
Stat 5421 Lecture Notes: To Accompany Agresti Ch 9

Charles J. Geyer

November 09, 2020

Contents
Section 9.1 Two-Way Tables 1

Section 9.1.1 Only Main Effects . 1
Section 9.1.3 Interactions . 2
Section 9.1.5 Hierarchical Models . 2
Identifiability . 2

Section 9.2 Three-Way Tables 6
Section 9.2.1 Only Main Effects . 6
The Saturated Model . 6
Example: High School Student Survey . 6
Interactions . 8
Many Models . 9

Section 9.4 Four-Way and Beyond 10
Example: Seat-Belt Use . 10

Parametric Bootstrap 12
Assuming Poisson Sampling . 12
Assuming Multinomial Sampling . 13

Section 9.1 Two-Way Tables

Section 9.1.1 Only Main Effects

The independence or homogeneity of proportions model has mean-value parameters

µij = αiβj

or canonical parameters

θij = αi + βj (1)

where the alphas and betas are different in the two equations (this causes no confusion, since if we look at
parameters at all, these are usually canonical parameters).

1

Section 9.1.3 Interactions

The saturated model has completely arbitrary parameters. The mean value parameters µij have no specified
structure. The canonical parameters θij have no specified structure. So this is the largest model. It has the
most (arbitrarily variable) parameters.

Section 9.1.5 Hierarchical Models

The hierarchical model principle says that, if you have an interaction term of a certain order, then you have
all lower-order interactions of the same variables. For the saturated model for a two-way table this says

θij = αi + βj + γij (2)

(but this just says θij can be anything. This is not an identifiable parameterization.

Identifiability

A statistical model (in general, not just in categorical data analysis) is identifiable if there is only one
(vector) parameter value corresponding to a probability distribution. In exponential family models (Notes on
Exponential Families, Section 6.2) every different mean vector corresponds to a different distribution, but
different canonical parameter vectors can correspond to the same distribution.

If we are assuming Poisson sampling (Notes on Exponential Families, Part I, section 7) then the canon-
ical parameters are identifiable if and only if the mean-value parameters are (because the link function
(componentwise log) is invertible).

Clearly the specification for the two-way independence model (1) is not identifiable because one can add a
constant to all of the alphas and subtract the same constant from all the betas and get the same result

(αi + c) + (βj − c) = αi + βj

Hence (2) is also not identifiable.

But we don’t need to worry about identifiability when fitting models because the computer automatically
takes care of it.

For example, consider the data in Table 3.8 in Agresti
counts <- c(17066, 14464, 788, 126, 37, 48, 38, 5, 1, 1)
drinks <- rep(c("0", "< 1", "1-2", "3-5", ">= 6"), times = 2)
malformation <- rep(c("Absent", "Present"), each = 5)
data.frame(drinks, malformation, counts)

drinks malformation counts
1 0 Absent 17066
2 < 1 Absent 14464
3 1-2 Absent 788
4 3-5 Absent 126
5 >= 6 Absent 37
6 0 Present 48
7 < 1 Present 38
8 1-2 Present 5
9 3-5 Present 1
10 >= 6 Present 1

2

http://www.stat.umn.edu/geyer/5421/notes/expfam.pdf#page=28
http://www.stat.umn.edu/geyer/5421/notes/expfam.pdf#page=28
http://www.stat.umn.edu/geyer/5421/notes/expfam.pdf#page=46

We can fit this using R function chisq.test
foo <- xtabs(counts ~ malformation + drinks)
foo

drinks
malformation < 1 >= 6 0 1-2 3-5
Absent 14464 37 17066 788 126
Present 38 1 48 5 1
chisq.test(foo)

Warning in chisq.test(foo): Chi-squared approximation may be incorrect

##
Pearson's Chi-squared test
##
data: foo
X-squared = 12.082, df = 4, p-value = 0.01675

But it says “approximation may be incorrect” so try
chisq.test(foo, simulate.p.value = TRUE)

##
Pearson's Chi-squared test with simulated p-value (based on 2000
replicates)
##
data: foo
X-squared = 12.082, df = NA, p-value = 0.02999

But we can also use R function glm and its helper functions to do the job.
gout.indep <- glm(counts ~ malformation + drinks, family = poisson)
summary(gout.indep)

