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2 Discreteness versus Hypothesis Tests
You cannot do an exact level 𝛼 test for arbitrary 𝛼 when the data are discrete. For example, consider a
lower-tailed test for binomial data with null hypothesis 𝐻0 ∶ 𝜋 = 𝜋0 and sample size 𝑛 given by
n <- 20
pi0 <- 0.3

The 𝑃 -value is Pr𝜋0
(𝑋 ≤ 𝑥), and the only P-values that can occur that are less than 0.2 are

x <- 0:n
p <- pbinom(x, n, pi0)
foo <- cbind(x, p)
colnames(foo) <- c("data", "P-value")
rownames(foo) <- rep("", nrow(foo))
round(foo[p < 0.2, ], 4)

## data P-value
## 0 0.0008
## 1 0.0076
## 2 0.0355
## 3 0.1071

This behavior clearly has nothing to do with the particular values chosen for 𝑛 and 𝜋0. The code will always
produce a finite set of possible 𝑃 -values. This behavior also clearly has nothing to do with the binomial
distribution. Any discrete distribution will do the same.

Strictly speaking, a hypothesis test like this should not be called “exact” but rather only “conservative-exact”.
An “exact” test should have the property that the 𝑃 -value is uniformly distributed on (0, 1) when the null
hypothesis is correct, that is, we have

Pr𝜃0
(𝑃 ≤ 𝛼) = 𝛼, 0 < 𝛼 < 1,

where 𝑃 is the random variable that is the 𝑃 -value. Exact tests whose test statistics are continuous random
variables (𝑡 tests, 𝐹 tests) have this property. Tests whose test statistics are discrete random variables cannot
have this property, as we saw above. They only have the property

Pr𝜃0
(𝑃 ≤ 𝛼) ≤ 𝛼, 0 < 𝛼 < 1.

The difference between these properties means that a so-called “exact” (but better called “conservative-
exact”) hypothesis test with a discretely distributed test statistic is not really analogous to an exact test

1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


with a continuously distributed test statistic. The language we use to talk about them may mislead us into
thinking they are analogous, but they aren’t.

If you do the test in the example and observe 𝑥 = 3 and report the 𝑃 -value 𝑃 = 0.1071 with no indication
that the next possible lower 𝑃 -value is 0.0355, then that is highly misleading. Yes, the reported 𝑃 -value is
far above 0.05 (if that is the standard for significance you are using), but it is as close to 0.05 as it could be
without being below 0.05. And that is something that merely reporting 𝑃 = 0.1071 does not even hint at.

3 Randomized Hypothesis Tests
The standard theory of hypothesis testing taught in all PhD-level theory classes (this can be found in
Chapters 3 and 4 of the textbook Testing Statistical Hypotheses by Lehmann and Romano) fixes up this
defect of hypothesis tests for discrete data by allowing randomized tests. The test does not deterministically
map data values to decisions (accept or reject the null hypothesis). Rather for each data value 𝑥 it rejects
the null with probability 𝜙(𝑥) and accepts with probability 1 − 𝜙(𝑥), and 𝜙 is chosen so that

Pr𝜃0
(reject) = 𝐸𝜃0

{𝜙(𝑥)} = 𝛼, 0 < 𝛼 < 1. (1)

and thus the test rejects the null with probability 𝛼 for all 𝛼 just like hypothesis tests with continuous test
statistics.

Then there is a lot of elaborate theory surrounding the Neyman-Pearson lemma that shows that it is possible
to choose 𝜙 so that the test is uniformly most powerful (UMP), that is, the graph of the power function of
the UMP test lies on or above the graph of the power function of any other test with the same level. In
short, the UMP (randomized) test is provably better than any other test!

The 𝜙 function for the UMP lower-tailed test at level 𝛼 has the obvious form

𝜙(𝑥) =
⎧{
⎨{⎩

1, 𝑥 < 𝑥∗

𝑝∗, 𝑥 = 𝑥∗

0, 𝑥 > 𝑥∗

where 𝑥∗ is the largest 𝑥 value such that
Pr𝜃0

(𝑋 < 𝑥) < 𝛼
and

𝑝∗ =
𝛼 − Pr𝜃0

(𝑋 < 𝑥∗)
Pr𝜃0

(𝑋 = 𝑥∗) . (2)

For example, if we want to conduct a level 0.05 level lower-tailed UMP test for the situation above we want
alpha <- 0.05
xstar <- qbinom(0.05, n, pi0) - 1
xstar

## [1] 2
pbinom(xstar, n, pi0)

## [1] 0.03548313
pstar <- (alpha - pbinom(xstar, n, pi0)) / dbinom(xstar, n, pi0)
pstar

## [1] 0.5213292

so the UMP (randomized) lower-tailed test rejects the null with probability one if the observed data is less
than 𝑥∗ = 2 and with probability 𝑝∗ = 0.5213 if the observed data is equal to 𝑥∗ = 2 and otherwise accepts
the null.
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This is beautiful theory. The existence of UMP (randomized) tests is an important theoretical result. As
mentioned above, it is taught as the standard theory of hypothesis testing to all PhD students in statistics.

