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1 Section 9.1 Two-Way Tables
1.1 Section 9.1.1 Only Main Effects
The independence or homogeneity of proportions model has mean-value parameters

𝜇𝑖𝑗 = 𝛼𝑖𝛽𝑗

or canonical parameters
𝜃𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 (1)

where the alphas and betas are different in the two equations (this causes no confusion, since if we look at
parameters at all, these are usually canonical parameters).

1



1.2 Section 9.1.3 Interactions
The saturated model has completely arbitrary parameters. The mean value parameters 𝜇𝑖𝑗 have no specified
structure. The canonical parameters 𝜃𝑖𝑗 have no specified structure. So this is the largest model. It has the
most (arbitrarily variable) parameters.

1.3 Section 9.1.5 Hierarchical Models
The hierarchical model principle says that, if you have an interaction term of a certain order, then you have
all lower-order interactions of the same variables. For the saturated model for a two-way table this says

𝜃𝑖𝑗 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 (2)

(but this just says 𝜃𝑖𝑗 can be anything. This is not an identifiable parameterization.

1.4 Identifiability
A statistical model (in general, not just in categorical data analysis) is identifiable if there is only one
(vector) parameter value corresponding to a probability distribution. In exponential family models (notes
on exponential families, section on identifiability) every different mean vector corresponds to a different
distribution, but different canonical parameter vectors can correspond to the same distribution.

If we are assuming Poisson sampling (notes on Agresti Chapter 1, section on sampling schemes and also
notes on sampling schemes) then the canonical parameters are identifiable if and only if the mean-value
parameters are (because the link function (componentwise log) is invertible).

Clearly the specification for the two-way independence model (1) is not identifiable because one can add a
constant to all of the alphas and subtract the same constant from all the betas and get the same result

(𝛼𝑖 + 𝑐) + (𝛽𝑗 − 𝑐) = 𝛼𝑖 + 𝛽𝑗

Hence (2) is also not identifiable.

But we don’t need to worry about identifiability when fitting models because the computer automatically
takes care of it.

For example, consider the data in Table 3.8 in Agresti
counts <- c(17066, 14464, 788, 126, 37, 48, 38, 5, 1, 1)
drinks <- rep(c("0", "< 1", "1-2", "3-5", ">= 6"), times = 2)
malformation <- rep(c("Absent", "Present"), each = 5)
data.frame(drinks, malformation, counts)

## drinks malformation counts
## 1 0 Absent 17066
## 2 < 1 Absent 14464
## 3 1-2 Absent 788
## 4 3-5 Absent 126
## 5 >= 6 Absent 37
## 6 0 Present 48
## 7 < 1 Present 38
## 8 1-2 Present 5
## 9 3-5 Present 1
## 10 >= 6 Present 1

We can fit this using R function chisq.test
foo <- xtabs(counts ~ malformation + drinks)
foo
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## drinks
## malformation < 1 >= 6 0 1-2 3-5
## Absent 14464 37 17066 788 126
## Present 38 1 48 5 1

That’s ugly. Can we force xtabs to keep the drinks variable in the right order?
drinks <- factor(drinks, levels = c("0", "< 1", "1-2", "3-5", ">= 6"))
foo <- xtabs(counts ~ malformation + drinks)
foo

## drinks
## malformation 0 < 1 1-2 3-5 >= 6
## Absent 17066 14464 788 126 37
## Present 48 38 5 1 1

Better, now back to statistics
chisq.test(foo)

## Warning in chisq.test(foo): Chi-squared approximation may be incorrect

##
## Pearson's Chi-squared test
##
## data: foo
## X-squared = 12.082, df = 4, p-value = 0.01675

But it says “approximation may be incorrect” so try
chisq.test(foo, simulate.p.value = TRUE)

##
## Pearson's Chi-squared test with simulated p-value (based on 2000
## replicates)
##
## data: foo
## X-squared = 12.082, df = NA, p-value = 0.03398

But we can also use R function glm and its helper functions to do the job.
gout.indep <- glm(counts ~ malformation + drinks, family = poisson)
summary(gout.indep)

##
## Call:
## glm(formula = counts ~ malformation + drinks, family = poisson)
##
## Deviance Residuals:
## 1 2 3 4 5 6 7 8
## 0.00659 0.02830 -0.09735 -0.05669 -0.14540 -0.12356 -0.53649 1.56555
## 9 10
## 0.86842 1.63069
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.74479 0.00765 1273.86 <2e-16 ***
## malformationPresent -5.85581 0.10384 -56.39 <2e-16 ***
## drinks< 1 -0.16561 0.01129 -14.67 <2e-16 ***
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## drinks1-2 -3.07183 0.03632 -84.57 <2e-16 ***
## drinks3-5 -4.90346 0.08906 -55.05 <2e-16 ***
## drinks>= 6 -6.11007 0.16240 -37.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 95424.044 on 9 degrees of freedom
## Residual deviance: 6.202 on 4 degrees of freedom
## AIC: 80.511
##
## Number of Fisher Scoring iterations: 4
gout.sat <- glm(counts ~ malformation * drinks, family = poisson)
summary(gout.sat)

##
## Call:
## glm(formula = counts ~ malformation * drinks, family = poisson)
##
## Deviance Residuals:
## [1] 0 0 0 0 0 0 0 0 0 0
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 9.744843 0.007655 1273.036 <2e-16 ***
## malformationPresent -5.873642 0.144540 -40.637 <2e-16 ***
## drinks< 1 -0.165425 0.011302 -14.637 <2e-16 ***
## drinks1-2 -3.075345 0.036437 -84.402 <2e-16 ***
## drinks3-5 -4.908562 0.089415 -54.896 <2e-16 ***
## drinks>= 6 -6.133926 0.164577 -37.271 <2e-16 ***
## malformationPresent:drinks< 1 -0.068189 0.217432 -0.314 0.7538
## malformationPresent:drinks1-2 0.813582 0.471340 1.726 0.0843 .
## malformationPresent:drinks3-5 1.037361 1.014307 1.023 0.3064
## malformationPresent:drinks>= 6 2.262725 1.023674 2.210 0.0271 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 9.5424e+04 on 9 degrees of freedom
## Residual deviance: -9.7722e-13 on 0 degrees of freedom
## AIC: 82.309
##
## Number of Fisher Scoring iterations: 3
anova(gout.indep, gout.sat, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: counts ~ malformation + drinks
## Model 2: counts ~ malformation * drinks
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 4 6.202
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## 2 0 0.000 4 6.202 0.1846
anova(gout.indep, gout.sat, test = "Rao")

## Analysis of Deviance Table
##
## Model 1: counts ~ malformation + drinks
## Model 2: counts ~ malformation * drinks
## Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)
## 1 4 6.202
## 2 0 0.000 4 6.202 12.082 0.01675 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p.value.lrt <- anova(gout.indep, gout.sat, test = "LRT")[2, "Pr(>Chi)"]
p.value.rao <- anova(gout.indep, gout.sat, test = "Rao")[2, "Pr(>Chi)"]
p.value.chisq <- suppressWarnings(chisq.test(foo)$p.value)
p.value.lrt

## [1] 0.1845623
p.value.rao

## [1] 0.01675137
p.value.chisq

## [1] 0.0167514

We notice a number of things.

