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Statistical Terminology
Probability Models and Statistical Models
A probability model gives probabilities and expectations for some random process. They are also called
probability distributions, probability laws, and probability measures.

In classical probability theory (undergraduate and master’s level) they come in two kinds: discrete and
continuous.

This is a course in which all of the data are discrete, so all of our models for data will be discrete probability
models. We will only encounter continuous distributions as approximations to discrete distributions. More
on this throughout the course.

A statistical model is a family of probability models. The idea is that we have data produced by some random
process. We assume some statistical model contains the probability model that describes the data. This is
called the true unknown distribution of the data (“unknown” because we do not know which distribution in
the statistical model is the truth). Then statistical inference is the process of saying something about which
distribution is the true one.

In frequentist inference this process can take the form of point estimates, hypothesis tests, and confidence
intervals, which should be familiar from other courses.

In Bayesian inference this process can take the form of posterior distributions, posterior expectations, or
posterior probabilities. This should have been covered in a theory course, if you have had one, but we won’t
assume anyone has had a theory course. So we won’t assume students have previous acquaintance with
Bayesian inference.

Statistical models also come in two kinds: parametric and nonparametric. In this course we only use
parametric statistical models. Nonparametric models are the subject of a nonparametrics course (like Stat
5601 at the University of Minnesota).

The term “parameter” has two very closely related meanings in statistics, so closely related you cannot
always tell which meaning is meant (but you usually can tell).

The first meaning is any quantity that is determined by the probability distributions in a statistical model.
The mean (of the distributions) is a parameter. The median (of the distributions) is a parameter. The
standard deviation (of the distributions) is a parameter. In this meaning, even nonparametric families of
distributions have parameters.
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The second meaning is any quantity that determines probability distributions within a statistical model. It
may take more than one variable to do this, in which case we say we have a vector parameter (collecting all
of the parameter variables into one thing: a vector).

The mean (of the distributions) is the parameter of the Poisson family of distributions. The mean and
variance (of the distributions) are the parameters of the normal family of distributions. And so forth. For
each family of distributions (statistical model) we cover, we will explain the parameters.

A family of distributions can have more than one parameterization. The distributions can be determined in
different ways. We start with one parameter and later may change to another. Much more on this theme
throughout the course.

The set of allowed parameter values (those that correspond to distributions in the family) is called the
parameter space.

We say a family of distributions is nonparametric (hence not the subject of this course) if no parameter
vector of finite length parameterizes the family. Nonparametric families are too big to be parametric.

Probability Mass Functions and Probability Density Functions
A discrete probability model is specified by a probability mass function (PMF), a real-valued function that
is nonnegative and sums to one. Its domain is called the sample space. Points in the sample space are called
outcomes. Subsets of the sample space are called events.

If 𝑓 is a PMF, then 𝑓(𝑥) is the probability of the outcome 𝑥. Probabilities are between zero and one, so
0 ≤ 𝑓(𝑥) ≤ 1 for all 𝑥.

A continuous probability model is specified by a probability density function (PDF), a real-valued function
that is nonnegative and integrates to one. Its domain is called the sample space. Points in the sample space
are called outcomes. Subsets of the sample space are called events.

If 𝑓 is a PDF, then 𝑓(𝑥) is not the probability of the outcome 𝑥. It is probability per unit length (hence
probability density) for lengths of intervals very near 𝑥. If 𝑑𝑥 is an infinitesimal length, then 𝑓(𝑥) 𝑑𝑥 is the
probability of the interval from 𝑥 to 𝑥 + 𝑑𝑥. This may not make any sense if you have not had calculus. We
do always have 0 ≤ 𝑓(𝑥) for all 𝑥, because probabilities are nonnegative. But we need not have 𝑓(𝑥) ≤ 1
because 𝑓(𝑥) is not a probability; 𝑓(𝑥) 𝑑𝑥 is a probability.

If 𝐴 is an event, we write Pr(𝐴) for the probability of the event 𝐴. We have 0 ≤ Pr(𝐴) ≤ 1 for all events 𝐴,
regardless of whether the distribution is discrete or continuous. Probabilities are calculated by doing sums
or integrals (depending on whether the distribution is discrete or continuous), as explained in theory courses,
but these sums or integrals are often not ones explained in calculus classes. Often these sums or integrals
cannot be done symbolically by any method known to mathematics, so we use computer programs to do
them or approximate them by so-called asymptotic approximation. More on this later.

A real-valued function on the sample space is called a random variable. If 𝑋 is a random variable, we write
𝐸(𝑋) for the expectation of the random variable 𝑋. Expectations are calculated by doing sums or integrals
(depending on whether the distribution is discrete or continuous), as explained in theory courses, but, as
with probabilities, these sums or integrals are often not ones explained in calculus classes and often cannot
be done symbolically by any method known to mathematics, so we use computer programs to do them or
approximate them by so-called asymptotic approximation.

Another word for expectation is mean. If 𝜇 = 𝐸(𝑋), then we can say 𝜇 is the expectation of 𝑋 or the mean
of 𝑋. We can also say 𝜇 is the mean of the distribution of 𝑋. Another word for expectation is expected
value.

Addition rule: the mean of a sum of random variables is the sum of the means of these random variables.
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Independent and Identically Distributed
Random variables are independent (sometimes we say stochastically independent or statistically independent
to single out this notion of independence, but in probability and statistics the words “independent” and
“independence” refer only to this concept) if probabilities and expectations for them can be calculated by
multiplication.

If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent, then

Pr(𝑋𝑖 ∈ 𝐴𝑖 for all 𝑖) =
𝑛

∏
𝑖=1

Pr(𝑋𝑖 ∈ 𝐴𝑖)

𝐸 (
𝑛

∏
𝑖=1

𝑔𝑖(𝑋𝑖)) =
𝑛

∏
𝑖=1

𝐸(𝑔𝑖(𝑋𝑖))

In particular, for PMF or PDF we have

𝑓(𝑥1, … , 𝑥𝑛) =
𝑛

∏
𝑖=1

𝑓𝑖(𝑥𝑖)

On the left-hand side we have the PMF or PDF of the so-called joint distribution (of all the random
variables). On the right-hand side we have the PMF or PDF of the so-called marginal distributions (of each
of the random variables separately).

How do we know when to apply this concept to data? When the random variables in question have nothing
to do with each other. What happens with one has no influence on what happens with another.

When the random variables in question are independent and identically distributed every one has the same
marginal distribution so

𝑓(𝑥1, … , 𝑥𝑛) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖)

(all the PMF or PDF on the right-hand side are the same). (There is some “abuse of notation” here in using
the same letter 𝑓 for two different functions, but you can tell them apart because the 𝑓 on the left-hand side
has 𝑛 arguments and the 𝑓 on the right-hand side has one argument).

Multiplication rule: the mean of a product of independent random variables is the product of the means of
these random variables. (This is false if the word “independent” is omitted.)

Variance and Standard Deviation
A special expectation that gets its own name is variance, which is expected squared deviation from the mean

var(𝑋) = 𝐸{(𝑋 − 𝜇)2}

where
𝜇 = 𝐸(𝑋)

When doing applied statistics, variance has a problem. If 𝑋 has units (say feet), then var(𝑋) has different
units (feet squared or square feet). So var(𝑋) is not comparable to 𝑋.

Thus standard deviation
sd(𝑋) = √var(𝑋)

was invented. Taking this square root gets back to the units of 𝑋.

As you were taught in intro stats, standard deviation is one measure of spread of a random variable (of how
spread out its distribution is).
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This measure (standard deviation) is primarily important because it is a parameter of the normal distribution.
Hence standard deviation is important in any discussion of asymptotic normality.

But the standard deviation concept becomes completely inadequate as soon as there is more than one random
variable under discussion. The generalization of the variance concept to random vectors has no analogous
standard deviation concept.

Thus, unlike some intro stats courses, we cannot ignore variance and only use standard deviation.

Addition rule: the variance of a sum of independent random variables is the sum of the variances of these
random variables. (This is false if the word “independent” is omitted.) This implies an addition rule for
standard deviations, but that rule is not simple, involving squares and square roots.

The Mean of a Random Vector
The mean of a random vector 𝑌 is the vector whose components are the means of the components of 𝑌 , that
is, if

𝜇𝑖 = 𝐸(𝑌𝑖), for all 𝑖
and 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑘) and 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑘), then

𝜇 = 𝐸(𝑌 )

Covariance and the Variance of a Random Vector
If 𝑋 and 𝑌 are random variables having means 𝜇𝑋 and 𝜇𝑌 , respectively, then

cov(𝑋, 𝑌 ) = 𝐸{(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌 )}

is called the covariance of 𝑋 and 𝑌 .

Knowing only the variances of the components of a random vector tells you little about the distribution
of that random vector. (This will become evident throughout the course.) You have to also know the
covariances of pairs of components. Thus the following.

The variance of a random vector 𝑌 is the (nonrandom) matrix whose 𝑖, 𝑗 component is cov(𝑌𝑖, 𝑌𝑗). Note
that the covariance of a random variable with itself is the variance

cov(𝑋, 𝑋) = var(𝑋)

so

var(𝑌 ) =
⎛⎜⎜⎜
⎝

var(𝑌1) cov(𝑌1, 𝑌2) ⋯ cov(𝑌1, 𝑌𝑘)
cov(𝑌2, 𝑌1) var(𝑌2) ⋯ cov(𝑌2, 𝑌𝑘)

⋮ ⋮ ⋱ ⋮
cov(𝑌𝑘, 𝑌1) cov(𝑌𝑘, 𝑌2) ⋯ var(𝑌𝑘)

⎞⎟⎟⎟
⎠

where 𝑘 is the dimension of 𝑌 .

