##
                0.0006604
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     365.8
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     365.8
                0.0006583
##
     365.8
                0.0006446
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
                           counts ~ IQ*Residence + Residence*Gender + Occupational_aspirations*Socioeco
##
     365.9
                0.0006410
```

```
##
     365.9
                0.0006343 counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
     365.9
##
                0.0006325 counts ~ IQ*Gender + Occupational_aspirations*Socioeconomic_status*IQ + Occu
##
     365.9
                0.0006315 counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     365.9
                0.0006314 counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     365.9
                0.0006309 counts ~ Occupational_aspirations*Socioeconomic_status*Gender + Occupational
                0.0006255 counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
     365.9
                0.0006254 counts ~ Occupational_aspirations*IQ + Socioeconomic_status*IQ + Socioeconom
##
     365.9
                0.0006128 counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     365.9
##
     366.0
                0.0006107
                           counts ~ Residence*Gender + Occupational_aspirations*Socioeconomic_status*Re
##
     366.0
                0.0006000
                           counts ~ Occupational_aspirations*IQ + Occupational_aspirations*Socioeconomi
##
     366.0
                0.0005918 counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
##
                           counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
     366.0
                0.0005886
##
     366.1
                0.0005750
                           counts ~ IQ*Residence + Occupational_aspirations*Socioeconomic_status*Reside
     366.1
                0.0005741
##
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
##
                           counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_asp
     366.1
                0.0005638
##
     366.1
                0.0005607 counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
# now just the graphical model
gout.gr <- glmbb(counts ~ (Occupational_aspirations + Socioeconomic_status +</pre>
    IQ + Residence + Gender)^5, data = exercise_6.28, graphical = TRUE)
summary(gout.gr)
##
## Results of search for graphical models with lowest AIC.
## Search was for all models with AIC no larger than min(AIC) + 10
## These are shown below.
##
##
                          formula
     criterion weight
##
     362.5
                0.554860 counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspi
##
     363.8
                0.282047 counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspi
##
     367.0
                0.057695 counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspi
                0.044201 counts ~ Occupational_aspirations*Socioeconomic_status*IQ*Gender + Occupation
##
     367.5
##
     368.9
                0.022468 counts ~ Occupational_aspirations*Socioeconomic_status*Residence + Occupation
                0.015164 counts ~ Occupational_aspirations*Socioeconomic_status*IQ*Residence + Occupat
##
     369.7
##
     371.0
                0.007967 counts ~ Occupational_aspirations*Gender + Occupational_aspirations*Socioecon
##
     371.0
                0.007890 counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspi
##
     371.0
                0.007708 counts ~ Occupational_aspirations*Socioeconomic_status*Gender + Occupational_
More hierarchical than graphical
results.hier <- summary(gout)$results
results.graph <- summary(gout.gr)$results
nrow(results.hier)
## [1] 244
nrow(results.graph)
## [1] 9
And
min(which(cumsum(results.hier$weight) >= 0.9))
## [1] 133
min(which(cumsum(results.graph$weight) >= 0.9))
## [1] 4
```

133 models account for 90% of the weight among all hierarchical models less than the cutoff. 4 models account for 90% of the weight among all graphical models less than the cutoff.

We will try to interpret some of these graphs after we learn how to draw graphs.

7 Directed Graphs

A directed graph consists of a set whose elements are called nodes and a set whose elements are called edges and which are ordered pairs of nodes. When drawing a directed graph, the edges are drawn as arrows to indicate the direction. Figure 2 shows a directed graph.

Figure 2: A Directed Acyclic Graph

A path in a directed graph is a sequence of edges (n_i, n_{i+1}) , i = 1, ..., k. Since the edges are directed, there is an implied direction. We say the path goes from n_1 to n_{k+1} . For example,