##
Call:
glm(formula = counts ~ malformation + drinks, family = poisson)
##
Deviance Residuals:
1 2 3 4 5 6 7 8
0.00659 0.02830 -0.09735 -0.05669 -0.14540 -0.12356 -0.53649 1.56555
9 10
0.86842 1.63069
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 9.579183 0.008309 1152.83 <2e-16 ***
malformationPresent -5.855811 0.103844 -56.39 <2e-16 ***
drinks>= 6 -5.944456 0.162434 -36.60 <2e-16 ***
drinks0 0.165610 0.011287 14.67 <2e-16 ***
drinks1-2 -2.906219 0.036469 -79.69 <2e-16 ***
drinks3-5 -4.737855 0.089123 -53.16 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##

3

Null deviance: 95424.044 on 9 degrees of freedom
Residual deviance: 6.202 on 4 degrees of freedom
AIC: 80.511
##
Number of Fisher Scoring iterations: 4
gout.sat <- glm(counts ~ malformation * drinks, family = poisson)
summary(gout.sat)

##
Call:
glm(formula = counts ~ malformation * drinks, family = poisson)
##
Deviance Residuals:
[1] 0 0 0 0 0 0 0 0 0 0
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 9.579418 0.008315 1152.082 <2e-16 ***
malformationPresent -5.941832 0.162434 -36.580 <2e-16 ***
drinks>= 6 -5.968500 0.164609 -36.259 <2e-16 ***
drinks0 0.165425 0.011302 14.637 <2e-16 ***
drinks1-2 -2.909920 0.036581 -79.547 <2e-16 ***
drinks3-5 -4.743136 0.089474 -53.011 <2e-16 ***
malformationPresent:drinks>= 6 2.330914 1.026354 2.271 0.0231 *
malformationPresent:drinks0 0.068189 0.217432 0.314 0.7538
malformationPresent:drinks1-2 0.881772 0.477131 1.848 0.0646 .
malformationPresent:drinks3-5 1.105550 1.017011 1.087 0.2770

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 9.5424e+04 on 9 degrees of freedom
Residual deviance: -4.7518e-13 on 0 degrees of freedom
AIC: 82.309
##
Number of Fisher Scoring iterations: 3
anova(gout.indep, gout.sat, test = "LRT")

Analysis of Deviance Table
##
Model 1: counts ~ malformation + drinks
Model 2: counts ~ malformation * drinks
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 6.202
2 0 0.000 4 6.202 0.1846
anova(gout.indep, gout.sat, test = "Rao")

Analysis of Deviance Table
##
Model 1: counts ~ malformation + drinks
Model 2: counts ~ malformation * drinks
Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)

4

1 4 6.202
2 0 0.000 4 6.202 12.082 0.01675 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
p.value.lrt <- anova(gout.indep, gout.sat, test = "LRT")[2, "Pr(>Chi)"]
p.value.rao <- anova(gout.indep, gout.sat, test = "Rao")[2, "Pr(>Chi)"]
p.value.chisq <- suppressWarnings(chisq.test(foo)$p.value)
p.value.lrt

[1] 0.1845623
p.value.rao

[1] 0.01675137
p.value.chisq

[1] 0.0167514

We notice a number of things.

• The P -value for the Rao test (0.01675) is exactly equal to that output for the Chi-Square test because
the Pearson chi-square test is a special case of the Rao test.

• The likelihood ratio test disagrees quite strongly with the Rao test. Of course, these test are asymptoti-
cally equivalent, but here the sample size is not “large”. The total number of subjects (3.2574 × 104) is
large, but the expected number in some cells of the contingency table are quite small, a lot less than
what the rule of thumb says is necessary for valid asymptotics (at least five in each cell), so maybe that
accounts for the difference.

suppressWarnings(chisq.test(foo)$expected)

drinks
malformation < 1 >= 6 0 1-2 3-5
Absent 14460.59624 37.8915086 17065.13888 790.735955 126.6374102
Present 41.40376 0.1084914 48.86112 2.264045 0.3625898

• The computer (R function glm) knows how to deal with identifiability. It adds an intercept, so it is
really using the formula

θij = α+ βi + γj

for the independence model and
θij = α+ βi + γj + δij

for the saturated model. Then it “drops” (sets equal to zero) one of the betas, one of the gammas, and
all interaction terms corresponding to the dropped beta and the dropped gamma.