Your humble author prefers the name variance matrix for this concept, the reason being that it does play
the same role that the variance (scalar) of a random variable plays in univariate theory. (This will become
evident throughout the course.)

But many people disagree. At least three other terms are widely used. One such term is covariance matrix.
The logic behind this name is that all of the components of the matrix are covariances. (Even the terms that
are variances, the ones on the diagonal, are also covariances of components of 𝑌 with themselves.) But this
is a bad term because it uses up the name that should be properly applied to the covariance of two random
vectors.

Hence many people call this the variance-covariance matrix.

Others, disgusted with the confusion of terminology call it the dispersion matrix.
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These notes will always say “variance matrix”. You can call it what you like.

Note that there is no analog of standard deviation of a random vector. The components of a random vector,
which are random scalars, have standard deviations. The random vector does not. There is no way to take
the square root of a matrix. (At least no unique way, and no way that has a simple interpretation.)

Some Statistical Models
Here we are syncing up with Section 1.2.1 in Agresti.

The Bernoulli Distribution
The section title is a misnomer, since “Bernoulli” denotes a parametric statistical model (a family of distri-
butions) so there is not just one Bernoulli distribution so the “the” in “the Bernoulli distribution” is wrong.
But everybody talks this way, and you can’t change how people talk, so we will use the same sloppy way
of talking about every statistical model (saying, for example, the normal distribution instead of the normal
family of distributions or the normal statistical model).

A random variable is Bernoulli if it has only two possible values: zero or one. Bernoulli means the same
thing as zero-or-one-valued.

Because probabilities sum to one, 𝑓(0) + 𝑓(1) = 1, where 𝑓 is the PMF. If

𝑓(1) = 𝜋,

then
𝑓(0) = 1 − 𝜋.

We see that 𝜋 determines the probabilities, hence it parameterizes the statistical model. We can write

𝑓𝜋(𝑥) = {𝜋, 𝑥 = 1
1 − 𝜋, 𝑥 = 0

The parameter space of the Bernoulli statistical model is the interval [0, 1] (the square brackets mean the
endpoints are included in the interval). In other words, 0 ≤ 𝜋 ≤ 1.

An abbreviation for the Bernoulli distribution with parameter 𝜋 is Ber(𝜋).
If 𝑋 is a random variable having the Ber(𝜋) distribution, then

𝐸(𝑋) = 𝜋
var(𝑋) = 𝜋(1 − 𝜋)
sd(𝑋) = √𝜋(1 − 𝜋)

Addition rule: see under the binomial distribution

The Binomial Distribution
As noted above, the section title is a misnomer, since “binomial” denotes a parametric statistical model (a
family of distributions) so there is not just one binomial distribution so the “the” in “the binomial distribution”
is wrong. To be pedantically correct, we should say the binomial family of distributions or the binomial
statistical model.

Suppose we have an IID sequence of Bernoulli random variables 𝑋1, 𝑋2, … , 𝑋𝑛. Then

𝑌 =
𝑛

∑
𝑖=1

𝑋𝑖
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has the binomial distribution.

If the 𝑋𝑖 have the Ber(𝜋) distribution, then the distribution of 𝑌 is binomial with sample size 𝑛 and parameter
𝜋. We abbreviate this distribution as Bin(𝑛, 𝜋).
The PMF of the Bin(𝑛, 𝑝) distribution is

𝑓𝜋(𝑥) = (𝑛
𝑥)𝜋𝑥(1 − 𝜋)𝑛, 𝑥 = 0, 1, … , 𝑛,

where the symbol called a binomial coefficient is defined as

(𝑛
𝑥) = 𝑛!

𝑥!(𝑛 − 𝑥)!
where 𝑛! (𝑛 factorial) is the product of the numbers from 1 to 𝑛 and by definition 0! = 1. The sample space
for this distribution is the set of integers from zero to 𝑛. The parameter space is [0, 1] as for the Bernoulli
distribution.

The notation becomes ambiguous when 𝜋 = 0 or 𝜋 = 1 (because 00 is undefined), but we can work out what
it should be using the rationale. If 𝜋 = 0, then all of the 𝑋𝑖 are equal to zero (with probability one), so 𝑌
is zero with probability one. And similarly for 𝜋 = 1.

𝑓0(𝑥) = {1, 𝑥 = 0
0, 𝑥 ≠ 0

𝑓1(𝑥) = {1, 𝑥 = 𝑛
0, 𝑥 ≠ 𝑛

We say these two cases are degenerate. The random variable 𝑋 is not really random but rather constant
(it has only one value with certainty, that is, with probability one). But mathematically, certainty is just a
special case of randomness (probability one), so we call these constant random variables. (If we adopt the
convention 00 = 1, then the general formula works for these special cases.)

If 𝑋 has the Bin(𝑛, 𝜋) distribution, then

𝐸(𝑋) = 𝑛𝜋
var(𝑋) = 𝑛𝜋(1 − 𝜋)
sd(𝑋) = √𝑛𝜋(1 − 𝜋)

Addition rule: the sum of independent binomial random variables with the same parameter value (but
possibly different sample sizes) is again binomial with the same parameter value and sample size that is the
sum of the separate sample sizes: if 𝑋𝑖 ∼ Bin(𝑛𝑖, 𝜋) for 𝑖 = 1, 2, … , 𝑘, then ∑𝑖 𝑋𝑖 ∼ Bin(𝑛1 + ⋯ + 𝑛𝑘, 𝜋).
The special case where 𝑛1 = ⋯ = 𝑛𝑘 = 1 is the addition rule for Bernoulli random variables: if 𝑋𝑖 ∼ Ber(𝜋)
for 𝑖 = 1, 2, … , 𝑘, then ∑𝑖 𝑋𝑖 ∼ Bin(𝑛, 𝜋).

The Poisson Distribution
As noted above, the section title is a misnomer, since “Poisson” denotes a parametric statistical model (a
family of distributions) so there is not just one Poisson distribution so the “the” in “the Poisson distribution”
is wrong.

The Poisson family of distributions has one parameter 𝜇 and its parameter space is the closed interval [0, ∞).
Parameter values range from zero (which is a possible parameter value) upwards with no upper bound. The
Poisson distribution having parameter 𝜇 is abbreviated Poi(𝜇).
The PMF of the Poi(𝜇) distribution is

𝑓𝜇(𝑥) = 𝜇𝑥

𝑥! 𝑒−𝜇, 𝑥 = 0, 1, 2, … ,
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where the symbol 𝑥! (𝑥 factorial) was defined in the preceding section. The sample space for this distribution
is the set of nonnegative integers.

If 𝑋 has the Poi(𝜇) distribution, then

𝐸(𝑋) = 𝜇
var(𝑋) = 𝜇
sd(𝑋) = √𝜇

The parameter of the distribution is both the mean and the variance.

The notation becomes ambiguous when 𝜇 = 0 (because 00 is undefined), but what the distribution should
be can be worked out by taking limits (which involves calculus) or by using the rationale (which we haven’t
covered yet). The Poi(0) distribution is the distribution of the constant random variable that is always equal
to zero (the same as the binomial distribution for 𝜋 = 0). (If we adopt the convention 00 = 1, then the
general formula works for this special case.)

The Poisson distribution has two very closely related rationales.

• If 𝑛 is very large and 𝜋 is very small and 𝑛𝜋 is moderate sized, then the Bin(𝑛, 𝜋) distribution is
very close to the Poi(𝑛𝜋) distribution in the sense both distributions give almost the same probability
for each event. Since the two distributions have different sample spaces, this means the Poisson
approximation must give nearly zero probability to all outcomes greater than 𝑛.

As an example (that won’t appear in the rest of the course), what is the probability of the number of
winners of a lottery? This depends on the probability 𝜋 of an individual ticket winning and on the
number 𝑛 of tickets sold. For all lotteries 𝜋 is very small (millions or billions to one) and 𝑛 is very
large (many millions of tickets sold) and 𝑛𝜋 is moderate sized. In most drawings there are zero, one,
or two winners. More than two winners is rare. So the Poisson distribution with parameter 𝜇 = 𝑛𝜋 is
a very good approximation here.

Suppose the expected number of winners of a lottery is 0.5 (it often happens that when the jackpot is
low that not many tickets are sold). Then the probabilities of each number of winners are

x <- 0:6
p <- dpois(x, 0.5)
p <- round(p, 5)
names(p) <- x
p

## 0 1 2 3 4 5 6
## 0.60653 0.30327 0.07582 0.01264 0.00158 0.00016 0.00001

• A spatial point process is a random pattern of points, both the number of points and the locations of
points being random. A Poisson point process has the following assumptions:

– it is impossible to have more than one point at the same location,

– no location has a nonzero probability of having a point,

– counts of points in non-overlapping regions are independent random variables, and

– the total number of points is finite with probability one.

The dimension of the space in which the process lives is irrelevant. It can be one-dimensional, two-
dimensional, three-dimensional, whatever.

The second assumption is not problematic. Any continuous random variable has the same property:
the probability of any particular value is zero. This seems strange because we don’t usually take real
numbers seriously, something taking an infinite number of digits to specify. When we say that the
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probability of observing 𝑋 and it agreeing with a prespecified 𝑥 to an infinite number of decimal
places, it no longer seems so weird to say that has probability zero.

The reason why we call this a Poisson process, even though there is nothing in the assumptions about
the Poisson distribution, is that it can be shown that every count of points in any region has a Poisson
distribution.

