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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 Data
In our example there are two successes in 25 trials.
x <- 2
n <- 25

3 Maximum Likelihood Estimator
The usual estimator of the parameter 𝜋 is ̂𝜋 = 𝑥/𝑛. This turns out to also be the maximum likelihood
estimator.
phat <- x / n

4 Log Likelihood
We can plot the log likelihood function using the following code
logl <- function(p) {

result <- x * log(p) + (n - x) * log(1 - p)
result[is.na(result)] <- 0
return(result)

}
curve(logl, from = 0.0001, to = 0.99, n = 1001,

xlab = expression(pi), ylab = "log likelihood",
ylim = logl(phat) + c(-10, 0))

abline(v = phat, lty = "dashed")

The dashed vertical line shows where the MLE is, and it does appear to be where the log likelihood is
maximized. The log likelihood goes to minus infinity as 𝜋 → 0 or 𝜋 → 1. Except when 𝑥 = 0 the log
likelihood increases to 0 as 𝜋 → 0, and when 𝑥 = 𝑛 it increases to 0 as 𝜋 → 1. Thus we cannot try to draw
the curve from 0 to 1 but rather from a little bit above 0 to a little bit below 1. But that gives us a plot in
which it is hard to see what is going on.
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Figure 1: Log Likelihood
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Hence the ylim optional argument to R function curve. It will turn out that the only interesting part of
the log likelihood is the region near the maximum. Hence we include in our plot only the part of the curve
in which the log likelihood is within 10 of the maximum. The 10 was pulled out of the air. We don’t really
want to get scientific about this yet (but do in the section on likelihood-based confidence intervals below).
Also it really doesn’t matter, since we are just using this plot to get some idea what is going on. We don’t
use this plot for statistical inference.

5 Confidence Level
Set the confidence level. It is best programming practice to never hard code numbers like this, that is, the
number 0.95 should only occur in your document once where it is used to initialize a variable. Then use that
variable elsewhere.

If there is ever a need to change this (to use say 0.90 for the confidence level), then it only need be changed
in one place and will be consistently used everywhere.
conf.level <- 0.95

This is an example of using the DRY/SPOT rule (Wikipedia pages Don’t Repeat Yourself and Single Point
of Truth).

6 Wald, Wilks, Rao
Section 1.3.3 in Agresti discusses the three main strategies for constructing hypothesis tests. And each kind
of hypothesis goes with a confidence interval that is derived by inverting the test. So there are the same
three strategies for confidence intervals.

The three strategies are

• Wald test

• Wilks test, also called likelihood ratio test

• Rao test, also called score test and Lagrange multiplier test (this last name is used mostly by
economists).

All of these procedures are asymptotically equivalent under the usual asymptotics of maximum likelihood.
Hence none is better than the others for sufficiently large sample size. But they may be quite different for
small sample sizes.

7 Confidence Intervals
7.1 Wald Confidence Interval
This used to be the standard taught in intro stats, maybe it still is in many such courses. These are the only
intervals of the type

point estimate ± critical value × standard error

phat + c(-1, 1) * qnorm((1 + conf.level) / 2) * sqrt(phat * (1 - phat) / n)

## [1] -0.02634498 0.18634498

We know 0 ≤ 𝜋 ≤ 1 but this interval makes no use of that information, giving a lower bound that is negative.

This may look ridiculous, but is not wrong. If we know that 0 ≤ 𝜋, then it is true that −0.026345 ≤ 𝜋 too.

Agresti (Section 1.4) points out that this interval gives ridiculous zero-width confidence intervals when ̂𝜋 is
equal to zero or one (when the data 𝑥 is equal to zero or 𝑛). However, the Wald interval can be repaired by
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using a different procedure (Geyer, 2009, Electronic Journal of Statistics, 3, 259–289) that was illustrated on
the web page discussing coverage of confidence intervals. So that is not a reason not to use Wald intervals so
long as one knows how to use this modification when the MLE is on the boundary of the parameter space.

7.2 Score Interval (also called Rao)
Some intro stats books now teach this. In particular, Agresti’s intro stats book teaches this. Some teach
a dumbed down approximation to this. Since we are using R, we may as well do the right thing, not the
dumbed down version suitable for hand calculation.
prop.test(x, n, conf.level = conf.level, correct = FALSE)

##
## 1-sample proportions test without continuity correction
##
## data: x out of n, null probability 0.5
## X-squared = 17.64, df = 1, p-value = 2.669e-05
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.0222204 0.2496611
## sample estimates:
## p
## 0.08

The “correct = FALSE” is just bizarre.