names(coef(gout.indep))

[1] "(Intercept)" "malformationPresent" "drinks>= 6"
[4] "drinks0" "drinks1-2" "drinks3-5"

It keeps the “intercept” (α in our notation just above). It drops one of the coefficients for the factor
malformation (and keeps the other one). It drops one of the coefficients for the factor drinks (and keeps
the other four). And this gives it an identifiable model.
names(coef(gout.sat))

[1] "(Intercept)" "malformationPresent"
[3] "drinks>= 6" "drinks0"
[5] "drinks1-2" "drinks3-5"

5

[7] "malformationPresent:drinks>= 6" "malformationPresent:drinks0"
[9] "malformationPresent:drinks1-2" "malformationPresent:drinks3-5"

It has all the parameters of the independence model plus a lot of “interaction” parameters (the ones whose
names contain colons). But it drops all the “interaction” parameters that involve parameters that were
“dropped” from the independence model (it contains no “interaction” terms containing malformationAbsent
or drinks< 1) And this gives it an identifiable model.

Section 9.2 Three-Way Tables

Three way tables are just like two-way tables except the data have three subscripts for the three dimensions
of the table. Our analogs of

Section 9.2.1 Only Main Effects

The independence or homogeneity of proportions model has mean-value parameters

µijk = αiβjγk

or canonical parameters

θijk = αi + βj + γk (3)

where the alphas, betas, and gammas are different in the two equations (this causes no confusion, since if we
look at parameters at all, these are usually canonical parameters).

The Saturated Model

As before, the saturated model has completely arbitrary parameters. The mean value parameters µijk have
no specified structure. The canonical parameters θijk have no specified structure. So this is the largest model.
It has the most (arbitrarily variable) parameters.

Example: High School Student Survey

This is Table 9.3 in Agresti and can be found in R package CatDataAnalysis.
clean up R global environment
rm(list = ls())

library(CatDataAnalysis)
data(table_9.3)
names(table_9.3)

[1] "a" "c" "m" "count"
foo <- xtabs(count ~ a + c + m, data = table_9.3)
foo

, , m = 1
##
c
a 1 2

6

1 911 44
2 3 2
##
, , m = 2
##
c
a 1 2
1 538 456
2 43 279

Since a, c, and m are categorical, we should perhaps make them factors. But since they each have only two
values, it does not matter whether we make them factors or not. If they had more than two values, then it
would be essential to make them factors.

We can make these data look nicer by copying the names out of the book
dimnames(foo) <- list(alcohol = c("yes", "no"), cigarettes = c("yes", "no"), marijuana = c("yes", "no"))
aperm(foo, c(2, 3, 1))

, , alcohol = yes
##
marijuana
cigarettes yes no
yes 911 538
no 44 456
##
, , alcohol = no
##
marijuana
cigarettes yes no
yes 3 43
no 2 279

We needed R function aperm, which permutes the dimensions of an array, to present the data in the same
order as in the book.

Of course, the order doesn’t matter and neither do the dimnames. That is just to match the book.

Now R function chisq.test is useless, but R function glm has no problems. Our test of independence or
homogeneity of proportions is the same, just with three “predictors” rather than two (the “predictors” are in
scare quotes because they are just the dimnames)
gout.indep <- glm(count ~ a + c + m, data = table_9.3, family = poisson)
gout.sat <- glm(count ~ a * c * m, data = table_9.3, family = poisson)
anova(gout.indep, gout.sat, test = "LRT")

Analysis of Deviance Table
##
Model 1: count ~ a + c + m
Model 2: count ~ a * c * m
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 1286
2 0 0 4 1286 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(gout.indep, gout.sat, test = "Rao")

Analysis of Deviance Table

7

##
Model 1: count ~ a + c + m
Model 2: count ~ a * c * m
Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)
1 4 1286
2 0 0 4 1286 1411.4 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Clearly, the independence model does not fit the data. So statistics says these variables, alcohol use, cigarette
use, and marijuana use have some association. No real surprise, but the data do confirm what just about
everybody assumes.