If the expected number of points in a region is proportional to the length of the region in one dimension,
area in two dimensions, volume in three dimensions, hypervolume in four dimensions, and so forth, then
we say we have a homogeneous Poisson process. Otherwise inhomogeneous.

Between these concepts we get the rationale for the Poisson distribution: either approximation to the binomial
distribution or counts in a Poisson process. In either case, Poissonness ultimately arises from independence.
The independence in the binomial distribution comes from its rationale: sum of IID Bernoulli random
variables. The independence in the Poisson process is in the assumption that counts of points in non-
overlapping regions are independent.

Somewhat sloppily, we can say that whenever we have a count random variable and when each thing counted
has nothing whatsoever to do with any other thing counted, then the count has a Poisson distribution. If
we need to be more careful, we can refer details of Poisson approximation and Poisson processes.

The rationale of the Poisson distribution is rather complicated, something that no human ever thought of
before 1837. But it can be dumbed down to be the distribution of any count variable when the things being
counted are statistically independent. What is the distribution of number of clicks of a Geiger counter in
a specified time interval? What is the distribution of the number of anthills in your back yard? What is
the distribution of the number of raisins in a box of raisin bran? What is the number of stars in a specified
region of the sky? The answer to all of these questions is Poisson with some mean (a different mean for each
question, of course). Poisson will be our go to distribution in this course. It is the default distribution for
count variables. Every other distribution we use will be related to the Poisson distribution (including the
binomial distribution).

The assumption the data have a Poisson distribution can fail if the independence assumption fails. What
is the distribution of the number of people walking by a certain location on Northrop mall during a certain
time period? The parameter of the Poisson distribution (mean number of people) will vary with both the
location and the time period, but this is not a problem. A Poisson distribution can have any mean. But
people are gregarious. They tend to walk in groups. The count of groups may well be Poisson, but the
count of individuals in those groups may well not be. The groups are a failure of stochastic independence.
Agresti mentions failure of independence in Section 1.2.4, but we will ignore this until we get to the notes
accompanying Section 4.7 in Agresti.

Addition rule: the sum of independent Poisson random variables is again Poisson. (This is false if the word
“independent” is omitted.) The mean of the sum is the sum of the means.

The Multinomial Distribution
As noted above, the section title is a misnomer, since “multinomial” denotes a parametric statistical model
(a family of distributions) so there is not just one multinomial distribution so the “the” in “the multinomial
distribution” is wrong.

Suppose we have 𝑛 IID individuals, and we classify them into 𝑘 categories (every individual goes into exactly
one of the 𝑘 categories). Define 𝑌1, 𝑌2, … , 𝑌𝑘 be the numbers of individuals in these categories. Then the
random vector 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑘) has the multinomial distribution with PMF

𝑓𝜋(𝑦) = ( 𝑛
𝑦1, 𝑦2, … , 𝑦𝑘

)𝜋𝑦1
1 𝜋𝑦2

2 ⋯ 𝜋𝑦𝑘
𝑘 , 𝑦 ∈ 𝑆

where the symbol called a multinomial coefficient is defined as

( 𝑛
𝑦1, 𝑦2, … , 𝑦𝑘

) = 𝑛!
𝑦1! 𝑦2! ⋯ 𝑦𝑘!
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where the symbol 𝑥! (𝑥 factorial) was defined in the section about the binomial distribution, and where
the sample space 𝑆 is the of all vectors 𝑦 having nonnegative-integer-valued components that sum to 𝑛.
(𝑌1 + 𝑌2 + ⋯ + 𝑌𝑘 = 𝑛 with probability one because every individual is classified in exactly one category.)

The number of categories 𝑘 is the dimension of the multinomial random vector. The number of individuals
classified 𝑛 is the sample size of the multinomial distribution.

We abbreviate this distribution Multi(𝑛, 𝜋).
The parameter space of this distribution is the set of all probability vectors, the set of all vectors 𝜋 whose
components are nonnegative and sum to one. Thus the parameters satisfy the equality constraint 𝜋1 + 𝜋2 +
⋯ + 𝜋𝑘 = 1.

The notation becomes ambiguous when any component of the parameter vector is zero (because 00 is un-
defined), but we can work out what it should be by taking limits (using calculus). This tells us we should
interpret 00 = 1 because 𝜋0

𝑖 = 1 for all 𝜋𝑖 > 0 by convention.

Multinomial distributions with some components of 𝜋 equal to zero are only partially degenerate. Some
components are not really random (𝜋𝑖 = 0 implies 𝑌𝑖 = 0 with probability one and 𝜋𝑖 = 1 implies 𝑌𝑖 = 𝑛
with probability one). They are constant random variables. But other components are really random (the
𝑌𝑖 such that 0 < 𝜋𝑖 < 1). The only completely degenerate multinomial distributions are those having 𝜋 with
only one nonzero component (which must be equal to one in order that the components sum to one).

If 𝑌 has the Multi(𝑛, 𝜋) distribution, then

𝐸(𝑌𝑖) = 𝑛𝜋𝑖
var(𝑌𝑖) = 𝑛𝜋𝑖(1 − 𝜋𝑖)

cov(𝑌𝑖, 𝑌𝑗) = −𝑛𝜋𝑖𝜋𝑗, 𝑖 ≠ 𝑗

(Note that the formula for cov(𝑌𝑖, 𝑌𝑗), 𝑖 ≠ 𝑗 does not work for the case 𝑖 = 𝑗.)

If we define a diagonal matrix Π whose diagonal components are the corresponding components of 𝜋, then
we can write these in matrix notation as

𝐸(𝑌 ) = 𝑛𝜋
var(𝑌 ) = 𝑛(Π − 𝜋𝜋𝑇 )

Addition rule: the sum of independent multinomial random vectors having the same dimension and same
parameter vector is again multinomial: if 𝑋𝑖 ∼ Multi(𝑛𝑖, 𝜋) for 𝑖 = 1, …, 𝑘, then ∑𝑖 𝑋𝑖 ∼ Multi(𝑛1 + ⋯ +
𝑛𝑘, 𝜋). (This is false if the word “independent” is omitted.)

Statistical Models for Categorical Data
We have already met all of our statistical models for categorical data. They are

• Poisson,

• multinomial, and

• product multinomial

The last we haven’t officially met yet, but it is implied by the multinomial and the multiplication rule for
independent random vectors.

We will call these our three different sampling models for categorical data. Much will be made of the
relationship between them in this course.

• The Poisson sampling model says the category counts are independent Poisson random variables. Then
the sample size is the sum of these random variables, which has a Poisson distribution.
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This model applies when the sample size is not determined in advance and can be considered Poisson.
An example would be if you interviewed people passing on Northrop mall, interviewed for one hour,
and the sample size is just however many people you managed to interview in that hour.

• The multinomial sampling model says the category counts are a multinomial random vector. The
sample size is fixed in advance of collecting data. It is the multinomial sample size.

This model applies when the sample size is determined in advance and can be considered constant. An
example would be if you interviewed people passing on Northrop mall, interviewing until you got the
predetermined sample size and then stopped.

• The product multinomial sampling model says the category counts are several independent multinomial
random vectors.

This model applies when several sample sizes for subgroups are determined in advance and can be
considered constant. An example would be if you decided to have 100 males and 100 females in your
data, interviewed people passing on Northrop mall, interviewed until you got the predetermined sample
sizes, and stopped interviewing in each subgroup when the predetermined sample size was reached. (If
100 female interviews is reached first, then you stop interviewing females and continue interviewing
males until 100 have been interviewed, and then stop.)

You have already met the latter two sampling models in intro stats where they discussed what they called
the chi-square test of independence or homogeneity of proportions for a two-way contingency table.

For example, we use the data in Table 3.3 in Agresti.
x <- c(90, 13, 19, 12, 1, 13, 78, 6, 50)
x <- matrix(x, 3)
dimnames(x) <- list(school = c("Eclectic", "Medical", "Psychoanalytic"),

origin = c("Biogenic", "Environmental", "Combination"))
class(x) <- "table"
x

## origin
## school Biogenic Environmental Combination
## Eclectic 90 12 78
## Medical 13 1 6
## Psychoanalytic 19 13 50
chisq.test(x)

## Warning in chisq.test(x): Chi-squared approximation may be incorrect

##
## Pearson's Chi-squared test
##
## data: x
## X-squared = 22.378, df = 4, p-value = 0.0001685

• If the sample size for the whole table was fixed in advance of collecting data, then we say the sampling
model is multinomial, and in intro stats they said they were doing a test of independence of the random
categorical random variables whose values are the row and column labels, that is, in this example
"school" and "origin" which are our shorthand for the full labels in Table 3.3 in Agresti, School of
Psychiatric Thought and Origin of Schizophrenia.

• If the sample size for each row of the table was fixed in advance of collecting data, then we say the
sampling model is product multinomial, and in intro stats they said they were doing a test of homogeneity
of proportions of the proportions in each row of the table. In more detail, what is assumed is that
the three counts in each row are components of a multinomial random vector, and these multinomial
random vectors are independent. The “homogeneity of proportions” is the null hypothesis that each
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of these multinomial distributions has the same parameter vector (but they may have different sample
sizes and do in this example).

rowSums(x)

## Eclectic Medical Psychoanalytic
## 180 20 82

• If the sample size for each column of the table was fixed in advance, then this is just like the preceding
item with columns replacing rows.

What is interesting about this example is that the two different sampling schemes lead to exactly the same
calculation. R function chisq.test does the test for either sampling scheme. As we shall see throughout
the course, this is an important theme.

What are we saying here that is different from intro stats?

• First, we now have three sampling schemes rather than two. In intro stats (most such courses, anyway)
they didn’t bother to tell you about the Poisson distribution.