• The 𝑃 -value for the Rao test (0.01675) is exactly equal to that output for the Chi-Square test because
the Pearson chi-square test is a special case of the Rao test.

• The likelihood ratio test disagrees quite strongly with the Rao test. Of course, these tests are asymp-
totically equivalent, but here the sample size is not “large”. The total number of subjects (32574) is
large, but the expected number in some cells of the contingency table are quite small, a lot less than
what the rule of thumb says is necessary for valid asymptotics (at least five in each cell), so maybe
that accounts for the difference.

suppressWarnings(chisq.test(foo)$expected)

## drinks
## malformation 0 < 1 1-2 3-5 >= 6
## Absent 17065.13888 14460.59624 790.735955 126.6374102 37.8915086
## Present 48.86112 41.40376 2.264045 0.3625898 0.1084914

• The computer (R function glm) knows how to deal with identifiability. It adds an intercept, so it is
really using the formula

𝜃𝑖𝑗 = 𝛼 + 𝛽𝑖 + 𝛾𝑗

for the independence model and
𝜃𝑖𝑗 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑖𝑗

for the saturated model. Then it “drops” (sets equal to zero) one of the betas, one of the gammas, and
all interaction terms corresponding to the dropped beta and the dropped gamma.

names(coef(gout.indep))

## [1] "(Intercept)" "malformationPresent" "drinks< 1"
## [4] "drinks1-2" "drinks3-5" "drinks>= 6"
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It keeps the “intercept” (𝛼 in our notation just above). It drops one of the coefficients for the factor
malformation (and keeps the other one). It drops one of the coefficients for the factor drinks (and keeps
the other four). And this gives it an identifiable model.
names(coef(gout.sat))

## [1] "(Intercept)" "malformationPresent"
## [3] "drinks< 1" "drinks1-2"
## [5] "drinks3-5" "drinks>= 6"
## [7] "malformationPresent:drinks< 1" "malformationPresent:drinks1-2"
## [9] "malformationPresent:drinks3-5" "malformationPresent:drinks>= 6"

It has all the parameters of the independence model plus a lot of “interaction” parameters (the ones whose
names contain colons). But it drops all the “interaction” parameters that involve parameters that were
“dropped” from the independence model (it contains no “interaction” terms containing malformationAbsent
or drinks< 1) And this gives it an identifiable model.

2 Section 9.2 Three-Way Tables
Three way tables are just like two-way tables except the data have three subscripts for the three dimensions
of the table. Our analogs of

2.1 Section 9.2.1 Only Main Effects
The independence or homogeneity of proportions model has mean-value parameters

𝜇𝑖𝑗𝑘 = 𝛼𝑖𝛽𝑗𝛾𝑘

or canonical parameters
𝜃𝑖𝑗𝑘 = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 (3)

where the alphas, betas, and gammas are different in the two equations (this causes no confusion, since if
we look at parameters at all, these are usually canonical parameters).

2.2 The Saturated Model
As before, the saturated model has completely arbitrary parameters. The mean value parameters 𝜇𝑖𝑗𝑘 have
no specified structure. The canonical parameters 𝜃𝑖𝑗𝑘 have no specified structure. So this is the largest
model. It has the most (arbitrarily variable) parameters.

2.3 Example: High School Student Survey
This is Table 9.3 in Agresti and can be found in R package CatDataAnalysis.
# clean up R global environment
rm(list = ls())

library(CatDataAnalysis)
data(table_9.3)
names(table_9.3)

## [1] "a" "c" "m" "count"
foo <- xtabs(count ~ a + c + m, data = table_9.3)
foo

## , , m = 1
##
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## c
## a 1 2
## 1 911 44
## 2 3 2
##
## , , m = 2
##
## c
## a 1 2
## 1 538 456
## 2 43 279

Since a, c, and m are categorical, we should perhaps make them factors. But since they each have only two
values, it does not matter whether we make them factors or not. If they had more than two values, then it
would be essential to make them factors.

We can make these data look nicer by copying the names out of the book
dimnames(foo) <- list(alcohol = c("yes", "no"), cigarettes = c("yes", "no"), marijuana = c("yes", "no"))
aperm(foo, c(2, 3, 1))

## , , alcohol = yes
##
## marijuana
## cigarettes yes no
## yes 911 538
## no 44 456
##
## , , alcohol = no
##
## marijuana
## cigarettes yes no
## yes 3 43
## no 2 279

We needed R function aperm, which permutes the dimensions of an array, to present the data in the same
order as in the book.

Of course, the order doesn’t matter and neither do the dimnames. That is just to match the book.

Now R function chisq.test is useless, but R function glm has no problems. Our test of independence or
homogeneity of proportions is the same, just with three “predictors” rather than two (the “predictors” are
in scare quotes because they are just the dimnames)
gout.indep <- glm(count ~ a + c + m, data = table_9.3, family = poisson)
gout.sat <- glm(count ~ a * c * m, data = table_9.3, family = poisson)
anova(gout.indep, gout.sat, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: count ~ a + c + m
## Model 2: count ~ a * c * m
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 4 1286
## 2 0 0 4 1286 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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anova(gout.indep, gout.sat, test = "Rao")

## Analysis of Deviance Table
##
## Model 1: count ~ a + c + m
## Model 2: count ~ a * c * m
## Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)
## 1 4 1286
## 2 0 0 4 1286 1411.4 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly, the independence model does not fit the data. So statistics says these variables, alcohol use, cigarette
use, and marijuana use have some association. No real surprise, but the data do confirm what just about
everybody assumes.

2.4 Interactions
Our saturated model has the three-way interaction a * c * m but there can also be two-way interactions.
The model with all two-way interactions would have canonical parameter

𝜃𝑖𝑗𝑘 = 𝛼𝑖𝑗 + 𝛽𝑖𝑘 + 𝛾𝑗𝑘

(as before the terms with alphas, betas, and gammas need not match up with previous uses of these Greek
letters). And people who insist on the hierarchical principle would write

𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜀𝑖𝑗 + 𝜁𝑖𝑘 + 𝜂𝑗𝑘

but both formulas specify the same model and neither is identifiable.