Interactions

Our saturated model has the three-way interaction a * c * m but there can also be two-way interactions.
The model with all two-way interactions would have canonical parameter

θijk = αij + βik + γjk

(as before the terms with alphas, betas, and gammas need not match up with previous uses of these greek
letters). And people who insist on the hierarchical principle would write

θijk = α+ βi + γj + δk + εij + ζik + ηjk

but both formulas specify the same model and neither is identifiable.

So let’s look at that model.
gout.all.two.way <- glm(count ~ (a + c + m)^2, data = table_9.3, family = poisson)
anova(gout.indep, gout.all.two.way, gout.sat, test = "LRT")

Analysis of Deviance Table
##
Model 1: count ~ a + c + m
Model 2: count ~ (a + c + m)^2
Model 3: count ~ a * c * m
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 1286.02
2 1 0.37 3 1285.65 <2e-16 ***
3 0 0.00 1 0.37 0.5408

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
foompter <- anova(gout.indep, gout.all.two.way, gout.sat, test = "LRT")
foompter.p.values <- foompter[-1, "Pr(>Chi)"]
foompter.p.values

[1] 1.915858e-278 5.408396e-01

This says the two-way interactions model (model 2) fits as well as the three-way interactions model (model 3,
the saturated model) because P = 0.5408 is not statistically significant (not even close).

And it says the two-way interactions model (model 2) fits much better than the main effects only model
(model 1, the independence model) because P < 2 × 10−16 is highly statistically significant (by anyone’s
standards).

We should not be overly impressed by very very small P -values because asymptotic approximation gives only
small absolute errors rather than small relative errors. All this very very small P -value says is that an exact

8

calculation (if we could do it, which we cannot) would be something small, say P < 0.001. But there is no
reason to believe the P < 2 × 10−16 that R prints is correct to within even several orders of magnitude.

Many Models

There are many hierarchical models here, because we need not include all of the main effects or all two-way
interactions. The hierarchical principle says that if we have a two-way interaction, then we must have the
corresponding main effects, but that leaves

θijk = α+ βi + γj + δk + εij + ζik + ηjk + θijk

θijk = α+ βi + γj + δk + εij + ζik + ηjk

θijk = α+ βi + γj + δk + εij + ζik

θijk = α+ βi + γj + δk + εij + ηjk

θijk = α+ βi + γj + δk + ζik + ηjk

θijk = α+ βi + γj + δk + εij

θijk = α+ βi + γj + δk + ζik

θijk = α+ βi + γj + δk + ηjk

θijk = α+ βi + γj + εij

θijk = α+ βi + δk + ζik

θijk = α+ γj + δk + ηjk

θijk = α+ βi + γj + δk

θijk = α+ βi + γj

θijk = α+ βi + δk

θijk = α+ γj + δk

θijk = α+ βi

θijk = α+ γj

θijk = α+ δk

θijk = α

Of course, we already know many of these models don’t fit the data. We saw that the main effects only
model doesn’t fit. So none of its submodels can fit either. But this is a complete listing of all hierarchical
models (except for the saturated model).

How can we choose among all these models? There is a methodology for that, but this is getting a bit ahead
of ourselves. There will be a handout for that. But for now, we just show it without much explanation.
library(glmbb)
out <- glmbb(count ~ a * c * m, data = table_9.3, family = poisson)
summary(out)

##
Results of search for hierarchical models with lowest AIC.
Search was for all models with AIC no larger than min(AIC) + 10
These are shown below.
##
criterion weight formula
63.42 0.6927 count ~ a*c + a*m + c*m
65.04 0.3073 count ~ a*c*m

9

This says that none of the models that do not have all three two-way interactions fit the data according to
the criterion: none have AIC less than the AIC for the best model (“best” according to AIC) plus 10. We
don’t know what AIC is yet, but we will learn in a later handout. For now, just consider it a criterion of
goodness of fit.

If we want to see how bad some of those non-fitting models were, we can increase the cutoff.
library(glmbb)
out <- glmbb(count ~ a * c * m, data = table_9.3, family = poisson, cutoff = 90)
summary(out)

##
Results of search for hierarchical models with lowest AIC.
Search was for all models with AIC no larger than min(AIC) + 90
These are shown below.
##
criterion weight formula
63.42 6.927e-01 count ~ a*c + a*m + c*m
65.04 3.073e-01 count ~ a*c*m
153.06 2.369e-20 count ~ a*c + c*m

That is a huge jump up to the next best fitting model, which does not (take my word for it for now) does not
fit the data well at all.