• Second, this goes far beyond two-way tables. The terminology they used in intro stats — tests of
independence or tests of homogeneity of proportions — applies only to two-way tables. Our terminol-
ogy — Poisson sampling or multinomial sampling or product multinomial sampling — applies to all
categorical data (the whole course, all of Agresti’s book).

More on sampling schemes after we introduce some more theory.

One more issue is the warning issued by R function chisq.test. The 𝑃 -value is based on asymptotic ap-
proximation, and it is warning that the approximation is not very good. What is asymptotic approximation?
That is what we turn to now.

The Univariate Normal Distribution
As noted above, the section title is a misnomer, since “normal” denotes a parametric statistical model (a
family of distributions) so there is not just one univariate normal distribution so the “the” in “the univariate
normal distribution” is wrong.

Everyone should be familiar with the univariate normal distribution from intro stats courses and also familiar
with the central limit theorem (CLT), which provides the rationale for the univariate normal distribution.

As we shall see throughout the course, many quantities, including all point estimators of interest, have
approximately normal distributions for “large sample size” (the scare quotes are there to remind us that the
theorem does not tell us how large sample size has to be to get good normal approximation).

The normal distribution has a PDF but the PDF will not be useful in this course. Knowing the PDF would
not help us calculate any probabilities or expectations. We will have to use the computer for that.

The parameters of the univariate normal distribution are the mean and standard deviation (or variance can
replace standard deviation). The mean can be any real number. The standard deviation must be positive.
So the sample space is the set of all vectors (𝜇, 𝜎) such that 𝜎 > 0.

We abbreviate the normal distribution with mean 𝜇 and variance 𝜎2 as Normal(𝜇, 𝜎2).
Taking the limit as 𝜎 → 0 while 𝜇 is held fixed gives the discrete distribution concentrated at one point 𝜇,
thus the distribution of a constant random variable. But this distribution is often not considered a normal
distribution; normal distributions are continuous but this limit is discrete.

Both the binomial and Poisson distributions have normal approximations, which are good for some values
of the parameters. We already know the binomial distribution is not well approximated by the normal
distribution for all values of the parameters because of its Poisson approximation.
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These normal approximations come from the CLT. Normal approximation is good when sample size is large.
But what is “sample size” for the Poisson distribution? It doesn’t have one. But it does have an addition
rule, which gives us a “sample size” of sorts.

The binomial distribution is approximately normal when its sample size is “large” (again scare quotes). But
how large 𝑛 has to be depends on what 𝜋 is. A rule of thumb is that we need 𝑛𝜋 and 𝑛(1 − 𝜋) to be greater
than 5. But like all rules of thumb, this is dumbed down to the point of being wrong. Asymptotics does
not work like people want. It is not all or nothing. So there is no sharp dividing line between good and bad
normal approximation. Also it depends on what question you are asking (what probability or expectation
you are trying to approximate).

We already know that if 𝑛 is large but 𝑛𝜋 is not large, we get good Poisson approximation, and if 𝑛 is large
and 𝑛𝜋 is large (but not too large as we shall soon see), we get good normal approximation. But there is no
sharp dividing line. For not small and not large values of 𝑛𝜋, we have neither good Poisson nor good normal
approximation.

When 𝑋 has the Bin(𝑛𝜋) distribution, 𝑛 − 𝑋 has the Bin(𝑛(1 − 𝜋)) distribution. Hence when 𝑛 is large and
𝑛(1 − 𝜋) is moderate sized, 𝑛 − 𝑋 has good Poisson approximation.

We know that the sum of IID Poi(𝜇) random variables is Poi(𝑛𝜇). The CLT says this is approximately
normal for sufficiently large 𝑛. Hence the Poisson distribution is approximately normal when the mean is
large. The normal approximation is bad when the mean is not large. Again, there is no sharp dividing line
where the normal approximation goes from bad to good.

A very, very important point about normal approximation is that the approximation error is absolute not
relative. When a normal approximation gives a 𝑃 -value for a hypothesis test of 𝑃 = 3.66 × 10−11 this seems
very precise. But the precision is bogus. The error of approximation is absolute error. So what this means
is that we know the 𝑃 -value is small, say less than 0.001, but we are not even sure of exactly that number.
It all depends on how good the normal approximation is.

The same point applies to all asymptotic approximation: in the example in the preceding section, the 𝑃 -
value emitted by R function chisq.test is an asymptotic approximation (not normal approximation but
chi-squared approximation, see below). Thus it only means 𝑃 < 0.001 or something of the sort.

Addition rule: see under the multivariate normal distribution.

The (univariate) central limit theorem if 𝑋1, 𝑋2, … are IID random variables having mean 𝜇 and variance
𝜎2 and

𝑋𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

then
𝑋𝑛 ≈ Normal (𝜇, 𝜎2

𝑛 )

and if
𝑆𝑛 =

𝑛
∑
𝑖=1

𝑋𝑖

then
𝑆𝑛 ≈ Normal (𝑛𝜇, 𝑛𝜎2)

There are central limit theorems that do not require IID but they are not needed in this class except for
MCMC central limit theorems, which will be discussed when we talk about Bayesian inference.

The Multivariate Normal Distribution
As noted above, the section title is a misnomer, since “normal” denotes a parametric statistical model
(a family of distributions) so there is not just one multivariate normal distribution so the “the” in “the
multivariate normal distribution” is wrong.
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The standard univariate normal distribution is the one having mean zero and standard deviation one (hence
variance one).

The standard multivariate normal distribution is the one having mean vector zero (the zero vector) and
variance matrix the identity matrix (ones on the diagonal, zeros off the diagonal). This says components of
the normal distribution have variance one and covariance zero.

It is a very special property of the multivariate normal distribution that covariance zero implies independence
(no other distribution has this property). Thus components of a standard multivariate normal random vector
are IID univariate normal.

Linearity rule: any multivariate linear function of a multivariate normal random vector is another multivari-
ate normal random vector. If 𝑋 is a random vector, 𝑎 is a constant (nonrandom) vector, and 𝐵 is a constant
(nonrandom) matrix, then

𝑌 = 𝑎 + 𝐵𝑋
is another random vector, assuming the dimensions of 𝑎, 𝐵, and 𝑋 are such that the vector addition and
matrix multiplication in the formula make sense (the dimension of 𝑎 is equal to the row dimension of 𝐵,
and the dimension of 𝑋 is equal to the column dimension of 𝐵). The preceding sentence is true for any
random vector 𝑋 (normally distributed or not normally distributed). The linearity rule says that if 𝑋 has
a multivariate normal distribution then so does 𝑌 .

Depending on which prerequisites for the course you may or may not have had, you may or may not have
been exposed to matrix multiplication. This is usually taught in calculus or linear algebra or theoretical
probability and statistics. But even if you don’t know, the computer does. The R expression a + B %*% x
calculates 𝑎 + 𝐵𝑥.

The parameters of the multivariate normal distribution are the mean vector and the variance matrix (there
is no multivariate analog of standard deviation). Any vector can be a mean vector, but a variance matrix
must be positive semidefinite, which we will not need to define. Any variance matrix, if computed correctly,
will have this property. Thus the parameter space is the set of all parameter vectors (𝜇, Σ), where 𝜇 is the
mean vector and Σ is the variance matrix (and their components are combined into one vector such that Σ
is a positive semi-definite matrix.

We abbreviate the multivariate normal distribution with mean vector 𝜇 and variance Σ as Normal(𝜇, Σ).
Repeating what what said in the preceding section, as we shall see throughout the course, many quantities,
including all point estimators of interest, have approximately normal distributions for “large sample size”
(the scare quotes are there to remind us that the theorem does not tell us how large sample size has to be
to get good normal approximation). Random variables have approximate univariate normal distributions.
Random vectors have approximate multivariate normal distributions.

The normal distribution has a PDF if its variance matrix is strictly positive definite, but we will not need to
define that property. The variance matrices that arise in normal approximation of the sampling distributions
of estimators, if computed correctly, will have this property. But the PDF will not be useful in this course.
Knowing the PDF would not help us calculate any probabilities or expectations. We will have to use the
computer for that.

Multivariate normal random vectors 𝑌 that do not have PDF because they do not have strictly positive
variance matrices can always be written in the form 𝑌 = 𝑎 + 𝐵𝑋 as in the linearity rule, where 𝑋 is
multivariate normal and does have a PDF. But since we are not going to use normal PDF anyway, this is of
little importance to us.

The rationale of the multivariate normal distribution is the multivariate CLT, which works just like the
univariate CLT except for random vectors rather than random scalars.

As an example we continue with the data in Table 3.3 in Agresti. Suppose we had accepted the hypothesis
of homogeneity of proportions in the rows. (Actually, the test rejected this, but ignore that for this calcula-
tion.) Then the natural estimator of the proportions (which are the same for all rows by the homogeneity
assumption) is
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pi.hat <- rowSums(x) / sum(x)
pi.hat

## Eclectic Medical Psychoanalytic
## 0.63829787 0.07092199 0.29078014

Now, being sophisticated statisticians we know the sample is not the population and estimators are not the
parameters they estimate, so our estimate pi.hat is wrong. How wrong? We need its variance matrix.

And its variance matrix is the variance matrix for the multinomial distribution divided by 𝑛2. (The multi-
nomial random vector is the sum of the multinomial random vectors for each individual so it has a factor of
𝑛 in each entry. We divide by 𝑛2 to get 1/𝑛 in each entry.) This also follows from the linearity rule (see
below): multiplying a random scalar by 𝑏 multiplies its variance by 𝑏2 and here 𝑏 = 1/𝑛. The same applies
for random vectors.