Does that mean we don’t want the correct answer? No. The R statement help(prop.test) explains
that it means we do not want to use “continuity correction”. And we don’t. No authority recommends
what prop.test does by default. Agresti, Section 1.4.2, recommends correct = FALSE. Brown, Cai and
DasGupta (Statistical Science, 2005, 20, pp. 375–379) criticize Geyer and Meeden (Statistical Science, 2005,
20, pp. 358–366) for using prop.test with correct = TRUE, providing plots of coverage probability for
with correct = FALSE and correct = TRUE to show this. AFAIK no authority defends correct = TRUE,
even help(prop.test) cites no such authority. They do cite Newcombe (Statistics in Medicine, 1998,
17, 857–872) where correct = FALSE is his method 3 and correct = TRUE is (apparently) his method 4,
but Newcombe’s simulations do not show that correct = TRUE is better than correct = FALSE and his
conclusion does not recommend correct = TRUE over correct = FALSE (but he does not pick a particular
method to recommend).

For a full derivation of the score interval and a check that correct = FALSE actually calculates it see
http://www.stat.umn.edu/geyer/5102/slides/s2.pdf, slides 113–116 and 123. (Hmmmm. That does not
actually seem to check. We’ll check here.)
crit <- qnorm((1 + conf.level) / 2)
foo <- (phat + crit^2 / (2 * n) + c(-1, 1) * crit *

sqrt(phat * (1 - phat) / n + crit^2 / (4 * n^2))) / (1 + crit^2 / n)
foo

## [1] 0.0222204 0.2496611
bar <- prop.test(x, n, conf.level = conf.level, correct = FALSE)
names(bar)

## [1] "statistic" "parameter" "p.value" "estimate" "null.value"
## [6] "conf.int" "alternative" "method" "data.name"
bar$conf.int

## [1] 0.0222204 0.2496611
## attr(,"conf.level")
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## [1] 0.95
all.equal(bar$conf.int, foo, check.attributes = FALSE)

## [1] TRUE

7.3 Likelihood Interval (also called Wilks)
Confidence interval that is a level set of the log likelihood. This is too esoteric for intro stats.
crit <- qchisq(conf.level, df = 1)
fred <- function(p) 2 * (logl(phat) - logl(p)) - crit
tol <- sqrt(.Machine$double.eps)
if (phat == 0) {

low <- 0
} else {

low <- uniroot(fred, lower = 0, upper = phat, tol = tol)$root
}
if (phat == 1) {

hig <- 1
} else {

hig <- uniroot(fred, lower = phat, upper = 1, tol = tol)$root
}
c(low, hig)

## [1] 0.01376568 0.22711456

We can check we have done the right thing by redoing our log likelihood plot.
sally <- function(p) 2 * logl(p)
curve(sally, from = 0.0001, to = 0.99, n = 1001,

xlab = "p", ylab = "two times log likelihood",
ylim = sally(phat) + c(-6, 0))

abline(h = sally(phat) - crit, lty = "dashed")
abline(v = low, lty = "dashed")
abline(v = hig, lty = "dashed")

We can see that the vertical dashed lines, which are the endpoints of the likelihood-based confidence interval,
do indeed intersect the graph of two times the log likelihood crit down from the maximum, where crit is
the critical value derived from the chi-squared distribution.

Note that this figure has even less of a vertical range than the preceding one. This does say that the
interesting part of the picture is captured by both graphs where now “interesting” means the part relevant
to a 95% confidence interval.

7.4 Likelihood Interval using MASS Package
We can also do this with R function confint in R package MASS. Except this function botches the calculation
when 𝑥 = 0 or 𝑥 = 𝑛. Our calculation above always does the right thing.
library(MASS)
gout <- glm(rbind(c(x, n - x)) ~ 1, family = binomial)
cout <- confint(gout, level = conf.level)

## Waiting for profiling to be done...
cout

## 2.5 % 97.5 %
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Figure 2: Likelihood-Based Confidence Interval
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## -4.272091 -1.225066
fred <- 1 / (1 + exp(- cout))
fred

## 2.5 % 97.5 %
## 0.01376058 0.22704616
all.equal(c(low, hig), fred, check.attributes = FALSE, tolerance = 4e-4)

## [1] TRUE

7.5 Five Intervals Compared

phat + c(-1, 1) * qnorm((1 + conf.level) / 2) * sqrt(phat * (1 - phat) / n)

## [1] -0.02634498 0.18634498
as.vector(bar$conf.int)

## [1] 0.0222204 0.2496611
c(low, hig)

## [1] 0.01376568 0.22711456

As can be seen, the intervals are rather different. If we were to go back to the top and change the data to
𝑥 = 200 and 𝑛 = 2500 (both 100 times what they were before), then the intervals are quite close to each
other (not to mention a lot shorter).