So let’s look at that model.
gout.all.two.way <- glm(count ~ (a + c + m)^2, data = table_9.3, family = poisson)
anova(gout.indep, gout.all.two.way, gout.sat, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: count ~ a + c + m
## Model 2: count ~ (a + c + m)^2
## Model 3: count ~ a * c * m
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 4 1286.02
## 2 1 0.37 3 1285.65 <2e-16 ***
## 3 0 0.00 1 0.37 0.5408
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
foompter <- anova(gout.indep, gout.all.two.way, gout.sat, test = "LRT")
foompter.p.values <- foompter[-1, "Pr(>Chi)"]
foompter.p.values

## [1] 1.915858e-278 5.408396e-01

This says the two-way interactions model (model 2) fits as well as the three-way interactions model (model
3, the saturated model) because 𝑃 = 0.5408 is not statistically significant (not even close).

And it says the two-way interactions model (model 2) fits much better than the main effects only model
(model 1, the independence model) because 𝑃 < 2 × 10−16 is highly statistically significant (by anyone’s
standards).
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We should not be overly impressed by very very small 𝑃 -values because asymptotic approximation gives only
small absolute errors rather than small relative errors. All this very very small 𝑃 -value says is that an exact
calculation (if we could do it, which we cannot) would be something small, say 𝑃 < 0.001. But there is no
reason to believe the 𝑃 < 2 × 10−16 that R prints is correct to within even several orders of magnitude.

2.5 Many Models
There are many hierarchical models here, because we need not include all of the main effects or all two-way
interactions. The hierarchical principle says that if we have a two-way interaction, then we must have the
corresponding main effects, but that leaves

𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜀𝑖𝑗 + 𝜁𝑖𝑘 + 𝜂𝑗𝑘 + 𝜃𝑖𝑗𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜀𝑖𝑗 + 𝜁𝑖𝑘 + 𝜂𝑗𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜀𝑖𝑗 + 𝜁𝑖𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜀𝑖𝑗 + 𝜂𝑗𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜁𝑖𝑘 + 𝜂𝑗𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜀𝑖𝑗
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜁𝑖𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜂𝑗𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝜀𝑖𝑗
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛿𝑘 + 𝜁𝑖𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛾𝑗 + 𝛿𝑘 + 𝜂𝑗𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗 + 𝛿𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛾𝑗
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖 + 𝛿𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛾𝑗 + 𝛿𝑘
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛽𝑖
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛾𝑗
𝜃𝑖𝑗𝑘 = 𝛼 + 𝛿𝑘
𝜃𝑖𝑗𝑘 = 𝛼

Of course, we already know many of these models don’t fit the data. We saw that the main effects only
model doesn’t fit. So none of its submodels can fit either. But this is a complete listing of all hierarchical
models (except for the saturated model).

How can we choose among all these models? There is a methodology for that, but this is getting a bit ahead
of ourselves. There will be a handout for that. But for now, we just show it without much explanation.
library(glmbb)
out <- glmbb(count ~ a * c * m, data = table_9.3, family = poisson)
summary(out)

##
## Results of search for hierarchical models with lowest AIC.
## Search was for all models with AIC no larger than min(AIC) + 10
## These are shown below.
##
## criterion weight formula
## 63.42 0.6927 count ~ a*c + a*m + c*m
## 65.04 0.3073 count ~ a*c*m
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This says that none of the models that do not have all three two-way interactions fit the data according to
the criterion: none have AIC less than the AIC for the best model (“best” according to AIC) plus 10. We
don’t know what AIC is yet, but we will learn in a later handout. For now, just consider it a criterion of
goodness of fit.

If we want to see how bad some of those non-fitting models were, we can increase the cutoff.
library(glmbb)
out <- glmbb(count ~ a * c * m, data = table_9.3, family = poisson, cutoff = 90)
summary(out)

##
## Results of search for hierarchical models with lowest AIC.
## Search was for all models with AIC no larger than min(AIC) + 90
## These are shown below.
##
## criterion weight formula
## 63.42 6.927e-01 count ~ a*c + a*m + c*m
## 65.04 3.073e-01 count ~ a*c*m
## 153.06 2.369e-20 count ~ a*c + c*m

That is a huge jump up to the next best fitting model, which does not (take my word for it for now) does
not fit the data well at all.

3 Section 9.4 Four-Way and Beyond
And so on and so forth. Higher order tables are just more complicated, but present no new issues.

3.1 Example: Seat-Belt Use
These data are given in Table 9.8 in Agresti. They are apparently not in R package CatDataAnalysis.
# clean up R global environment
rm(list = ls())

count <- c(7287, 11587, 3246, 6134, 10381, 10969, 6123, 6693,
996, 759, 973, 757, 812, 380, 1084, 513)

injury <- gl(2, 8, 16, labels = c("No", "Yes"))
gender <- gl(2, 4, 16, labels = c("Female", "Male"))
location <- gl(2, 2, 16, labels = c("Urban", "Rural"))
seat.belt <- gl(2, 1, 16, labels = c("No", "Yes"))
data.frame(gender, location, seat.belt, injury, count)

## gender location seat.belt injury count
## 1 Female Urban No No 7287
## 2 Female Urban Yes No 11587
## 3 Female Rural No No 3246
## 4 Female Rural Yes No 6134
## 5 Male Urban No No 10381
## 6 Male Urban Yes No 10969
## 7 Male Rural No No 6123
## 8 Male Rural Yes No 6693
## 9 Female Urban No Yes 996
## 10 Female Urban Yes Yes 759
## 11 Female Rural No Yes 973
## 12 Female Rural Yes Yes 757
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## 13 Male Urban No Yes 812
## 14 Male Urban Yes Yes 380
## 15 Male Rural No Yes 1084
## 16 Male Rural Yes Yes 513
xtabs(count ~ seat.belt + injury + location + gender)

## , , location = Urban, gender = Female
##
## injury
## seat.belt No Yes
## No 7287 996
## Yes 11587 759
##
## , , location = Rural, gender = Female
##
## injury
## seat.belt No Yes
## No 3246 973
## Yes 6134 757
##
## , , location = Urban, gender = Male
##
## injury
## seat.belt No Yes
## No 10381 812
## Yes 10969 380
##
## , , location = Rural, gender = Male
##
## injury
## seat.belt No Yes
## No 6123 1084
## Yes 6693 513

Looks OK.
out <- glmbb(count ~ seat.belt * injury * location * gender,

family = "poisson")
summary(out)

##
## Results of search for hierarchical models with lowest AIC.
## Search was for all models with AIC no larger than min(AIC) + 10
## These are shown below.
##
## criterion weight formula
## 182.8 0.24105 count ~ seat.belt*injury*location + seat.belt*location*gender + injury*location*gender
## 183.1 0.21546 count ~ injury*gender + seat.belt*injury*location + seat.belt*location*gender
## 184.0 0.13742 count ~ seat.belt*injury + seat.belt*location*gender + injury*location*gender
## 184.8 0.09055 count ~ seat.belt*injury*location + seat.belt*injury*gender + seat.belt*location*gender + injury*location*gender
## 184.9 0.08446 count ~ seat.belt*injury + injury*location + injury*gender + seat.belt*location*gender
## 185.0 0.08042 count ~ seat.belt*injury*location + seat.belt*injury*gender + seat.belt*location*gender
## 185.5 0.06462 count ~ seat.belt*injury*location*gender
## 185.8 0.05365 count ~ seat.belt*injury*gender + seat.belt*location*gender + injury*location*gender
## 186.8 0.03237 count ~ injury*location + seat.belt*injury*gender + seat.belt*location*gender
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Now there are several models that fit these data fairly well. We will leave it at that for now.