So calculate the multinomial variance matrix
n <- sum(x)
var.x <- n * (diag(pi.hat) - outer(pi.hat, pi.hat))
var.x

## Eclectic Medical Psychoanalytic
## Eclectic 65.10638 -12.765957 -52.340426
## Medical -12.76596 18.581560 -5.815603
## Psychoanalytic -52.34043 -5.815603 58.156028

Then we divide by 𝑛2 to get the variance matrix of pi.hat itself.
var.pi.hat <- var.x / n^2
var.pi.hat

## Eclectic Medical Psychoanalytic
## Eclectic 0.0008187011 -1.605296e-04 -6.581714e-04
## Medical -0.0001605296 2.336598e-04 -7.313016e-05
## Psychoanalytic -0.0006581714 -7.313016e-05 7.313016e-04

At this point we can get standard errors if we want them.
sqrt(diag(var.pi.hat))

## Eclectic Medical Psychoanalytic
## 0.02861295 0.01528593 0.02704259

But these “standard errors” ignore the fact that our estimators are not independent. One needs the whole
variance matrix to describe that.

Two more points.

• As we should all know from previous stat courses, var.pi.hat is itself not the right thing. It is only
an estimator of the matrix parameter (variance matrix) it is trying to estimate. So it is wrong because
the sample is not the population and estimates are not the parameters they estimate. But it is not
very wrong, and the plug-in principle says we do not make a large error in using it instead of the
true unknown variance matrix (which depends on the true unknown parameter vector 𝜋 which pi.hat
estimates).

• As we should all know from previous stat courses, if we use normal approximation (either multivariate
normal approximation for the distribution of pi.hat itself or univariate normal approximation for the
marginal distributions of its components) we make more errors. This is because (of course!) asymptotic
approximation is approximate. It is good for sufficiently large 𝑛 but we don’t know how large that has
to be.
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The rule of thumb says we need at least 5 expected in each cell of the contingency table for estimating
𝜋. That is the 1 × 3 table of row sums used to compute pi.hat

n * pi.hat

## Eclectic Medical Psychoanalytic
## 180 20 82

So the rule of thumb says multivariate normal approximation is good for pi.hat. But recall that the chi-
squared test rejected the null hypothesis this estimator is based on. The rule of thumb says that normal
approximation would be bad for the whole contingency table (not assuming homogeneity of proportions)
because the natural estimate of expected counts in each cell is just observed counts, and some of them are
less than five.

But, as always, rules of thumb are themselves wrong. There is no sharp dividing line where we go from good
to bad normal approximation. Also it depends on what question you are asking. But this rule of thumb is
why R function chisq.test issues a warning for these data.

Addition rule: this follows from the linearity rule because addition is a linear operation. If 𝑋𝑖 ∼
Normal(𝜇𝑖, Σ𝑖) for 𝑖 = 1, … , 𝑘, then ∑𝑖 𝑋𝑖 ∼ Normal(𝜇1 + ⋯ + 𝜇𝑘, Σ1 + ⋯ + Σ𝑘). In particular if 𝑋1, … ,
𝑋𝑘 are IID Normal(𝜇, Σ), then ∑𝑖 𝑋𝑖 ∼ Normal(𝑛𝜇, 𝑛Σ).
The multivariate central limit theorem: if 𝑋1, 𝑋2, … are IID random vectors having mean vector 𝜇 and
variance matrix Σ and

𝑋𝑛 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

then
𝑋𝑛 ≈ Normal (𝜇, Σ

𝑛 )

and if
𝑆𝑛 =

𝑛
∑
𝑖=1

𝑋𝑖

then
𝑆𝑛 ≈ Normal (𝑛𝜇, 𝑛Σ)

The Chi-Squared Distribution
If 𝑋 is a multivariate normal random vector with mean vector 𝜇 and variance matrix Σ that is strictly
positive definite, then Σ is invertible, meaning it has a matrix inverse Σ−1 and

𝑇 = (𝑋 − 𝜇)𝑇 Σ−1(𝑋 − 𝜇)

is a random variable (scalar not vector) having the chi-squared distribution with degrees of freedom that is
the dimension of 𝑋.

In the special case that 𝑋 is a standard normal random vector, 𝜇 is the zero vector and Σ is the identity
matrix Id, which is its own inverse, so

𝑇 = 𝑋𝑇 Id 𝑋 = 𝑋𝑇 𝑋 =
𝑘

∑
𝑖=1

𝑋2
𝑖

where 𝑘 is the dimension of 𝑋. Thus the chi-squared distribution with 𝑘 degrees of freedom is often defined
to be the distribution of the sum of squares of 𝑘 IID standard normal random variables.

But our more general definition says why the chi-squared distribution is interesting. When 𝑋 has close to
a multivariate normal distribution, then 𝑇 has close to a chi-squared distribution. It will turn out that test
statistics for hypothesis tests involving multiple parameters will be approximately chi-squared distributed
under the null hypothesis.
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An abbreviation for the chi-squared distribution with 𝑘 degrees of freedom is ChiSq(𝑘).
You will have already seen this in intro stats discussion of so-called chi-squared tests. But as we shall see
throughout this course, those tests discussed in intro stats are just the tip of the iceberg. We will meet a
great many more tests in this course having test statistics with asymptotic chi-squared distributions.

Unlike binomial, Poisson, multinomial, and normal the chi-squared distribution does not have any unknown
parameters. However, the “the” in “the chi-squared distribution” is still wrong because there is a different
chi-squared distribution for each degrees of freedom, and the degrees of freedom can be any positive integer.
Actually, as you learn in theory courses, the chi-square distribution actually makes sense for non-integer
degrees of freedom (it can be any positive real number). But we won’t need that for our use of chi-square
approximation of the distribution of test statistics.

When we use the chi-square distribution, we know the degrees of freedom so there are no unknown parameters.

How chi-squared distributions arise in hypothesis testing will be a topic throughout the course.

A Little Bit of Theory
The Linearity Rule and the Delta Method
As in the linearity rule for multivariate normal random vectors, if

𝑌 = 𝑎 + 𝐵𝑋

with 𝑋 and 𝑌 random vectors and 𝑎 and 𝐵 constant (nonrandom) objects, 𝑎 a vector and 𝐵 a matrix,

𝐸(𝑌 ) = 𝑎 + 𝐵𝐸(𝑋)
var(𝑌 ) = 𝐵 var(𝑋)𝐵𝑇

If 𝑋 has mean vector 𝜇 and variance matrix Σ, then we can rewrite this

𝐸(𝑌 ) = 𝑎 + 𝐵𝜇
var(𝑌 ) = 𝐵Σ𝐵𝑇

In the special case where 𝑋 and 𝑌 are both random variables (scalar-valued) the matrix multiplication
becomes ordinary multiplication (of scalars) and the vector addition becomes ordinary addition (of scalars).
Then we write

𝑌 = 𝑎 + 𝑏𝑋
where now 𝑎 and 𝑏 are constant (nonrandom) scalars, and our formulas for mean and variance of 𝑌 become

𝐸(𝑌 ) = 𝑎 + 𝑏𝐸(𝑋)
var(𝑌 ) = 𝑏2 var(𝑋)

or

𝐸(𝑌 ) = 𝑎 + 𝑏𝜇
var(𝑌 ) = 𝑏2𝜎2

where 𝑋 has mean 𝜇 and variance 𝜎2.

The delta method says the linearity rule holds approximately for changes of variable that are approximately
linear. If 𝑓 is a vector-to-vector differentiable function having Jacobian matrix 𝐵 and 𝑋 is a random vector
that is close in distribution to a constant vector 𝜃, then

𝑓(𝑋) ≈ 𝑓(𝜃) + 𝐵(𝑋 − 𝜃)
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If 𝑋 is approximately multivariate normal with mean vector 𝜃 and variance matrix Σ, then 𝑓(𝑋) is approx-
imately normal with mean vector 𝑓(𝜃) and variance matrix 𝐵Σ𝐵𝑇 . The form of the variance matrix arises
from the linearity rule and the properties of multivariate differentiation.

When we use the delta method we either won’t notice at all because it is entirely hidden inside some R function
(typically R generic functions predict and summary) or we will at least not need to know multivariable
calculus because we can use R function jacobian in R package numDeriv to calculate Jacobian matrices for
us. So if B is the Jacobian matrix and Sigma is the variance matrix

B %*% Sigma %*% t(B)

is the R code to calculate 𝐵Σ𝐵𝑇 . Often R function vcov can be used to obtain Σ.

Conditional Probability
Conditional probability is just like unconditional probability except it depends on the observed value(s) of
some random variable(s).

If there are two random variables 𝑋 and 𝑌 , and you observe 𝑋 before you observe 𝑌 , then what you find
out about 𝑋 may change what you expect to find out about 𝑌 when you observe it.

If the (joint) probability mass function (PMF) for 𝑋 and 𝑌 is 𝑓 , then the conditional PMF of 𝑌 given 𝑋
is proportional to 𝑓(𝑥, 𝑦) thought of as a function of 𝑦 for fixed 𝑥. So when we are conditioning on 𝑥, the
variable 𝑥 is no longer playing the role of a random variable. It is fixed at its observed value throughout the
discussion. Thus the PMF of 𝑌 given 𝑋 is

𝑓(𝑦 ∣ 𝑥) = 𝑐 ⋅ 𝑓(𝑥, 𝑦)

where the constant 𝑐 is chosen to make the left-hand side a probability distribution thought of as a function
of 𝑦 for fixed 𝑥, that is,

𝑓(𝑦 ∣ 𝑥) ≥ 0, for all 𝑦
∑

𝑦
𝑓(𝑦 ∣ 𝑥) = 1

The PMF 𝑓( ⋅ |𝑥) depends on 𝑥, but 𝑥 is not an argument of the function, so it is really more like a
parameter. In fact, there is really no difference between a parametric family of probability distributions 𝑓𝜃
and a conditional distribution. In both case the distribution depends on something that is not considered
an argument.