But it is weird from an applied statistics point of view. Because of the artificial randomization, if you and
I both do the UMP (randomized) hypothesis test of the same hypotheses for the same distribution and
the same data, we may get different decisions for the same data. If we observe 𝑋 = 𝑥∗, then we have to
randomize. So I generate a Uniform(0, 1) random variable and say “reject the null” if it is less than 𝑝∗ given
by the formula above, and you do the same. If we each generate a different Uniform(0, 1) random variable,
then we can get different results, even though the data are the same.

Because of this weirdness, every PhD statistician learns this theory in theory class and then never uses it for
a real data analysis!

4 Fuzzy 𝑃 -Values
Geyer and Meeden (2005, DOI:10.1214/088342305000000340, herein after just referred to as Geyer and
Meeden) propose to keep the theory but jettison the weirdness by the simple device of not actually doing
the randomization but only describing it. If we are both doing the UMP (randomized) test and observe data
𝑥∗, then we both say the UMP test rejects the null with probability 𝑝∗ given by the formula above and leave
it at that.

We also know that for many reasons the modern tendency is to report 𝑃 -values rather than decisions. So
Geyer and Meeden figured out what the corresponding 𝑃 -value notion is. They call it a fuzzy 𝑃 -value,
something that is spread out rather than a single number.

For the lower-tailed UMP (randomized) test for the binomial distribution (or other distributions satisfying
the conditions for a UMP test to exist) the fuzzy 𝑃 -value is uniformly distributed on the interval from
Pr𝜃0

(𝑋 < 𝑥) to Pr𝜃0
(𝑋 ≤ 𝑥). If one were to actually generate such a uniformly distributed random variable

𝑈 and then say reject the null at level alpha when 𝑈 < 𝛼, this would be the UMP (randomized) test. But
Geyer and Meeden say you shouldn’t generate such a 𝑈 . Instead you should just report that the the fuzzy
𝑃 -value is uniformly distributed on the interval from Pr𝜃0

(𝑋 < 𝑥) to Pr𝜃0
(𝑋 ≤ 𝑥).

For example, if we want to report a fuzzy 𝑃 -value for the lower-tailed UMP test for the situation above it is
uniformly distributed on the interval (0.0355, 0.1071). This is what is really analogous to an exact (not just
conservative-exact) test like a 𝑡 test.

The conservative-exact 𝑃 -value is the upper end point of the fuzzy 𝑃 -value. The fuzzy 𝑃 -value makes precise
how conservative the conservative-exact 𝑃 -value is. The fuzzy 𝑃 -value is exact-exact in the sense that if 𝑃
is a random variable having the (uniform) distribution of the fuzzy 𝑃 -value, then

Pr(𝑃 ≤ 𝛼) = 𝛼, for all 𝛼

which is just another way of stating the exactness property a hypothesis test is supposed to have, what we
said above in other notation.

Of course, for an upper-tailed UMP test, the fuzzy 𝑃 -value is uniformly distributed on the interval from
Pr𝜃0

(𝑋 > 𝑥) to Pr𝜃0
(𝑋 ≥ 𝑥), which is just the same as the formulas for the lower-tailed test but with the

inequalities reversed.

All of this theory applies to hypothesis tests with continuous test statistics but doesn’t do anything uncon-
ventional for them. A UMP (randomized) test with a continuous test statistic isn’t actually randomized
because any point occurs with probability zero, hence 𝑥∗ occurs with probability zero. The formula (2) gives
0/0, which is undefined, in that case, but it doesn’t matter because we land in that case with probability
zero. The corresponding fuzzy 𝑃 -value isn’t actually fuzzy because Pr𝜃0

(𝑋 < 𝑥) = Pr𝜃0
(𝑋 ≤ 𝑥), and the

interval over which the fuzzy 𝑃 -value is distributed is degenerate, collapsed to a single point.

So when the test statistic has a continuous distribution randomized and fuzzy tests produce nothing new.
They are only interesting for discrete data.
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5 Two-Tailed Tests
There are no UMP (randomized) two-tailed tests. There are no tests that are uniformly (in the true unknown
parameter value) better than all other tests. But if we add a side condition, then there are. The extra
condition is that the test be unbiased, which means the power is always greater than the significance level
(the probability of rejecting the null hypothesis 𝐻0 is always greater when 𝐻0 is false than when 𝐻0 is true).
This is a reasonable criterion for a test to satisfy.

Then there is a lot of elaborate theory surrounding the Neyman-Pearson lemma that shows that it is possible
to choose 𝜙 so that the test is uniformly most powerful unbiased (UMPU), that is, the graph of the power
function of the UMPU test lies on or above the graph of the power function of any other unbiased test with
the same level. In short, the UMPU (randomized) test is provably better than any other unbiased test!