4 The Parametric Bootstrap
4.1 Relevant and Irrelevant Simulation
4.1.1 Irrelevant

Most statisticians think a statistics paper isn’t really a statistics paper or a statistics talk isn’t really a
statistics talk if it doesn’t have simulations demonstrating that the methods proposed work great (at least
on some toy problems).

IMHO, this is nonsense. Simulations of the kind most statisticians do prove nothing. The toy problems
used are often very special and do not stress the methods at all. In fact, they may be (consciously or
unconsciously) chosen to make the methods look good.

In scientific experiments, we know how to use randomization, blinding, and other techniques to avoid biasing
the results. Analogous things are never AFAIK done with simulations.

When all of the toy problems simulated are very different from the statistical model you intend to use for
your data, what could the simulation study possibly tell you that is relevant? Nothing.

Hence, for short, your humble author calls all of these millions of simulation studies statisticians have done
irrelevant simulation.

4.1.2 Relevant

But there is a well-known methodology of relevant simulation, except that it isn’t called that. It is called
the bootstrap.

It idea is, for each statistical model and each data set to which it is applied, one should do a simulation
study of this model on data of this form.

But there is a problem: the fundamental problem of statistics, that ̂𝜃 is not 𝜃. To be truly relevant we should
simulate from the true unknown distribution of the data, but we don’t know what that is. (If we did, we
wouldn’t need statistics.)

So as a second best choice we have to simulate from our best estimate of the true unknown distribution, the
one corresponding to the parameter value ̂𝜃 if that is the best estimator we know.

But we know that is the Wrong Thing. So we have to be sophisticated about this. We have to arrange what
we do with our simulations to come as close to the Right Thing as possible.

And bootstrap theory and methods are extraordinarily sophisticated with many different methods of coming
very close to the Right Thing.

4.2 R Packages and Textbooks
There are two well known R packages concerned with the bootstrap. They go with two well known textbooks.

• R package boot (Canty and Ripley, 2021) is an R recommended package that is installed by default in
every installation of R. As the package description says, it goes with the textbook Davison and Hinkley
(1997).

• The CRAN package bootstrap (Tibshirani and Leisch, 2019) goes with, as its package description
says, the textbook Efron and Tibshirani (1993).

The package description also says that “new projects should preferentially use the recommended pack-
age ‘boot’ ”. But I do not agree. The package maintainer is neither of Efron or Tibshirani, and I do
not think they would agree. Whatever the politics of the R core team that make the boot package
“recommended”, they have nothing to do with the quality of the package or with the quality of the
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textbook they go with. If you like Efron and Tibshirani (1993), you should be using the R package
bootstrap that goes with it.

These authors range from moderately famous (for a statistician) to very, very famous (for a statistician).
Efron is the inventor of the term bootstrap in its statistical meaning.

4.3 Kinds of Bootstrap
Almost all of the bootstrap literature is about the nonparametric bootstrap that does not assume any para-
metric statistical model for the data. Most of the content of the textbooks cited above, and all of the R
packages cited above are about this methodology.

But if one is using parametric models, like everything we do in this course, then what you are doing is
inherently parametric, even if you use the nonparametric bootstrap. Thus there is no benefit to using the
nonparametric bootstrap for anything in this course.

A small minority of the bootstrap literature is about the parametric bootstrap that does use the parametric
statistical model for its simulations. So this is all we will discuss here.

For more on the nonparametric bootstrap, see my Stat 3701 lecture notes, some of which is repeated here.

4.4 The Bootstrap Analogy
4.4.1 The Name of the Game

The term “bootstrap” recalls the English idiom “pull oneself up by one’s bootstraps”.

The literal meaning of “bootstrap” in non-technical language is leather loops at the top of boots used to
pull them on. So the literal meaning of “pull oneself up by one’s bootstraps” is to reach down, grab your
shoes, and lift yourself off the ground — a physical impossibility. But, idiomatically, it doesn’t mean do
the physically impossible; it means something like “succeed by one’s own efforts”, especially when this is
difficult.

The technical meaning in statistics plays off this idiom. It means to get a good approximation to the sampling
distribution of an estimator without using any theory. (At least not using any theory in the computation.
A great deal of very technical theory may be used in justifying the bootstrap in certain situations.)

4.4.2 The Real World and the Bootstrap World

The discussion in this section is stolen from Efron and Tibshirani (1993), their Figure 8.1 and the surrounding
text.

To understand the bootstrap you have to understand a simple analogy. Otherwise it is quite mysterious. I
recall being mystified about it when I was a graduate student. I hope the students I teach are much less
mystified because of this analogy. This appears to the untutored to be impossible or magical. But it isn’t
really. It is sound statistical methodology.

Let 𝑃𝜃 denote the true unknown probability distribution that we assume the data are a sample from,

The bootstrap makes an analogy between the real world and a mythical bootstrap world.

real world bootstrap world
true unknown
distribution

𝑃𝜃 𝑃 ̂𝜃𝑛

true unknown
parameter

𝜃 ̂𝜃𝑛

data 𝑌 has distribution 𝑃𝜃 𝑌 ∗ has distribution 𝑃 ̂𝜃𝑛
estimator ̂𝜃𝑛 = 𝑡(𝑌 ) 𝜃∗

𝑛 = 𝑡(𝑌 ∗)
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real world bootstrap world

estimated standard
error

𝑠( ̂𝜃𝑛) 𝑠(𝜃∗
𝑛)

approximate pivotal
quantity

( ̂𝜃𝑛 − 𝜃)/𝑠( ̂𝜃𝑛) (𝜃∗
𝑛 − ̂𝜃𝑛)/𝑠(𝜃∗

𝑛)

The explanation.

• In the real world we have the true unknown distribution of the data 𝑃𝜃. In the bootstrap world we
have the “true” pretend unknown distribution of the data 𝑃 ̂𝜃𝑛

. Actually the distribution 𝑃 ̂𝜃𝑛
is known,

and that’s a good thing, because it allows us to simulate data from it. But we pretend it is unknown
when we are reasoning in the bootstrap world. It is the analog in the bootstrap world of the true
unknown distribution 𝑃𝜃 in the real world.