For this reason, Bayesian statisticians always write parametric families as conditional distributions. They
write 𝑓(𝑥 ∣ 𝜃) instead of 𝑓𝜃(𝑥), but that is getting a bit ahead of ourselves.

The main point of this section is that conditioning changes the distribution, and the conditioning variable(s)
is/are treated as fixed in the conditional distribution.

The Relationship of the Various Sampling Schemes
Here we are expanding on Agresti Section 1.2.5.

Our three sampling schemes — Poisson, multinomial, and product multinomial — are related by conditional
probability. All of the theorems in this section are proved in the notes on sampling schemes.

Theorem If we start with Poisson sampling (the data vector 𝑌 has independent Poisson dis-
tributed components) and condition on the event sum(𝑌 ) = 𝑛, then we get multinomial sampling
with 𝑛 the multinomial sample size and the relation 𝜇 = 𝑛𝜋 between the Poisson parameter vector
𝜇 and the multinomial parameter vector 𝜋.

Conversely, if we start with multinomial sampling and then let the multinomial sample size be a
Poisson random variable, we get Poisson sampling.
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Proving this theorem is two homework problems when I teach Stat 5101. It is beyond the scope of this
course (we give the proof in the notes on sampling schemes but won’t go over it, similarly for all proofs in
this section).

Let 𝑌 be the data vector, and let 𝒜 be a partition of its index set. (Partition in math means that 𝒜 is a
set of sets — a set whose elements are themselves sets — and every element of the set which is partitioned
is found in exactly one element of 𝒜.)

For each 𝐴 ∈ 𝒜, let 𝑌𝐴 denote the subvector of 𝑌 whose components are 𝑌𝑖 for 𝑖 ∈ 𝐴 (for much more on
subvectors and sampling schemes, see the notes on sampling schemes). Then we say 𝑌 has a product multi-
nomial distribution for the partition 𝒜 if the random vectors 𝑌𝐴 for 𝐴 ∈ 𝒜 have independent multinomial
distributions. By the product rule, the joint distribution is the product of the marginal distributions

𝑓(𝑦) = ∏
𝐴∈𝒜

𝑓𝐴(𝑦𝐴)

and each of these marginal distributions is multinomial. The multinomial sample sizes for these multinomial
distribution are, of course, the sum of the counts of these multinomial random vectors

𝑛𝐴 = ∑
𝑖∈𝐴

𝑌𝑖, 𝐴 ∈ 𝒜

This may seem very abstract, but the point is it does not matter how you partition the data vector. For
any partition, there is a product multinomial distribution. In two-way tables, the usual way to partition is
by rows or columns (one or the other but not both). But the usual way is not the only way. We need the
abstractness to allow for any partition.

Theorem If we start with Poisson sampling (the data vector 𝑌 has independent Poisson dis-
tributed components) and condition on the events sum(𝑌𝐴) = 𝑛𝐴, 𝐴 ∈ 𝒜, then we get product
multinomial sampling with 𝑛𝐴, 𝐴 ∈ 𝒜, the product multinomial sample sizes and the relation
𝜇𝑖 = 𝑛𝐴𝜋𝑖 for 𝑖 ∈ 𝐴 between the Poisson parameter vector 𝜇 which has components 𝜇𝑖 and the
product multinomial parameter vectors which have components 𝜋𝑖.

Conversely, if we start with product multinomial sampling and then let the product multinomial
sample sizes be a Poisson random variables, we get Poisson sampling.

Theorem If we start with multinomial sampling (the data vector 𝑌 has a multinomial distribu-
tion with sample size 𝑛) and condition on the events sum(𝑌𝐴) = 𝑛𝐴, 𝐴 ∈ 𝒜, then we get product
multinomial sampling with 𝑛𝐴, 𝐴 ∈ 𝒜, the product multinomial sample sizes and the relation
𝑛𝜋𝑖 = 𝑛𝐴𝜓𝑖 for 𝑖 ∈ 𝐴 between the multinomial parameter vector 𝜋 which has components 𝜋𝑖 and
the product multinomial parameter vectors which have components 𝜓𝑖.

There is a converse, but we won’t bother to state it (too complicated).

Now things get worse. Readers probably want to skip to the summary paragraph at the end of this section.
The details of the theorems above and below do not matter for data analysis, just the summary. The details
are there in case anyone ever asks you what you are talking about.

If 𝒜 and ℬ are two different partitions of the index set of the data vector, we say that ℬ is finer than 𝒜 if
every 𝐵 ∈ ℬ is contained in some 𝐴 ∈ 𝒜. (Hence by the nature of partitions every 𝐵 ∈ ℬ is contained in
exactly one 𝐴 ∈ 𝒜.)

When ℬ is finer than 𝒜, we can also say this as 𝒜 is coarser than ℬ.

Theorem If 𝒜 and ℬ are partitions with 𝒜 coarser than ℬ and we start with product multinomial
sampling for the partition 𝒜 and condition on the events sum(𝑌𝐵) = 𝑛𝐵, 𝐵 ∈ ℬ, then we get
product multinomial sampling for the partition ℬ with the relation 𝑛𝐴𝜋𝑖 = 𝑛𝐵𝜓𝑖 for 𝑖 ∈ 𝐵 ⊂ 𝐴
between the two product multinomial parameter vectors.

There is a converse, but we won’t bother to state it (too complicated).

Summary On the list
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• Poisson sampling

• multinomial sampling

• product multinomial sampling

• product multinomial sampling with a finer partition

we go down in the list by conditioning and up in the list by “unconditioning” (in scare quotes because this
is not a technical term). The theorems in which the converse is stated say what that means. Otherwise we
have just what conditional distribution means. We always have

conditional = joint
marginal

so we always also have
joint = conditional × marginal

and the latter is what “unconditioning” means.

In all cases, no matter where we start, when we condition on more stuff we get the same thing as if we had
decided to fix that stuff in advance.

Whether you consider this deep or trivial is up to you.

We will find that most of the time it doesn’t matter what sampling scheme we “assume” because the same
asymptotic statistical inference results.

If we could do exact statistical inference, the results would be different because the different sampling schemes
are actually different. But usually we have no idea how to obtain exact sampling distributions and must
depend on asymptotic approximations.

And these asymptotic approximations give the same results, if we are careful (more on this later).

Bayesian inference is exact and does differ for the different sampling schemes.

Likelihood Inference
Likelihood Function

For a parametric family of distributions with PMF 𝑓𝜃, the likelihood for the model when the observed data
are 𝑥 is just PMF

𝐿𝑥(𝜃) = 𝑓𝜃(𝑥)
with the roles of the parameter and data interchanged. In the PMF the data 𝑥 is the variable and the
parameter 𝜃 is fixed. In the likelihood (left-hand side) the data 𝑥 is fixed at its observed value and the
parameter 𝜃 is the variable.

You may think this is trivial, but everybody in statistics observes this pedantic distinction. You can really
see the difference when it comes to calculus. The derivative of the likelihood function 𝐿 requires us to
differentiate with respect to 𝜃 (because that is the variable in that function). The derivative of the PMF 𝑓𝜃
requires us to differentiate with respect to 𝑥 (because that is the variable in that function).

Log Likelihood Function

For mathematical convenience, the log likelihood is often preferred.

𝑙𝑥(𝜃) = log 𝐿𝑥(𝜃)
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Modifications

For reasons that cannot be fully understood until we are done with both frequentist likelihood inference and
Bayesian inference (all of which is likelihood-based) it makes no difference whatsoever to statistical inference
(frequentist or Bayesian) if

• additive terms that do not contain the parameter(s) are dropped from the log likelihood

• multiplicative terms that do not contain the parameter(s) are dropped from the likelihood

For example, for the binomial distribution, the likelihood is

𝐿𝑥(𝜋) = (𝑛
𝑥)𝜋𝑥(1 − 𝜋)𝑛−𝑥

but we are allowed to drop the multiplicative term that does not contain the parameter 𝜋 obtaining

𝐿𝑥(𝜋) = 𝜋𝑥(1 − 𝜋)𝑛−𝑥

(either likelihood function is as good as the other). And the log likelihood is

𝑙𝑥(𝜋) = log (𝑛
𝑥) + 𝑥 log(𝜋) + (𝑛 − 𝑥) log(1 − 𝜋)

but we are allowed to drop the additive term that does not contain the parameter 𝜋 obtaining

𝑙𝑥(𝜋) = 𝑥 log(𝜋) + (𝑛 − 𝑥) log(1 − 𝜋)

“Principle” (in Scare Quotes) of Maximum Likelihood

You might see in places where they dumb down things to the point of being wrong that the maximizer of
the likelihood is a good point estimate of the parameter.

This is not a “principle” you should find in any statistics book.

There are statistical models such that the more data you have the worse the maximum likelihood estimator
(MLE) is.

What is true is that for statistical models satisfying “suitable regularity conditions” (and neither we nor
Agresti go into what that is) we have the following results.

1. the MLE is a consistent and asymptotically normal (CAN) estimator of the parameter, and no other
estimator can do better asymptotically than the MLE, except perhaps at a negligible set of true
unknown parameter values.