We won’t even describe the UMPU test but just show how to calculate its fuzzy 𝑃 -value (see Geyer and
Meeden for a thorough explanation of UMPU theory). The fuzzy 𝑃 -value for the UMPU (randomized) two-
tailed test is sometimes uniform on an interval and sometimes non-uniform, but its PDF is always a step
function. The R function arpv.binom in CRAN package ump does fuzzy two-tailed tests for the binomial
distribution.

For example, if we want to report a fuzzy 𝑃 -value for the two-tailed UMP test for data
n <- 20
x <- 2
pi0 <- 1 / 3

library(ump)
print(arpv.binom(x, n, pi0, plot = FALSE))

## $alpha
## [1] 0.006145670 0.008236254 0.028054957 0.033270042
##
## $phi
## [1] 3.312001e-17 8.426339e-02 8.242187e-01 1.000000e+00

What this returns is a specification of the cumulative distribution function of the (random variable that is)
the fuzzy 𝑃 -value. Since the function is piecewise linear, it just reports the “knots” which separate the pieces.
If we do not say plot = FALSE we get the plot
arpv.binom(x, n, pi0)

With a little more effort it is possible to plot the probability density function (PDF) rather than the cumu-
lative density function (CDF). Your humble author prefers PDF; some of his co-authors prefer CDF. Use
whichever you like.

Here is how to plot the PDF.
foo <- arpv.binom(x, n, pi0, plot = FALSE)
arpv.plot(foo$alpha, foo$phi, df = FALSE)

6 Interpretation of Fuzzy 𝑃 -Values.
Geyer and Meeden claim that fuzzy 𝑃 -values are no harder to interpret than conventional 𝑃 -values. Very
low 𝑃 -values are still strong evidence against the null hypothesis. Very large 𝑃 -values are still no evidence
against the null hypothesis. In between 𝑃 -values are still in between.

Despite people’s desires for definite answers, 𝑃 -values don’t give definite answers. I once wrote

Anyone who thinks there is an important difference between 𝑃 = 0.049 and 𝑃 = 0.051 under-
stands neither science nor statistics.
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Figure 1: CDF of Fuzzy P-Value
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Figure 2: PDF of Fuzzy P-Value
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But a co-author made me cut it from the paper, not because it was wrong, but because it might offend.

Middling 𝑃 -values are already equivocal. Making them fuzzy doesn’t make them much more equivocal.

But making them fuzzy does make them truly exact rather than just conservative-exact (for one-tailed tests).
And making them fuzzy also makes them possible for two-tailed tests (there are no sensible nonrandomized
two-tailed tests for non-symmetric binomial distributions, that is, unless the null hypothesis is 𝜋0 = 1/2
there is no conservative-exact nonrandomized two-tailed test).

Also making them fuzzy makes them best possible (UMP or UMPU).

7 Fuzzy Confidence Intervals
Inverting a fuzzy hypothesis test gives a fuzzy confidence interval. We won’t explain (see Geyer and Meeden)
but just give examples and interpretations.

A fuzzy confidence interval for observed data 𝑥 is a function 𝑚𝑥 on the parameter space taking values between
zero and one. The interpretation is that, if 𝑚𝑥(𝜃) = 0, then 𝜃 is definitely out of the confidence interval, if
𝑚𝑥(𝜃) = 1, then 𝜃 is definitely in the confidence interval, and otherwise 𝜃 is partly in and partly out and
𝑚(𝜃) says how much. We can think of 𝑚𝑥(𝜃) as being like “partial credit” on the question about 𝜃. If 𝜃0 is
the true unknown parameter value, then the fuzzy confidence interval gets full marks if 𝑚𝑥(𝜃0) = 1, it fails
completely if 𝑚𝑥(𝜃0) = 0, and gets partial credit 𝑚𝑥(𝜃0) whatever the value is.

When evaluating the performance of the fuzzy confidence interval, we say its coverage probability is

𝐸𝜃{𝑤𝑋(𝜃)}

and we want to have this exactly at the specified confidence level.

And R function fci.binom in R package ump does do this. It produces exact fuzzy confidence intervals by
inverting the UMPU two-tailed test.

Here’s how that works.
fci.binom(x, n)

## 95 percent fuzzy confidence interval
## core is [0.0191, 0.2448]
## support is (0.0027, 0.3138)
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This function also blathers some. The “core” of the fuzzy confidence interval is the set of points that are
definitely in the interval and the “support” is the set of points that are either definitely or partially in the
interval.

If we don’t want to just plot the edges of the fuzzy confidence interval (which it does by default). We can
override that behavior with an optional argument. Here’s how that works. is produced by the following code
fci.binom(x, n, flat = 100)

## 95 percent fuzzy confidence interval
## core is [0.0191, 0.2448]
## support is (0.0027, 0.3138)
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We can see that a fuzzy confidence interval isn’t all that different from a conventional confidence interval. In
order to obtain exactness, we just need to allow for confidence intervals to have “partial credit”. We know
from the web page about coverage of confidence intervals that no conventional confidence interval can be
exact-exact.
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