The web page discussing coverage of confidence intervals discusses two more intervals
# Clopper-Pearson Binomial Confidence Intervals
binom.test(x, n, conf.level = conf.level)

##
## Exact binomial test
##
## data: x and n
## number of successes = 2, number of trials = 25, p-value = 1.943e-05
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.00983959 0.26030584
## sample estimates:
## probability of success
## 0.08
# Variance Stabilized Binomial Confidence Intervals
# http://www.stat.umn.edu/geyer/5102/slides/s2.pdf#page=120
thetahat <- asin(2 * phat - 1)
crit.val <- qnorm((1 + conf.level) / 2)
(1 + sin(thetahat + c(-1,1) * crit.val / sqrt(n))) / 2

## [1] 0.008214812 0.215499536

All five of these intervals are asymptotically equivalent. All are correct and say almost the same thing for
sufficiently large sample sizes. No theory says that one is better than another for small sample sizes with
one exception.

When the estimators are on the boundary ̂𝜋 = 0 or ̂𝜋 = 1, the Wald and arcsine intervals have abysmally
bad performance (so bad that a wild guess is better).
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But, as discussed in the section about the Wald interval, which refers to the web page discussing coverage
of confidence intervals. this abysmally bad performance can be fixed. So there is no reason to prefer one of
these intervals (modified, if necessary, to fix bad behavior at the end points) over another.

8 Hypothesis Tests (One-Tailed)
8.1 Data
For some reason, we are going to use different data in the hypothesis tests section, presumably because with
the small sample size before there was no power to reject almost all null hypotheses.
x <- 1300
n <- 2500

8.2 MLE

phat <- x / n

8.3 Null Hypothesis

p0 <- 1 / 2

8.4 Score Test
Now this is the standard test for proportions taught in intro stats (regardless of which interval is taught. We
will do an upper-tail test. Test statistic and 𝑃 -value.
tstat <- (x - n * p0) / sqrt(n * p0 * (1 - p0))
tstat

## [1] 2
pnorm(tstat, lower.tail = FALSE)

## [1] 0.02275013

This is an asymptotic procedure, only approximately correct for large sample sizes.

8.5 Exact Test
Here is an “exact” test (really only conservative-exact, the 𝑃 -value is guaranteed to understate the statistical
significance).

P-value for exact test
pbinom(x - 1, n, p0, lower.tail = FALSE)

## [1] 0.02384093

This should perhaps be standard in intro stats.

8.6 Fuzzy P-Value
This comes from Geyer and Meeden (Statistical Science, 2005, 20, 358–387).

Here the 𝑃 -value is considered to be uniformly distributed on interval
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pbinom(c(x, x - 1), n, p0, lower.tail = FALSE)

## [1] 0.02168093 0.02384093

This test is truly exact (exact-exact rather than conservative-exact) in the sense that the probability 𝑃 ≤ 𝛼
is equal to 𝛼 for 0 ≤ 𝛼 ≤ 1.

This test is what is actually comparable to an exact test with a continuous test statistic (like a 𝑡-test, for
example).

8.7 Likelihood Ratio Test
For a one-tailed test we have to use the signed likelihood ratio test statistic. Here are the test statistic and
P-value for this test.
tstat <- 2 * (logl(phat) - logl(p0))
tstat <- sqrt(tstat)
tstat <- tstat * sign(phat - p0)
tstat

## [1] 2.000267
pnorm(tstat, lower.tail = FALSE)

## [1] 0.02273573

This too is an asymptotic procedure, only approximately correct for large sample sizes. It is asymptotically
equivalent to the score test. Both the test statistic and the 𝑃 -value for these two tests (and the Wald test,
which is next) will be nearly equal for large sample sizes.