2. the MLE is a root-𝑛-consistent estimator, that is,
√𝑛( ̂𝜃𝑛 − 𝜃)

converges in distribution to a mean-zero normal distribution (a multivariate normal distribution if 𝜃 is
a vector), where ̂𝜃𝑛 is the MLE for sample size 𝑛.

3. (under somewhat weaker regularity conditions than for item 1) if ̃𝜃𝑛 is any root-𝑛-consistent estimator,
that is, √𝑛( ̃𝜃𝑛 − 𝜃)
converges to any distribution whatsoever, and we define ̂𝜃𝑛 to be the nearest local maximum of the
likelihood to ̃𝜃𝑛, then ̂𝜃𝑛 is again CAN and best possible (except perhaps for a negligible set of parameter
values).

4. The asymptotic variance in the asymptotic (normal) distribution of the MLE is inverse Fisher infor-
mation, either observed or expected.
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• Observed Fisher information is minus the Hessian (second derivative) matrix of the log likelihood,
evaluated at the MLE.

• Expected Fisher information is the expectation of observed Fisher information (treating the data
as random).

5. Log-linear models for categorical data analysis that are full exponential families (more on that later)
always satisfy the regularity conditions for item 1.

6. Curved submodels of those in item 4 (for example Agresti Sec. 1.5.4) always satisfy the regularity
conditions for item 3 (but not necessarily for item 1).

Item 4 means that, so long as we can write down the log likelihood and calculate two derivatives, we know
the asymptotic distribution of the MLE (under “suitable regularity conditions”). Item 5 says that for most
models used in this class (but not all), the MLE can be defined as the global maximizer of the log likelihood.
Item 6 says that for all models used in this class, the MLE can be defined as the the nearest local maximum
to a root-𝑛-consistent estimator.

So there is no “principle” that says the global maximizer is best (or even exists). (http://www.stat.umn.
edu/geyer/5102/examp/like.html#mix discusses a statistical model for which the global maximizer never
exists because the supremum of the log likelihood is infinity. Unfortunately, that model is not categorical
data analysis.) But at least for categorical data analysis we do have the estimator of item 6, which we can
call the MLE and does have desirable properties.

Except all of this is as sample size goes to infinity. Nothing says the exact sampling distribution of the
MLE (for the 𝑛 we are at) is well approximated by the asymptotic distribution no matter what 𝑛 is.

But Geyer (2013, IMS Collections, Vol. 10, pp. 1–24) following earlier authors shows that if the log likelihood
is well approximated by a quadratic function, then the sampling distribution of the MLE is close to its
asymptotic distribution (Agresti also mentions this). So that gives us some purchase on what we need to
know about whether asymptotic approximation is good.

We can also use simulation (the so-called parametric bootstrap, more on this later) to check how good
asymptotic approximation is, and also to make the approximation better if it isn’t good already.

Agresti Section 1.3.2
One quibble. It so happens that the setting the first derivative of the log likelihood equal to zero and solving
for the parameter seems to give the MLE ̂𝜋 = 𝑥/𝑛. But this is sloppy. The derivative does not exist at the
boundary of the parameter space, and even if one uses one-sided derivatives, calculus does not say that the
derivative is zero if the maximum occurs on the boundary. Thus to be careful, one needs better analysis
(http://www.stat.umn.edu/geyer/5102/slides/s3.pdf slides 20, 21, 25, and 31).

Note that something is fishy about 𝜋 = 0 and 𝜋 = 1 anyway. In these cases the asymptotic variance is zero
(√𝜋(1 − 𝜋) = 0 in either case). So all the asymptotics says is

√𝑛( ̂𝜋𝑛 − 𝜋) 𝒟⟶ 0

(the right-hand side is the distribution concentrated at zero). It doesn’t tell us much that is useful. (More
on this later.)

Agresti Section 1.3.3
Likelihood-based hypothesis tests come in three kinds.

• Likelihood Ratio Tests, also called Wilks tests.

• Wald Tests.
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• Score Tests, also called Rao tests, also called Lagrange Multiplier tests (the latter name mostly used
by economists).

These tests are all asymptotically equivalent in the sense that (under suitable regularity conditions) for very
large sample sizes they will have nearly equal values of the test statistic and 𝑃 -value for the same data. (The
test statistic and 𝑃 -value are random quantities when the data are considered random, but for the same data
all three tests will have nearly the same test statistics and 𝑃 -values. The difference between test statistics
for any two of these tests will be negligible (for large 𝑛) compared to either test statistic itself.)

Thus asymptotics gives us no reason to choose among these.

Recommendations about which to use are based on mathematical convenience, pedagogical convenience, or
simulations. Simulations, of course, must be based on one particular model (or perhaps a few models) and
so cannot prove any general conclusions about all models.

Under mathematical convenience we have

• assuming that one can calculate MLE for both the null and alternative hypotheses, the likelihood ratio
test statistic is

2[𝑙( ̂𝜃alternative) − 𝑙( ̂𝜃null)]
and the asymptotic distribution is chi-square with degrees of freedom that is the difference of dimensions
of the models. So this is actually easiest if one can fit both null and alternative models.

• the score test requires only the MLE for the null model, not the alternative. However the test statistic
is complicated to calculate. Thus it is most useful when the MLE for the alternative model is difficult
or impossible to fit or when the user does not want to bother with fitting the alternative model.

• the Wald test requires only the MLE for the alternative model, not the null. However the test statistic
is complicated to calculate. Thus it is most useful when the MLE for the null model is difficult or
impossible to fit or when the user does not want to bother with fitting the null model.

In particular, R function summary computes lots of 𝑃 -values for lots of tests all based on having fit only one
model. All of the 𝑃 -values are for tests of null hypotheses that set one of the coefficients equal to zero (and
have alternative hypothesis that is the model that was fit). Thus these must all be Wald tests.

The most famous example of score tests (and one which was invented long before general score tests) is the
Pearson Chi-Square test for categorical data analysis. So whenever we use that, we are using a score test.

Exact formulas for the test statistics for the Wald and Rao tests are given in my PhD level theory notes
http://www.stat.umn.edu/geyer/8112/notes/tests.pdf, Section 1. But they are hard to apply except in
simple special cases (and sometimes not even then). So mostly when we do one or the other of these tests,
we will have a computer do all the hard work (as will be seen in the notes for Section 1.4 in Agresti).

TL;DR There is no one right way to do a hypothesis test.

Coverage of Confidence Intervals
Because the data (in this course) are discrete (counts), only a finite set of data values contains almost all of
the probability. It follows that the actual coverage probability of a confidence interval (no matter what the
recipe is) cannot be a flat function. It cannot be 0.95 for all values of the parameter (or any other confidence
level other than 0.95). As the parameter (say 𝜃) moves from inside to outside (or vice versa) the confidence
interval for some data value (say 𝑥) the coverage probability must jump by 𝑓𝜃(𝑥).
http://www.stat.umn.edu/geyer/5102/examp/coverage.html illustrates this for a variety of confidence inter-
vals for the binomial distribution, those covered in Section 1.4 of Agresti plus some more.

TL;DR There is no one right way to do a confidence interval. Which is better than the others is a matter of
opinion.

22

http://www.stat.umn.edu/geyer/8112/notes/tests.pdf
http://www.stat.umn.edu/geyer/5102/examp/coverage.html


No confidence interval (recipe) for discrete data can be exact (actually achieve its nominal coverage for all
values of the true unknown parameter).

Fuzzy confidence intervals (Geyer and Meeden, 2005, Statistical Science, 20, 358–387) are exact (actually
achieve their nominal coverage for all values of the true unknown parameter) but are more complicated to
use and harder to interpret and explain. We will spend a little time on them (5421 notes on binomial and
5421 notes on fuzzy) but not now.

Agresti Section 1.3.4
Frequentist statistical inference procedures come in trios

• hypothesis test

• confidence interval

• point estimate

Every hypothesis test procedure determines a confidence interval produced by “inverting” the test. And vice
versa.

• Given a hypothesis test and a significance level 𝛼, the set of points 𝜃0 such that a test at level 𝛼 with
null and alternative hypotheses

𝐻0 ∶ 𝜃 = 𝜃0
𝐻1 ∶ 𝜃 ≠ 𝜃0

is a confidence interval for 𝜃 with coverage probability 1 − 𝛼. The confidence interval will be exact if
the hypothesis test is exact. The confidence interval will be approximate (large 𝑛, asymptotic) if the
hypothesis test is approximate (large 𝑛, asymptotic).

• Given a confidence interval with coverage probability 1−𝛼, the hypothesis test with null and alternative
hypotheses in the preceding item that accepts 𝐻0 if the confidence interval covers 𝜃0 and rejects 𝐻0
(and accepts 𝐻1) if the confidence interval does not cover 𝜃0 has level 𝛼. The hypothesis test will be
exact if the confidence interval is exact. The hypothesis test will be approximate (large 𝑛, asymptotic)
if the confidence interval is approximate (large 𝑛, asymptotic).

• The same relationships hold between one-tailed tests and one-sided confidence intervals.

If one has a confidence interval procedure (that constructs confidence intervals with any coverage probability),
then the Hodges-Lehmann estimator associated with this procedure is the point to which these confidence
intervals shrink as the coverage probability goes to zero.

In this course we will always use MLE for frequentist point estimates (Bayes is different, more on that later).

But we see that we have three kinds of hypothesis tests (Wald, Wilks, Rao) and so three different confidence
interval procedures. But they all give back the MLE as the Hodges-Lehmann estimator.

Agresti Section 1.4
For this section we move to specific notes on the binomial distributions.