is a path from V to Z in the graph in Figure 2. (The path must go in the same direction as the arrows.)

A directed graph is called *acyclic* if it has no cycles, which are paths that return to their starting point. The graph in Figure 2 is acyclic. Directed acyclic graphs are so important that they have a well-known TLA (three-letter acronym) DAG.

In a DAG the *parents* of a node u are the nodes from which edges go to u. The set of parents of u is denoted pa(u). In Figure 2 we have

$$\begin{aligned} \operatorname{pa}(U) &= \emptyset \\ \operatorname{pa}(V) &= \emptyset \\ \operatorname{pa}(W) &= \{V\} \\ \operatorname{pa}(X) &= \{W\} \\ \operatorname{pa}(Z) &= \{W, X\} \end{aligned}$$

8 Directed Acyclic Graphs and Probability

Every DAG that has nodes that are the variables in a statistical model is associated with a factorization of the joint distribution for that model into a product of marginal and conditional distributions

$$f(y) = \prod_{i \in N} f(y_i \mid y_{\mathrm{pa}(i)})$$

(Lauritzen (1996); Section 4.5.1). Using the parent sets we found in the preceding section, the graph in Figure 2 has the factorization

$$f(u, v, w, x, z) = f(z \mid w, x) f(x \mid w) f(w \mid v) f(v) f(u).$$
(1)

This agrees with the separation properties of the corresponding undirected graph discussed in Section 5 above. A general factorization, valid for any probability model would be

$$\begin{split} f(u,v,w,x,z) &= f(z \mid u,v,w,x) f(u,v,w,x) \\ &= f(z \mid u,v,w,x) f(x \mid u,v,w) f(u,v,w) \\ &= f(z \mid u,v,w,x) f(x \mid u,v,w) f(w \mid u,v) f(u,v) \\ &= f(z \mid u,v,w,x) f(x \mid u,v,w) f(w \mid u,v) f(v \mid u) f(u) \end{split}$$

Comparing this general factorization with (1) we see that we have

$$f(z \mid u, v, w, x) = f(z \mid w, x)$$

$$f(x \mid u, v, w) = f(x \mid w)$$

$$f(w \mid u, v) = f(w \mid v)$$

$$f(v \mid u) = f(v)$$

which imply

$$Z \perp\!\!\!\perp U, V \mid W, X$$

$$X \perp\!\!\!\perp U, V \mid W$$

$$W \perp\!\!\!\perp U \mid V$$

$$V \perp\!\!\!\perp U$$

all of which are Markov properties that can be read off the undirected graph in Figure 1.

9 Directed Acyclic Graphs and Causality

DAG's are also widely used to indicate causal relationships (Pearl, 2009; Spirtes et al., 2000). The idea is that a directed edge

indicates that changes in V cause changes in W.

Authorities on causal inference (Pearl, 2009; Spirtes *et al.*, 2000) understand that correlation is not causation. But they do insist that independence implies lack of causation.

If two variables are independent, then there cannot be a causal relationship between them (because that would induce dependence). If two variables are conditionally independent given a set S of other variables, then there cannot be a direct causal relationship. Any causal link must be indirect, the path from one to the other going through S.

Direction of causality cannot be inferred from independence, conditional or unconditional. If U and V are dependent, then changes in U may cause changes in V or changes in V may cause changes in U or changes in some other variable W may cause changes in both U and V.

There are two ways one can infer direction of causality. One is what is called "intervention" in the causal inference literature. It is the same thing that statisticians are talking about when they refer to controlled experiments. The other way is to simply assume that only one direction for edges makes sense (scientific sense, business sense, whatever).

In short, statistics can give you an undirected graph, but only controlled experiments or assumptions can give direction and causal interpretation of the edges.

10 Drawing Graphs

This about drawing graphs using R. By graphs we don't mean plots, but rather figures like Figures 1 and 2 above.

TIMTODTWI. There is an R task view on graphical models that lists 8 CRAN packages and 2 Bioconductor packages for dealing with graphical models.

In addition to all of these packages one can just use base R graphics, which is how Figures 1 and 2 were done. But the packages are perhaps easier to use.

We will just illustrate using R package network. We will redraw the graphs that are Figures 1 and 2 above.

R function network in R package network makes objects of class "network" that can then be plotted. It wants the graph presented as an adjacency matrix which is a matrix whose row and column indices are nodes of the graph and the entries of the matrix are zero if there is no edge from one node to another and one otherwise. We can use the same matrix for both directed and undirected graphs. So we set up the matrix for Figure 2.