• In the real world we have the true unknown parameter 𝜃. It is what we are trying to estimate. In
the bootstrap world we have the “true” pretend unknown parameter ̂𝜃𝑛. Actually the parameter ̂𝜃𝑛
is known, and that’s a good thing, because it allows to see how close simulated estimators come to it.
But we pretend it is unknown when we are reasoning in the bootstrap world. It is the analog in the
bootstrap world of the true unknown parameter 𝜃 in the real world.

• In the real world we have data 𝑌 that is assumed to have distribution 𝑃𝜃. In the bootstrap world we
simulate data 𝑌 ∗ that are known to have distribution 𝑃 ̂𝜃𝑛

.

In the real world we have only one data set 𝑌 . We have to imagine its randomness – that, if the data
could be collected again, it would turn out different. In the bootstrap world we can simulate as many
different 𝑌 ∗ as we like. We can actually see the distribution by making plots and compute things about
the distribution by averaging over the simulations.

The way we simulate depends on what parametric model we are assuming. Core R has functions to
simulate Poisson data (rpois) and multinomial data (rmultinom). It has no methods for product
multinomial, but this can easily be done using rmultinom and a loop.

• We have some estimator of 𝜃, which must be a statistic, that is some function of the data that does
not depend on the unknown parameter. In order to have the correct analogy in the bootstrap world,
our estimate there must be the same function of the bootstrap data.

• Many procedures require some estimate of standard error of ̂𝜃𝑛. Call that ̂𝑠𝑛. It too must be a statistic,
that is some function of the data that does not depend on the unknown parameter. In order to have the
correct analogy in the bootstrap world, our estimate there must be the same function of the bootstrap
data.

• Many procedures use so-called pivotal quantities, either exact or approximate.

An exact pivotal quantity is a function of the data and the parameter of interest whose distribution
does not depend on any parameters. The prototypical example is the 𝑡 statistic

𝑋𝑛 − 𝜇
𝑠𝑛/√𝑛

which has, when the data are assumed to be exactly normal, an exact 𝑡 distribution on 𝑛−1 degrees of
freedom (which does not depend on the unknown parameters 𝜇 and 𝜎 of the distribution of the data).
Note that the pivotal quantity is a function of 𝜇 but the sampling distribution of the pivotal quantity
does not depend on 𝜇 or 𝜎: the 𝑡 distribution with 𝑛 − 1 degrees of freedom does not does not have
any unknown parameters.

An asymptotic pivotal quantity is a function of the data and the parameter of interest whose asymptotic
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distribution does not depend on any parameters. The prototypical example is the 𝑧 statistic

𝑋𝑛 − 𝜇
𝑠𝑛/√𝑛

(actually the same function of data and parameters as the 𝑡 statistic discussed above), which has, when
the data are assumed to have any distribution with finite variance, an asymptotic standard normal
distribution (which does not depend on the unknown the distribution of the data). Note that the
pivotal quantity is a function of 𝜇 but the sampling distribution of the pivotal quantity does not
depend on the unknown distribution of the data: the standard normal distribution does not does not
have any unknown parameters.

An approximate pivotal quantity is a function of the data and the parameter of interest whose sampling
distribution does not depend on the unknown distribution of the data, at least not very much. Often
such quantities are made by standardizing in a manner similar to those discussed above. Any time
we have some purported standard errors of estimators, we can use them to make approximate pivotal
quantities.

̂𝜃𝑛 − 𝜃
̂𝑠𝑛

as in the bottom left cell of the table above.

The importance of pivotal quantities in (frequentist) statistics cannot be overemphasized. They are
what allow valid exact or approximate inference. When we invert the pivotal quantity to make confi-
dence intervals, for example,

̂𝜃𝑛 ± 1.96 ⋅ ̂𝑠𝑛

this is (exactly or approximately) valid because the sampling distribution of the pivotal quantity does
not depend on the true unknown distribution of the data, at least not much. If it did depend strongly on
the true distribution of the data, then our coverage could be way off, because our estimated sampling
distribution of the pivotal quantity might be far from its correct sampling distribution.

More on pivotal quantities below. There are many pivotal quantities that one can use, not just those
having the form of the bottom line of the table.

4.4.3 Caution: Use the Correct Analogies

In the bottom right cell of the table above there is a strong tendency for naive users to replace ̂𝜃𝑛 with 𝜃.
But this is clearly incorrect. What plays the role of true unknown parameter value in the bootstrap world
is ̂𝜃𝑛 not 𝜃. The distribution that bootstrap data are simulated from has true known parameter value ̂𝜃𝑛.

There is a lesser tendency for naive users to replace 𝑠(𝜃∗
𝑛) with 𝑠( ̂𝜃𝑛). But this is clearly incorrect. In the

real world we know that 𝑠( ̂𝜃𝑛) is a random quantity. We are trying to account for this randomness in the
same way a 𝑡 distribution accounts for the randomness in the sample standard deviation. So we must use
the quantity 𝑠(𝜃∗

𝑛) in the bootstrap world that has similar randomness.

What one does in the bootstrap world must always perfectly mimic what one does in the real world with
the sole exception that ̂𝜃 is not 𝜃.

4.4.4 Pivotal Quantities and Infinite Regress

Frequentist statistics has a problem of infinite regress.

• Suppose you are trying estimate the population mean 𝜇.

• Naturally, you use the sample mean ̄𝑥𝑛 as an estimator.

• If you want to know how good an estimator, the standard deviation of the estimator, which is 𝜎/√𝑛,
tells you.
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• But you don’t know the population standard deviation 𝜎 either, so that’s no help.

• So we estimate 𝜎 by the sample standard deviation �̂�𝑛.

• But we still have a problem. We don’t know how far �̂�𝑛 is from 𝜎.

• We can ask about the standard deviation of �̂�𝑛, but theory can’t tell us much about that. Too
complicated. Theory can tell us the asymptotic variance of �̂�2

𝑛

√𝑛(�̂�2
𝑛 − 𝜎2) 𝒟⟶ Normal(0, 𝜇4 − 𝜎4)

where 𝜇4 is the population fourth central moment.

• But you don’t know 𝜇4 or 𝜎 either, so that’s no help.

• So we estimate 𝜇4 by the sample fourth central moment

̂𝜇4,𝑛 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥𝑛)4

• But we still have a problem. We don’t know how far ̂𝜇4,𝑛 is from 𝜇4.

• Theory can tell us

√𝑛( ̂𝜇4,𝑛 − 𝜇4) 𝒟⟶ Normal(0, 𝜇8 − 𝜇2
4 − 8𝜇3𝜇5 + 16𝜇2

3𝜇2)

• But now we have a bunch more unknown parameters to estimate.

• And this process goes on without end.

The method of pivotal quantities and asymptotic pivotal quantities is the idea that short circuits this infinite
regress.