Agresti Section 1.4.3
I have to disagree with Agresti here. When the MLE is on the boundary of the parameter space, it is true
that the score and likelihood confidence intervals are not completely ridiculous, and the Wald interval is
completely ridiculous (zero width).
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However, when the true unknown parameter value is on the boundary of the parameter space, the “usual
regularity conditions” for maximum likelihood are not satisfied. Thus, in this situation, none of the three
tests, Wald, Wilks, or Rao, have any theoretical justification whatsoever.

Hence we recommend the intervals proposed by Geyer (2009, Electronic Journal of Statistics, 3, 259–289)
and illustrated on the web page about coverage of confidence intervals. For the binomial distribution these
intervals for coverage 1 − 𝛼 are

• when 𝑥 = 0, the confidence interval is (0, 1 − 𝛼1⁄𝑛), and

• when 𝑥 = 𝑛, the confidence interval is (𝛼1⁄𝑛, 1).
These, at least, have a theoretical justification. For these data this interval is
alpha <- 0.05
n <- 25
c(0, 1 - alpha^(1 / n))

## [1] 0.0000000 0.1129281

Fuzzy intervals (Geyer and Meeden, 2005, Statistical Science, 20, 358–387; notes on fuzzy for this course)
also do the right thing (are exact-exact) for this case.

Here is the 95% fuzzy confidence interval for the data discussed by Agresti (𝑥 = 0, 𝑛 = 25).
library(ump)
fci.binom(0, 25)

## 95 percent fuzzy confidence interval
## core is empty
## support is [0, 0.1322)
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The interpretation is that the fuzzy interval is like part credit on a test question. Instead of points being either
in or out of the interval, they are considered partially in and partially out. The fuzzy confidence interval is a
function saying how much each point is partially in. This ranges from 0.95 (for 0.95 coverage) down to zero.
This fuzzy confidence interval is zero for 𝑝 above 0.1322 (we had to use cut-and-paste for this number, which
one should never do, because of bad design of R function fci.binom which gives no programmatic access to
this number; it just prints the number and does not return anything as a value). If one wanted a conventional
confidence interval corresponding to this fuzzy interval it would be the reported support [0, 0.1322), but this
would be only conservative-exact rather than exact-exact. It would have coverage higher than the specified
0.95. The fuzzy interval says we don’t need to consider all of these points to be fully in the interval to get
the required coverage. (The fact that no point is considered fully in the interval is just a curious fact about
the way these intervals work. It is related to the probability of 𝑥 = 0 goes to 1 as 𝑝 → 0, so one would
get more than the specified 0.95 coverage if points near zero had the graph of the fuzzy confidence interval
greater than 0.95.)

Note that these intervals, which are theoretically justified, say that the score and likelihood intervals re-
ported by Agresti, which are not theoretically justified (for true unknown parameter on the boundary of the
parameter space) are too short, in fact, way too short. This can be seen from the fact that their coverage
dips way below 0.95 for 𝑝 near zero and one (web page about coverage of confidence intervals).

Agresti Section 1.4.4
Use fuzzy (preceding section) instead of mid-𝑃 -value.

Agresti Section 1.5
We have our own notes for this.

But there is a lot more to say on this subject. Basically, this whole course is about data that can be taken
to arise from either Poisson, multinomial, or product multinomial sampling. Basically, the whole textbook
(Agresti) and all of the lecture notes for this course are on this subject.

Agresti Section 1.5.6: Structural Zeros
Sometimes when a contingency table is laid out in an array, some cells have probability zero by design. They
cannot occur. R function chisq.test cannot handle this case.

For the example in Section 1.5.6 in Agresti the data are
n <- matrix(c(30, 0, 63, 63), nrow = 2)
n

## [,1] [,2]
## [1,] 30 63
## [2,] 0 63

And the log likelihood for the alternative hypothesis is

𝑙(𝜋) = 𝑛11 log(𝜋2) + 𝑛12 log[𝜋(1 − 𝜋)] + 𝑛22 log(1 − 𝜋)
= 2𝑛11 log(𝜋) + 𝑛12 log(𝜋) + 𝑛12 log(1 − 𝜋) + 𝑛22 log(1 − 𝜋)

(middle unnumbered displayed equation on p. 21 in Agresti). Applying calculus we get the following displayed
equation in Agresti

𝑙′(𝜋) = 2𝑛11
𝜋 + 𝑛12

𝜋 − 𝑛12
1 − 𝜋 − 𝑛22

1 − 𝜋
If we are shaky on the calculus, even R can do this
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D(quote(n11 * log(pi^2) + n12 * log(pi * (1 - pi)) + n22 * log(1 - pi)),
name = "pi")

## n11 * (2 * pi/pi^2) + n12 * (((1 - pi) - pi)/(pi * (1 - pi))) -
## n22 * (1/(1 - pi))

But it gets a somewhat messier formula. Setting our derivative equal to zero and multiplying both sides by
𝜋(1 − 𝜋) gives

2𝑛11(1 − 𝜋) + 𝑛12(1 − 𝜋) − 𝑛12𝜋 − 𝑛22𝜋 = 0
or

2𝑛11 + 𝑛12 − (2𝑛11 + 𝑛12 + 𝑛12 + 𝑛22)𝜋 = 0
the unique solution of which is

̂𝜋 = 2𝑛11 + 𝑛12
2𝑛11 + 𝑛12 + 𝑛12 + 𝑛22

and this agrees with the bottom unnumbered displayed equation on p 21 in Agresti.
pihat <- (2 * n[1,1] + n[1,2]) / (2 * n[1,1] + 2 * n[1,2] + n[2,2])
pihat

## [1] 0.4939759

That is the MLE for 𝜋 for the null hypothesis. Then the MLE for the expected cell counts is the vector
e <- sum(n) * c(pihat^2, pihat * (1 - pihat), 1 - pihat)
e

## [1] 38.06590 38.99434 78.93976

And this agrees with Agresti. Hence the Pearson chi-square test statistic is
o <- as.vector(n)
o <- o[o > 0]
tstat <- sum((o - e)^2 / e)
tstat

## [1] 19.70606
pchisq(tstat, lower.tail = FALSE, df = 1)

## [1] 9.031458e-06

The null hypothesis has one parameter. The alternative has two parameters (because the probabilities for the
three cells that are not the structural zero must sum to one). Hence the degrees of freedom is the difference
2 − 1 = 1.

We could also do a likelihood ratio test. The value of the log likelihood for the null hypothesis is
pihat.vec.0 <- e / sum(n)
pihat.vec.1 <- o / sum(n)
logl0 <- sum(o * log(pihat.vec.0))
logl1 <- sum(o * log(pihat.vec.1))
tstat <- 2 * (logl1 - logl0)
tstat

## [1] 17.73787
pchisq(tstat, lower.tail = FALSE, df = 1)

## [1] 2.535289e-05
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We will mercifully not try a Wald test.

None of this may make much sense. To do an analysis of these data one should really have already taken
Stat 5101-5102 but that is not a prerequisite for the course.

TL;DR If there are structural zeros, then you either really need to know your theoretical statistics or you
need help from someone who does. Standard software isn’t set up for this.

Except there is one methodology we will learn that has no problems with structural zeros. If we use
the Poisson sampling scheme and hence use Poisson regression to fit the model, there is no problem with
structural zeros (leave them out of the data vector). It is only trying to put the data into a contingency table
that forces one to have structural zeros. (It may then be hard to define the covariates for Poisson regression,
but if one can do that correctly, there are no further problems.)

Agresti Section 1.6
Skip for now, we will take up Bayes later

Concepts
• probability model

• statistical model

• discrete data

• continuous data

• discrete probability model

• continuous probability model

• frequentist inference

• Bayesian inference

• parametric statistical model

• nonparametric statistical model

• parameter

• statistic (a function of data but not a function of parameters)

• parameter space

• sample space

• probability mass function (PMF)

• probability density function (PDF)

• outcome

• event

• probability

• expectation

• Pr(𝐴)
• 𝐸(𝑋)
• mean
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– of random variable

– of random vector

• variance

– of random variable

– of random vector

• covariance

• standard deviation

• addition rule

– for mean of sums of random variables

– for variance of sums of independent random variables

– for sum of Bernoulli random variables

– for sum of binomial random variables

– for sum of Poisson random variables

– for sum of multinomial random vectors

• multiplication rule

– for PMF

– for PDF

– for means of products of independent random variables

• independent also called stochastically independent or statistically independent

• dependent

• independent and identically distributed (IID)

• Bernoulli distribution

• binomial distribution (see also handout on inference for the binomial distribution)

• binomial coefficient

• Poisson distribution (see also handout on inference for the Poisson distribution)

• Poisson process

• multinomial distribution

• multinomial coefficient

• sampling models (see also the section about theorems relating sampling models)

– Poisson

– multinomial

– product multinomial

• normal distribution

– univariate

– multivariate

• chi-squared distribution
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• linearity rule

– for mean and variance for a linear function of a random variable or random vector

– for distribution of a linear function of a multivariate normal random vector or univariate normal
random variable

• central limit theorem (CLT)

– univariate

– multivariate

• delta method

• conditional probability

• joint distribution

• conditional distribution

• marginal distribution

• likelihood (see also handout on likelihood theory and handout on likelihood computation)

• Fisher information

• hypothesis tests

– Wald

– likelihood ratio (also called Wilks)

– score (also called Rao, also called Lagrange multiplier)

– fuzzy (see also handout on fuzzy tests and confidence intervals)

• confidence intervals

• abbreviations

– Ber(𝜋)
– Bin(𝑛, 𝜋)
– Poi(𝜇)
– Multi(𝑛, 𝜋)
– Normal(𝜇, 𝜎2)
– Normal(𝜇, Σ)
– ChiSq(𝑘)
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