```
nodeset <- LETTERS["U" <= LETTERS & "Y" != LETTERS]</pre>
nodeset
## [1] "U" "V" "W" "X" "Z"
foo <- matrix(0, nrow = length(nodeset), ncol = length(nodeset))</pre>
rownames(foo) <- colnames(foo) <- nodeset</pre>
foo["V", "W"] <- foo["W", "X"] <- foo["W", "Z"] <- foo["X", "Z"] <- 1
foo
##
     UVWXZ
## U O O O O
## V O O 1 O O
## W O O O 1 1
## X O O O O 1
## Z O O O O O
Now we can plot it.
bar <- network(foo)</pre>
plot(bar, displaylabels = TRUE)
```

If we want an undirected graph, we have to remake the network object.

```
bar <- network(foo, directed = FALSE)
plot(bar, displaylabels = TRUE)</pre>
```

Every time you redo your plots, the graph nodes will be in different positions. But this doesn't matter. The nodes don't really have positions, only connections (edges).

On the other hand, one can just draw the graph in some drawing application and include it in the Rmarkdown

IJ

Figure 3: A Directed Graph

•U

Figure 4: An Undirected Graph

11 Drawing the Graph for a Formula

idx <- min(which(cumsum(results.graph\$weight) >= 0.9))

results.graph[1:idx,]

tt <- terms(ff)
names(attributes(tt))</pre>

```
##
                           criterion
                                                                                                      weight
## 1 362.4692 0.55485965
                                                                                                                                                                                                                                                                                                                                                                                                                counts ~ Occupational_aspirat
## 2 363.8225 0.28204722 counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspi
## 3 366.9963 0.05769458
                                                                                                                                                                                                        counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupa
## 4 367.5292 0.04420107
                                                                                                                                                                                                                                                                                                                                                                           counts ~ Occupational_aspirations*So
foo <- results.graph$formula[1:idx]</pre>
So let's look at one of these formulas
foo[1]
## [1] "counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspiration*IQ + Occupational_aspirational_aspiration*IQ + Occupational_aspirational_aspiration*IQ + 
Now we are going to some real magic of R! R is not an ordinary computing language, in that is knows a lot
about itself. Everything in R is an object, including R expressions. So R can take apart this formula. First
we turn this character string into a formula, and then we call R function terms to interpret it.
foo[1]
## [1] "counts ~ Occupational_aspirations*Socioeconomic_status*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspirations*IQ + Occupational_aspiration*IQ + Occupational_aspirational_aspiration*IQ + Occupational_aspirational_aspiration*IQ + 
ff <- as.formula(foo[1])</pre>
```

```
"intercept"
## [1] "variables"
                       "factors"
                                       "term.labels" "order"
## [6] "response"
                       "class"
                                       ".Environment"
Looks like we want term.labels
11 <- attr(tt, "term.labels")</pre>
11
##
    [1] "Occupational_aspirations"
##
    [2] "Socioeconomic status"
   [3] "IQ"
##
##
   [4] "Residence"
##
   [5] "Gender"
##
    [6] "Occupational_aspirations:Socioeconomic_status"
##
   [7] "Occupational aspirations:IQ"
##
   [8] "Socioeconomic_status:IQ"
##
   [9] "Occupational_aspirations:Residence"
## [10] "Socioeconomic_status:Residence"
## [11] "Occupational_aspirations:Gender"
## [12] "Socioeconomic_status:Gender"
## [13] "Residence:Gender"
## [14] "Occupational_aspirations:Socioeconomic_status:IQ"
## [15] "Occupational_aspirations:Socioeconomic_status:Residence"
## [16] "Occupational_aspirations:Socioeconomic_status:Gender"
## [17] "Occupational_aspirations:Residence:Gender"
## [18] "Socioeconomic_status:Residence:Gender"
## [19] "Occupational_aspirations:Socioeconomic_status:Residence:Gender"
This is something of a mess because of hierarchicality. We really only need the highest order terms, but the
others don't hurt. First use R function strsplit to get the variables
ss <- lapply(ll, strsplit, split = ":", fixed = TRUE)
head(ss)
## [[1]]
## [[1]][[1]]
## [1] "Occupational_aspirations"
##
##
## [[2]]
## [[2]][[1]]
## [1] "Socioeconomic_status"
##
##
## [[3]]
## [[3]][[1]]
## [1] "IQ"
##
##
## [[4]]
## [[4]][[1]]
## [1] "Residence"
##
##
## [[5]]
## [[5]][[1]]
```

[1] "Gender"