8.8 Wald Test
Test statistic and 𝑃 -value
tstat <- (x - n * p0) / sqrt(n * phat * (1 - phat))
tstat

## [1] 2.001602
pnorm(tstat, lower.tail = FALSE)

## [1] 0.02266378

This too is an asymptotic procedure, only approximately correct for large sample sizes. It is asymptotically
equivalent to the score test and the likelihood ratio test. The test statistic and the 𝑃 -value for these three
tests will be nearly equal for large sample sizes.

This seems intuitively wrong. The 𝑃 -value is calculated assuming 𝜋0 is the true unknown parameter value
(in general, assuming the null hypothesis is true). So if you know 𝜋 = 𝜋0, why not use that fact in doing the
test? The score test and likelihood ratio test do; the Wald test doesn’t. (This is related to the Wald test
not needing the MLE in the null hypothesis. Here we have a point null hypothesis, so the MLE in the null
hypothesis is 𝜋0.) Hence no intro text recommends the Wald test for the binomial distribution.

Of course many textbooks recommend Wald tests in other situations, for example, those output by the R
generic function summary.

9 Two-Tailed Tests
Now we illustrate two-tailed tests for the same data.
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9.1 Score Test

tstat <- (x - n * p0) / sqrt(n * p0 * (1 - p0))
tstat

## [1] 2
pnorm(abs(tstat), lower.tail = FALSE) * 2

## [1] 0.04550026
pnorm(- abs(tstat)) * 2

## [1] 0.04550026
pnorm(abs(tstat), lower.tail = FALSE) + pnorm(- abs(tstat))

## [1] 0.04550026

As can be seen the last three commands are three equivalent ways to calculate the 𝑃 -value for the two-tailed
test using the symmetry of the standard normal distribution.

9.2 Exact Test
Oops! There is no exact non-fuzzy two-tailed test.

9.3 Fuzzy Test
Fuzzy P-value for exact test (Geyer and Meeden, Statistical Science, 2005, 20, 358–387). Now this is not
simple, but there is an R function to do it in R package ump.
library(ump)
print(arpv.binom(x, n, p0, plot = FALSE))

## $alpha
## [1] 0.04336187 0.04336187 0.04768187
##
## $phi
## [1] 0.00000e+00 1.73133e-12 1.00000e+00

Here because the value of the cumulative distribution is so low at the middle knot, this is almost a uniform
distribution. The fuzzy 𝑃 -value is approximately uniformly distributed on the interval
aout <- arpv.binom(x, n, p0, plot = FALSE)
aout$alpha[2:3]

## [1] 0.04336187 0.04768187

This behavior is not the way this test always works. Sometimes the distribution of the fuzzy 𝑃 -value is quite
complicated. Here’s an example, which is Figure 3 in Geyer and Meeden (Statistical Science, 2005, vol 20,
pp. 358–387).
aout <- arpv.binom(10, 10, 0.7, plot = FALSE)
aout

## $alpha
## [1] 0.000000000 0.000019683 0.000433026 0.004290894 0.025294842 0.052384365
##
## $phi
## [1] 0.0000000000 0.0004877631 0.0102430249 0.0956015654 0.5204974118
## [6] 1.0000000000
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We make the plot that is the aforementioned Figure 3 as follows.
k <- length(aout$alpha)
alpha <- aout$alpha
pdf <- diff(aout$phi) / diff(aout$alpha)
plot(alpha, c(0, pdf), type = "n", xlab = expression(alpha),

ylab = "probability density")
segments(alpha[-k], pdf, alpha[-1], pdf)
segments(alpha, c(0, pdf), alpha, c(pdf, 0), lty = "dashed")

0.00 0.01 0.02 0.03 0.04 0.05

0
5

10
15

20
25

α

pr
ob

ab
ili

ty
 d

en
si

ty

Figure 3: PDF of Fuzzy P-Value

The fuzzy 𝑃 -value can be considered to be a random variable having the probability density function shown
in the figure.

9.4 Likelihood Ratio Test
Test statistic and 𝑃 -value
tstat <- 2 * (logl(phat) - logl(p0))
tstat

## [1] 4.001067
pchisq(tstat, df = 1, lower.tail = FALSE)

## [1] 0.04547146
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9.5 Wald Test
Test statistic and 𝑃 -value
tstat <- (x - n * p0) / sqrt(n * phat * (1 - phat))
tstat

## [1] 2.001602
pnorm(abs(tstat), lower.tail = FALSE) * 2

## [1] 0.04532756
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