If we just standardize the quantity we are trying to get an asymptotic distribution of, then the infinite regress
goes away

̄𝑥𝑛 − 𝜇
�̂�𝑛/√𝑛

𝒟⟶ Normal(0, 1)

and the asymptotic distribution has no unknown parameters to estimate (that’s what asymptotic pivotal
quantity means).

But asymptotic pivotal quantities don’t have to come from standardization. We know that the Wald, Wilks,
and Rao test statistics are all asymptotically chi-square, and the chi-square distribution does not have any
unknown parameters to estimate. So those are other asymptotically pivotal quantities.

4.4.5 How the Parametric Bootstrap Works

4.4.5.1 Hypothesis Tests

So the first thing we have to do is select an estimator of the parameter under the null hypothesis (because
that is the distribution we are supposed to use when computing a hypothesis test). So let ̂𝜃𝑛 be the MLE
under the null hypothesis (or any other good estimate).

The next thing we have to do is select an asymptotically pivotal quantity, Say the likelihood ratio test
statistic.

Now we simulate many datasets 𝑌 ∗ from the distribution of the data under ̂𝜃𝑛. And we use these simulations
to approximate the sampling distribution of the test statistic. We do not use the chi-square distribution! That
is only good when 𝑛 is nearly infinite. Instead we use the bootstrap distribution (simulation distribution).
If the test statistic is 𝑡(𝑌 ) and is asymptotically pivotal, then our bootstrap 𝑃 -value is Pr{𝑡(𝑌 ∗) ≥ 𝑡(𝑌 )},
and this probability is approximated by averaging over our bootstrap simulations.
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Actually we don’t recommend the naive bootstrap 𝑃 -value just described but rather a slightly more sophisti-
cated bootstrap 𝑃 -value that takes into account that, asymptotically at least, 𝑡(𝑌 ∗) and 𝑡(𝑌 ) have the same
distribution (which is the whole basis of the procedure). So if we have 𝑛boot simulated test statistics 𝑡(𝑌 ∗

1 ),
𝑡(𝑌 ∗

2 ), … , 𝑡(𝑌 ∗
𝑛boot

), then we also have one more 𝑡(𝑌 ), and we should use

#{𝑡(𝑌 ∗) ≥ 𝑡(𝑌 )} + 1
𝑛boot + 1

for the bootstrap 𝑃 -value, where # in the numerator means number of times the inequality holds. This
corrects for 𝑛boot being too small. The smallest a bootstrap 𝑃 -value can be is 1/𝑛boot, so you have to do a
lot of bootstrap simulations to get a really small bootstrap 𝑃 -value.

4.4.5.2 Confidence Intervals

There are many different schemes for nonparametric bootstrap confidence intervals. There are fewer for the
parametric bootstrap, and discussions of the parametric bootstrap in textbooks are so sketchy that we do not
get clear recommendations. Hence we offer the following, which is the analogue for the parametric bootstrap
of what are called bootstrap 𝑡 procedures for the nonparametric bootstrap.

The first thing we have to do is select an estimator of the parameter. Call that ̂𝜃𝑛.

The next thing we have to do is select an estimator of the asymptotic standard deviation of the parameter.
Like ̂𝜃𝑛 this estimator depends on the data and hence is a random variable.

If we are doing Wald confidence intervals, and ̂𝜃𝑛 is the MLE, then the asymptotic variance of the MLE is
inverse Fisher information. If ̂𝜃𝑛 is a vector parameter, then inverse Fisher information is a matrix. But then
the diagonal elements of this matrix are the estimated variances of the individual components of ̂𝜃𝑛. We saw
this in the notes on likelihood computation. Since the estimated asymptotic standard deviation depends on
the parameter, let us denote it 𝑠(𝜃). Then we have our estimate for the actual data 𝑠( ̂𝜃𝑛) and our estimate
for bootstrap data is 𝑠(𝜃∗

𝑖 ).
Now, as always in the parametric bootstrap, we simulate 𝑛boot IID realizations of the data from the distri-
bution with parameter ̂𝜃𝑛. The parameter estimates for these simulated data sets are, as we said above 𝜃∗

𝑖 ,
𝑖 = 1, … , 𝑛boot. Now we can form 𝑛boot simulations of the asymptotically pivotal quantity

𝑧∗
𝑖 = 𝜃∗

𝑖 − ̂𝜃𝑛
𝑠(𝜃∗

𝑖 )

just like in the bottom row of our table about the real world and the bootstrap world.

Now comes the tour de force. We don’t use the normal distribution to determine the critical value, in fact, we
don’t even have one critical value but rather two. We use the bootstrap distribution of the asymptotic pivotal
quantity rather than its asymptotic distribution. We determine from the bootstrap simulations numbers 𝑐1
and 𝑐2 such that

𝑐1 ≤ 𝑧∗
𝑖 ≤ 𝑐2 exactly 1 − 𝛼 of the time

to get coverage 1 − 𝛼. For example, to get an equal-tailed 95% confidence interval, we choose 𝑐1 to be the
0.025 quantile of the bootstrap distribution of the 𝑧∗

𝑖 and choose 𝑐2 to be the 0.975 quantile.

The point is that we use the bootstrap rather than the asymptotics to find critical values.

Then our bootstrap confidence interval is

( ̂𝜃𝑛 − 𝑐2𝑠( ̂𝜃𝑛), ̂𝜃𝑛 − 𝑐1𝑠( ̂𝜃𝑛)) (4)

That is, we apply the critical values (which are exact in the bootstrap world) to the real world (where they
are only the closest we can do to the Right Thing).
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Note that our bootstrap confidence intervals do not have the form

point estimate ± critical value × standard error

which some intro stats books teach is the only kind of confidence interval that exists.

Of course we already have seen that likelihood confidence intervals and score (Rao) confidence intervals,
don’t have this form either.

But now we see that bootstrap Wald intervals also don’t have this form.

If the bootstrap distribution of the 𝑧∗
𝑖 is skewed, then our bootstrap 𝑡 confidence intervals are skewed to

account for that.

But even if the bootstrap distribution of the 𝑧∗
𝑖 is not skewed, our bootstrap 𝑡 confidence intervals account

for the variability of estimating the asymptotic standard deviation. Even if “Student” (W. S. Gosset) had
never invented the 𝑡 distribution (nor anyone else), this bootstrap 𝑡 procedure would invent it. When the
population distribution is normal and we do a parametric bootstrap, the bootstrap distribution of the 𝑧∗

𝑖 is
Student’s 𝑡 distribution on 𝑛 − 1 degrees of freedom. So we do 𝑡 tests without knowing any theory. The
bootstrap does all the theory for us.

Moreover, when the true unknown population distribution is not normal, the bootstrap figures out the
analogue of the “Student” 𝑡 test for that population distribution, something theoretical statistics cannot do.

At least, it does all the theory relevant to the true unknown population distribution. As we have seen, the
description of the bootstrap does involve some theory.