```
##
##
## [[6]]
## [[6]][[1]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
ss <- lapply(ss, unlist)
SS
## [[1]]
## [1] "Occupational_aspirations"
## [[2]]
## [1] "Socioeconomic_status"
##
## [[3]]
## [1] "IQ"
##
## [[4]]
## [1] "Residence"
## [[5]]
## [1] "Gender"
##
## [[6]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
##
## [[7]]
## [1] "Occupational_aspirations" "IQ"
## [[8]]
## [1] "Socioeconomic_status" "IQ"
##
## [1] "Occupational_aspirations" "Residence"
## [[10]]
## [1] "Socioeconomic_status" "Residence"
## [[11]]
## [1] "Occupational_aspirations" "Gender"
## [[12]]
## [1] "Socioeconomic_status" "Gender"
##
## [[13]]
## [1] "Residence" "Gender"
##
## [[14]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "IQ"
##
## [[15]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "Residence"
```

```
##
## [[16]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "Gender"
## [[17]]
## [1] "Occupational_aspirations" "Residence"
## [3] "Gender"
##
## [[18]]
## [1] "Socioeconomic_status" "Residence"
                                                         "Gender"
## [[19]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "Residence"
                                    "Gender"
Now we want all pairs of components of the same interaction. There's an R function for that: combn in R
package utils.
cc <- lapply(ss, combn, m = 2)</pre>
## Error in FUN(X[[i]], ...): n < m</pre>
But it doesn't like vector smaller than 2. So remove them and retry.
len.ss <- sapply(ss, length)</pre>
ss \leftarrow ss[len.ss \ge 2]
SS
## [[1]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
##
## [[2]]
## [1] "Occupational_aspirations" "IQ"
## [[3]]
## [1] "Socioeconomic_status" "IQ"
##
## [[4]]
## [1] "Occupational_aspirations" "Residence"
## [[5]]
## [1] "Socioeconomic_status" "Residence"
## [[6]]
## [1] "Occupational_aspirations" "Gender"
## [[7]]
## [1] "Socioeconomic_status" "Gender"
##
## [[8]]
## [1] "Residence" "Gender"
##
## [[9]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "IQ"
##
```

```
## [[10]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "Residence"
##
## [[11]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "Gender"
##
## [[12]]
## [1] "Occupational_aspirations" "Residence"
## [3] "Gender"
## [[13]]
## [1] "Socioeconomic_status" "Residence"
                                                       "Gender"
## [[14]]
## [1] "Occupational_aspirations" "Socioeconomic_status"
## [3] "Residence"
                                   "Gender"
cc <- lapply(ss, combn, m = 2)</pre>
СС
## [[1]]
        [,1]
##
## [1,] "Occupational_aspirations"
## [2,] "Socioeconomic_status"
##
## [[2]]
##
        [,1]
## [1,] "Occupational_aspirations"
## [2,] "IQ"
##
## [[3]]
        [,1]
## [1,] "Socioeconomic_status"
## [2,] "IQ"
##
## [[4]]
        [,1]
##
## [1,] "Occupational_aspirations"
## [2,] "Residence"
##
## [[5]]
##
        [,1]
## [1,] "Socioeconomic_status"
## [2,] "Residence"
##
## [[6]]
        [,1]
## [1,] "Occupational_aspirations"
## [2,] "Gender"
##
## [[7]]
##
        [,1]
## [1,] "Socioeconomic_status"
```

```
## [2,] "Gender"
##
## [[8]]
##
        [,1]
## [1,] "Residence"
## [2,] "Gender"
## [[9]]
##
        [,1]
                                     [,2]
## [1,] "Occupational_aspirations" "Occupational_aspirations"
  [2,] "Socioeconomic_status"
                                     "IQ"
        [,3]
## [1,] "Socioeconomic_status"
## [2,] "IQ"
##
## [[10]]
##
        [,1]
                                     [,2]
                                     "Occupational_aspirations"
## [1,] "Occupational aspirations"
  [2,] "Socioeconomic_status"
                                     "Residence"
        [,3]
## [1,] "Socioeconomic_status"
## [2,] "Residence"
##
## [[11]]
##
        [,1]
                                     [,2]
## [1,] "Occupational_aspirations"
                                     "Occupational_aspirations"
## [2,] "Socioeconomic_status"
                                     "Gender"
        [,3]
## [1,] "Socioeconomic_status"
## [2,] "Gender"
##
## [[12]]
                                     [,2]
                                                                 [,3]
## [1,] "Occupational_aspirations"
                                     "Occupational_aspirations" "Residence"
   [2,] "Residence"
                                     "Gender"
                                                                 "Gender"
##
## [[13]]
##
        [,1]
                                 [,2]
                                                         [,3]
## [1,] "Socioeconomic_status" "Socioeconomic_status" "Residence"
  [2,] "Residence"
                                 "Gender"
                                                         "Gender"
##
## [[14]]
                                     [,2]
        [,1]
## [1,] "Occupational_aspirations"
                                    "Occupational_aspirations"
## [2,] "Socioeconomic_status"
                                     "Residence"
##
        [,3]
                                     [,4]
                                                             [,5]
## [1,] "Occupational_aspirations" "Socioeconomic_status" "Socioeconomic_status"
## [2,] "Gender"
                                     "Residence"
                                                             "Gender"
##
        [,6]
## [1,] "Residence"
## [2,] "Gender"
```

Getting there. Now put this whole thing in one big two-row matrix,

```
rr <- Reduce(cbind, cc, init = NULL)</pre>
rr
##
        [,1]
                                     [,2]
## [1,] "Occupational_aspirations" "Occupational_aspirations"
## [2,] "Socioeconomic status"
                                     "IQ"
##
        [.3]
                                                              [,5]
                                 [,4]
## [1,] "Socioeconomic status" "Occupational aspirations" "Socioeconomic status"
                                                              "Residence"
## [2,] "IQ"
                                 "Residence"
        [,6]
                                     [,7]
                                                              [,8]
## [1,] "Occupational aspirations" "Socioeconomic status" "Residence"
   [2.] "Gender"
                                     "Gender"
                                                              "Gender"
##
        [,9]
##
                                     [,10]
## [1,] "Occupational_aspirations" "Occupational_aspirations"
## [2,] "Socioeconomic_status"
                                     "IQ"
                                 [,12]
##
        [,11]
## [1,] "Socioeconomic_status" "Occupational_aspirations"
## [2,] "IQ"
                                 "Socioeconomic_status"
##
        [,13]
                                     [,14]
## [1,] "Occupational_aspirations" "Socioeconomic_status"
## [2,] "Residence"
                                     "Residence"
                                     [,16]
        [,15]
##
## [1,] "Occupational aspirations" "Occupational aspirations"
## [2,] "Socioeconomic status"
                                     "Gender"
##
        [,17]
                                 [,18]
## [1,] "Socioeconomic_status" "Occupational_aspirations"
  [2,] "Gender"
                                 "Residence"
        [,19]
                                     [,20]
##
                                                  [,21]
## [1,] "Occupational aspirations" "Residence" "Socioeconomic status"
## [2,] "Gender"
                                     "Gender"
                                                  "Residence"
        [,22]
                                 [,23]
                                              [,24]
## [1,] "Socioeconomic_status" "Residence" "Occupational_aspirations"
## [2,] "Gender"
                                 "Gender"
                                              "Socioeconomic_status"
        [,25]
                                     [,26]
##
## [1,] "Occupational_aspirations" "Occupational_aspirations"
## [2,] "Residence"
                                     "Gender"
##
        [,27]
                                                          [,29]
                                 [,28]
## [1,] "Socioeconomic_status" "Socioeconomic_status" "Residence"
## [2,] "Residence"
                                 "Gender"
                                                          "Gender"
Now there is no honest way to do the last step without a loop AFAICS.
nn <- sort(unique(as.vector(rr)))</pre>
gr <- matrix(0, length(nn), length(nn))</pre>
rownames(gr) <- colnames(gr) <- nn
for (i in seq(1:ncol(rr))) gr[rr[1, i], rr[2, i]] <- 1
# symmetrize
gr \leftarrow gr + t(gr)
bar <- network(gr, directed = FALSE)</pre>
plot(bar, displaylabels = TRUE)
```


That's pretty easy to interpret. IQ is clearly separated from Residence and Gender by Occupational_aspirations and Socioeconomic_status. Using single letters for the variable names

$$I \perp \!\!\!\perp R, G \mid O, S$$

But that big clique of size four, nothing separates anything in it from anything else. That's the way cliques work.

Try it again. This time we systematize our calculations as a function.