Actually we don’t recommend the bootstrap confidence intervals just described, or rather we recommend
them but only using a very specific method of computing bootstrap critical values. Suppose we choose 𝑛boot
so that the quantiles we want when multiplied by 𝑛boot + 1 are integers. Then we take

𝑐1 = 𝑧∗
(𝑛boot+1)𝛼/2

𝑐2 = 𝑧∗
(𝑛boot+1)(1−𝛼/2)

Like the procedure we actually recommend for bootstrap 𝑃 -values, this procedure has +1 to correct for 𝑛boot
being small. But the argument is different.

The main virtue of this recommendation is that it avoids arguments about quantile estimation. R function
quantile has 9 different procedures. None of them are as simple or as good as the procedure recommended
here. Of course our procedure works only for specially chosen 𝑛boot whereas R function quantile has to
work for all sample sizes. So this procedure cannot replace R function quantile except in this particular
application.

4.4.6 Another Infinite Regress

But we don’t want to use the parametric bootstrap only when the sample size is infinite! So we still have
an infinite regress, but a more tractable one.

• We decide to use the bootstrap because we are worried that the asymptotics might not “work” for the
actual sample size of our actual data.

• So what if we are worried about whether the bootstrap works? Bootstrap the bootstrap! This is called
a double bootstrap.

• So what if we are worried about whether the double bootstrap works? Bootstrap the double bootstrap!
This is called a triple bootstrap.

• And so forth.

The double bootstrap can be useful (Geyer, 1991; Newton and Geyer, 1994) but is rather complicated.
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It is easiest to explain for hypothesis tests. When we are worried about the bootstrap, we are worried that
the bootstrap distribution of the test statistic is not exactly the same as the real world distribution of the
test statistic. So our bootstrap 𝑃 -values are not exactly correct (even if we have humongously large 𝑛boot.

So our bootstrap 𝑃 -values get demoted to being just another test statistic. We take them as evidence against
the null hypothesis when they are near zero, but we no longer believe the bootstrap distributions for them.
But what do we do when we doubt the distribution of the test statistic? Bootstrap it. So now we get double
bootstrap 𝑃 -values

#{𝑡(𝑌 ∗∗) ≥ 𝑡(𝑌 ∗)} + 1
𝑛boot + 1

the same as our bootstrap 𝑃 -values except one level up. For each bootstrap estimate 𝜃∗ we are doing a
bootstrap inside a bootstrap to simulate many realizations 𝑌 ∗∗ of the data from the distribution having
parameter value 𝜃∗ and using them to calculate this double bootstrap 𝑃 -value. Geyer (1991) gives details.

Geyer (1991) makes another important point. The bootstrap not only provides better, more accurate hy-
pothesis tests and confidence intervals, but also provides a diagnostic tool.

• If the bootstrap gives more or less the same answers as the asymptotics, then you didn’t need the
bootstrap.

• If the double bootstrap gives more or less the same answers as the single bootstrap, then you didn’t
need the double bootstrap.

Except you need the bootstrap or double bootstrap to reach these conclusions.

I don’t know if anyone has actually done a triple bootstrap.

Newton and Geyer (1994) show how to speed up the calculation of a double bootstrap.

But we leave this subject here. We won’t actually do any examples of the double bootstrap.

4.4.7 Parametric versus Nonparametric Bootstrap

The nonparametric bootstrap has trouble doing hypothesis tests for any data, it is mostly for confidence
intervals. The nonparametric bootstrap has trouble doing any analysis of regression data. Both of these are
explained in my Stat 3701 lecture notes.

The parametric bootstrap has neither of these problems. This gives another reason for always using the
parametric bootstrap for parametric statistical models.

4.5 Return to Our Example
4.5.1 Bootstrap Hypothesis Tests

4.5.1.1 Assuming Poisson Sampling

The method of R function anova for objects of class "glm" produced by R function glm has no optional
argument simulate.p.value.

So here is how we could do that for our first example.
# clean up R global environment
rm(list = ls())
# re-establish stuff done in first section
counts <- c(17066, 14464, 788, 126, 37, 48, 38, 5, 1, 1)
drinks <- rep(c("0", "< 1", "1-2", "3-5", ">= 6"), times = 2)
malformation <- rep(c("Absent", "Present"), each = 5)
gout.indep <- glm(counts ~ malformation + drinks, family = poisson)
gout.sat <- glm(counts ~ malformation * drinks, family = poisson)
aout <- anova(gout.indep, gout.sat, test = "LRT")
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This gets us back to where we were before we removed everything produced in our original analysis of these
data. Now we need the estimated mean values (expected cell counts) and the 𝑃 -value for the test
p.value.hat <- aout[2, "Pr(>Chi)"]
p.value.hat

## [1] 0.1845623
mu.hat <- predict(gout.indep, type = "response")
mu.hat

## 1 2 3 4 5 6
## 1.706514e+04 1.446060e+04 7.907360e+02 1.266374e+02 3.789151e+01 4.886112e+01
## 7 8 9 10
## 4.140376e+01 2.264045e+00 3.625898e-01 1.084914e-01

Now we can do the simulation
# set random number generator seed for reproducibility
set.seed(42)

nboot <- 999
p.value.star <- double(nboot)
for (iboot in 1:nboot) {

# simulate new data from fitted model
counts.star <- rpois(length(mu.hat), lambda = mu.hat)
gout.indep.star <- glm(counts.star ~ malformation + drinks,

family = poisson)
gout.sat.star <- glm(counts.star ~ malformation * drinks,

family = poisson)
aout.star <- anova(gout.indep.star, gout.sat.star, test = "LRT")
p.value.star[iboot] <- aout.star[2, "Pr(>Chi)"]

}
all.p.values <- c(p.value.star, p.value.hat)
mean(all.p.values <= p.value.hat)

## [1] 0.143
sd(all.p.values <= p.value.hat) / sqrt(nboot)

## [1] 0.01108136

The code above is a bit tricky, so here is the explanation.

• Each time through the loop we simulate new data based on our best estimate of the model under the
null hypothesis. We are assuming Poisson sampling, so we use R function rpois to simulate the data.
This function vectorizes, so it works with mu.hat being a vector.

• The next three statements do exactly the same as the original analysis except that we use the simulated
data rather than the real data.

• Then we extract the 𝑃 -value from the result of R function anova and store it for future use.

• After the loop terminates, we have nboot simulations from the distribution of the 𝑃 -value under the
null hypothesis. We also have one more (not simulated) 𝑃 -value that has the same distribution under
the null hypothesis as the simulated 𝑃 -values. This is p.value.hat, the value for the real data.