```
formula.to.graph <- function(f) {</pre>
    stopifnot(inherits(f, "formula"))
    tt <- terms(f)
    11 <- attr(tt, "term.labels")</pre>
    ss <- lapply(ll, strsplit, split = ":", fixed = TRUE)
    ss <- lapply(ss, unlist)</pre>
    len.ss <- sapply(ss, length)</pre>
    ss \leftarrow ss[len.ss \ge 2]
    cc <- lapply(ss, combn, m = 2)</pre>
    rr <- Reduce(cbind, cc, init = NULL)</pre>
    nn <- sort(unique(as.vector(rr)))</pre>
    gr <- matrix(0, length(nn), length(nn))</pre>
    rownames(gr) <- colnames(gr) <- nn</pre>
    for (i in seq(1:ncol(rr))) gr[rr[1, i], rr[2, i]] <- 1</pre>
    gr <- gr + t(gr)
    network(gr, directed = FALSE)
}
```

And give it a try-out.

This is a little more interesting. Now we have IQ, Residence, and Gender all conditionally independent given the other two variables. In math

$$I \perp \!\!\!\perp R, G \mid O, S$$
$$R \perp \!\!\!\perp I, G \mid O, S$$
$$G \perp \!\!\!\perp I, R \mid O, S$$

This is a bit annoying the \perp 1 symbol isn't powerful enough to say what we want. Independence is not a pairwise property. So when three variables are conditionally indepenent given some others, it takes more than one use of symbols to get that.

Let's look at factorizations

$$\begin{split} f(i,r,g,o,s) &= f(i \mid r,g,o,s) f(r,g,o,s) \\ &= f(i \mid o,s) f(r,g,o,s) \\ &= f(i \mid o,s) f(r \mid g,o,s) f(g,o,s) \\ &= f(i \mid o,s) f(r \mid o,s) f(g,o,s) \\ &= f(i \mid o,s) f(r \mid o,s) f(g \mid o,s) f(o,s) \end{split}$$

where the equalties on even numbered lines are just joint equals conditional times marginal and the equalities on odd numbered lines are the conditional independence properties we read off the graph. Another way to write this is

$$f(i,r,g\mid o,s) = f(i\mid o,s)f(r\mid o,s)f(g\mid o,s)$$

which is what we said in words right at the beginning of our analysis of this graph I, R, and G are conditionally independent given O and S.

Bibliography

Lauritzen, S. L. (1996) Graphical Models. New York: Oxford University Press.

Pearl, J. (2009) Causality: Models, Reasoning, and Inference. Second. Cambridge: Cambridge University Press.

Spirtes, P., Glymour, C. and Scheines, R. (2000) Causation, Prediction, and Search. Second. Cambridge, MA: MIT Press.