• The estimated 𝑃 -value is then the fraction of the time the bootstrap simulated 𝑃 -values p.value.star
are at least as extreme as the 𝑃 -value for the actual data p.value.hat.
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• The last statement calculates the Monte Carlo standard error, how far off our simulation is from what
we would get if we did an infinite number of simulations.

Here we use the 𝑃 -values rather than the test statistics as asymptotically pivotal quantities, but otherwise
this is as described above.

4.5.1.2 Assuming Multinomial Sampling

When we simulate, we are not using asymptotics. And we are using exact sampling distributions. Thus
Poisson sampling and multinomial sampling are not exactly equivalent (their equivalence is an asymptotic
result).

So we can do the same simulation under multinomial sampling.
n <- sum(counts)
pi.hat <- mu.hat / n
p.value.star <- double(nboot)
for (iboot in 1:nboot) {

# simulate new data from fitted model
counts.star <- rmultinom(1, n, prob = pi.hat)
gout.indep.star <- glm(counts.star ~ malformation + drinks,

family = poisson)
gout.sat.star <- glm(counts.star ~ malformation * drinks,

family = poisson)
aout.star <- anova(gout.indep.star, gout.sat.star, test = "LRT")
p.value.star[iboot] <- aout.star[2, "Pr(>Chi)"]

}
all.p.values <- c(p.value.star, p.value.hat)
mean(all.p.values <= p.value.hat)

## [1] 0.139
sd(all.p.values <= p.value.hat) / sqrt(nboot)

## [1] 0.01095074

The only difference between this simulation and the one before is the line

counts.star <- rmultinom(1, n, prob = pi.hat)

and the lines defining n to be the multinomial sample size and pi.hat to be the estimated multinomial
parameter vector so we can use it in the statement just above.

4.5.1.3 Assuming Product Multinomial Sampling

For these data the Poisson sampling model seems to be correct, but just for the sake of showing what to do if
the sample sizes for malformation == "Absent" and malformation == "Present" were fixed in advance.
nAbsent <- sum(counts[malformation == "Absent"])
nPresent <- sum(counts[malformation == "Present"])
pi.hat <- mu.hat / sum(counts)
pi.hat.Absent <- pi.hat[malformation == "Absent"]
pi.hat.Present <- pi.hat[malformation == "Present"]
p.value.star <- double(nboot)
for (iboot in 1:nboot) {

# simulate new data from fitted model
counts.star <- double(length(pi.hat))
counts.star[malformation == "Absent"] <-

rmultinom(1, nAbsent, prob = pi.hat.Absent)
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counts.star[malformation == "Present"] <-
rmultinom(1, nPresent, prob = pi.hat.Present)

gout.indep.star <- glm(counts.star ~ malformation + drinks,
family = poisson)

gout.sat.star <- glm(counts.star ~ malformation * drinks,
family = poisson)

aout.star <- anova(gout.indep.star, gout.sat.star, test = "LRT")
p.value.star[iboot] <- aout.star[2, "Pr(>Chi)"]

}
all.p.values <- c(p.value.star, p.value.hat)
mean(all.p.values <= p.value.hat)

## [1] 0.129
sd(all.p.values <= p.value.hat) / sqrt(nboot)

## [1] 0.01061056

4.5.2 Bootstrap Confidence Intervals

conf.level <- 0.95

We won’t do all three sampling schemes, just Poisson. The changes for multinomial or product multinomial
should be obvious from the above.

We will do Wald intervals for the cell probabilities in the bottom row of the table (for malformation ==
"Present").
ilow <- (nboot + 1) * (1 - conf.level) / 2
ihig <- (nboot + 1) * (1 - (1 - conf.level) / 2)
c(ilow, ihig)

## [1] 25 975
imalf <- malformation == "Present"
imalf

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
# room for all simulations
z.star <- matrix(NaN, nrow = nboot, ncol = sum(imalf))

for (iboot in 1:nboot) {
# simulate new data from fitted model
counts.star <- rpois(length(mu.hat), lambda = mu.hat)
# fit model to bootstrap data
gout.star <- glm(counts.star ~ malformation + drinks, family = poisson)
# get estimates and standard errors
pout.star <- predict(gout.star, type = "response", se.fit = TRUE)
z.star[iboot, ] <-

(pout.star$fit[imalf] - mu.hat[imalf]) / pout.star$se.fit[imalf]
}

At this point each column of the matrix z.star is the bootstrap distribution of the asymptotic pivotal
quantity for one of our estimates. Let’s look at the first of these distributions.
hist(z.star[ , 1], probability = TRUE)
curve(dnorm, add = TRUE)
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Histogram of z.star[, 1]
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Hard to tell whether this is different from standard normal or not.

Let’s look at the last one.
hist(z.star[ , 5], probability = TRUE)
curve(dnorm, add = TRUE)
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Histogram of z.star[, 5]
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This is more obviously skewed.

Now extract the bootstrap critical values.
crit <- apply(z.star, 2, function(x)

sort.int(x, partial = c(ilow, ihig))[c(ilow, ihig)])
colnames(crit) <- c("0", "< 1", "1-2", "3-5", ">= 6")
rownames(crit) <- c("lower", "upper")
crit

## 0 < 1 1-2 3-5 >= 6
## lower -2.053954 -2.048708 -2.286767 -2.257690 -2.406881
## upper 1.837185 1.839756 1.731685 1.756343 1.569598

The fact that none of these are ±1.96 means the bootstrap is making some adjustment for skewness and
perhaps for heavy tails, whether or not we can detect skewness in the histogram. So it seems the parametric
bootstrap is working better than asymptotics (which would replace all of these critical values with ±1.96).

So now we can make the confidence intervals
# fit model to real data
gout <- glm(counts ~ malformation + drinks, family = poisson)
# get estimates and standard errors
pout <- predict(gout, type = "response", se.fit = TRUE)
foo <- rbind(lower = pout$fit[imalf] - crit[2, ] * pout$se.fit[imalf],

upper = pout$fit[imalf] - crit[1, ] * pout$se.fit[imalf])
colnames(foo) <- colnames(crit)
foo
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## 0 < 1 1-2 3-5 >= 6
## lower 39.54073 33.49097 1.834867 0.2757468 0.07571918
## upper 59.28122 50.21525 2.830793 0.4742220 0.15874564

For comparison, here are the asymptotic intervals.
foo <- outer(c(-1, 1) * qnorm(0.975), pout$se.fit[imalf])
colnames(foo) <- c("0", "< 1", "1-2", "3-5", ">= 6")
rownames(foo) <- c("lower", "upper")
foo <- sweep(foo, 2, pout$fit[imalf], "+")
foo

## 0 < 1 1-2 3-5 >= 6
## lower 38.91785 32.97395 1.778291 0.2656787 0.06756858
## upper 58.80439 49.83356 2.749799 0.4595009 0.14941429

The bootstrap doesn’t make a big difference. But it is better than the asymptotics. Not a lot different, but
different.
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