Section 9.4 Four-Way and Beyond

And so on and so forth. Higher order tables are just more complicated, but present no new issues.

Example: Seat-Belt Use

These data are given in Table 9.8 in Agresti. The are apparently not in R package CatDataAnalysis.
clean up R global environment
rm(list = ls())

count <- c(7287, 11587, 3246, 6134, 10381, 10969, 6123, 6693,
996, 759, 973, 757, 812, 380, 1084, 513)

injury <- gl(2, 8, 16, labels = c("No", "Yes"))
gender <- gl(2, 4, 16, labels = c("Female", "Male"))
location <- gl(2, 2, 16, labels = c("Urban", "Rural"))
seat.belt <- gl(2, 1, 16, labels = c("No", "Yes"))
data.frame(gender, location, seat.belt, injury, count)

gender location seat.belt injury count
1 Female Urban No No 7287
2 Female Urban Yes No 11587
3 Female Rural No No 3246
4 Female Rural Yes No 6134
5 Male Urban No No 10381
6 Male Urban Yes No 10969
7 Male Rural No No 6123
8 Male Rural Yes No 6693
9 Female Urban No Yes 996
10 Female Urban Yes Yes 759

10

11 Female Rural No Yes 973
12 Female Rural Yes Yes 757
13 Male Urban No Yes 812
14 Male Urban Yes Yes 380
15 Male Rural No Yes 1084
16 Male Rural Yes Yes 513
xtabs(count ~ seat.belt + injury + location + gender)

, , location = Urban, gender = Female
##
injury
seat.belt No Yes
No 7287 996
Yes 11587 759
##
, , location = Rural, gender = Female
##
injury
seat.belt No Yes
No 3246 973
Yes 6134 757
##
, , location = Urban, gender = Male
##
injury
seat.belt No Yes
No 10381 812
Yes 10969 380
##
, , location = Rural, gender = Male
##
injury
seat.belt No Yes
No 6123 1084
Yes 6693 513

Looks OK.
out <- glmbb(count ~ seat.belt * injury * location * gender,

family = "poisson")
summary(out)

##
Results of search for hierarchical models with lowest AIC.
Search was for all models with AIC no larger than min(AIC) + 10
These are shown below.
##
criterion weight
182.8 0.24105
183.1 0.21546
184.0 0.13742
184.8 0.09055
184.9 0.08446
185.0 0.08042
185.5 0.06462

11

185.8 0.05365
186.8 0.03237
formula
count ~ seat.belt*injury*location + seat.belt*location*gender + injury*location*gender
count ~ injury*gender + seat.belt*injury*location + seat.belt*location*gender
count ~ seat.belt*injury + seat.belt*location*gender + injury*location*gender
count ~ seat.belt*injury*location + seat.belt*injury*gender + seat.belt*location*gender + injury*location*gender
count ~ seat.belt*injury + injury*location + injury*gender + seat.belt*location*gender
count ~ seat.belt*injury*location + seat.belt*injury*gender + seat.belt*location*gender
count ~ seat.belt*injury*location*gender
count ~ seat.belt*injury*gender + seat.belt*location*gender + injury*location*gender
count ~ injury*location + seat.belt*injury*gender + seat.belt*location*gender

Now there are several models that fit these data fairly well. We will leave it at that for now.

Parametric Bootstrap

Assuming Poisson Sampling

The method of R function anova for objects of class "glm" produced by R function glm has no optional
argument simulate.p.value.

So here is how we could do that for our first example.
clean up R global environment
rm(list = ls())
re-establish stuff done in first section
counts <- c(17066, 14464, 788, 126, 37, 48, 38, 5, 1, 1)
drinks <- rep(c("0", "< 1", "1-2", "3-5", ">= 6"), times = 2)
malformation <- rep(c("Absent", "Present"), each = 5)
gout.indep <- glm(counts ~ malformation + drinks, family = poisson)
gout.sat <- glm(counts ~ malformation * drinks, family = poisson)
aout <- anova(gout.indep, gout.sat, test = "LRT")

This gets us back to where we were before we removed everything produced in our original analysis of these
data. Now we need the estimated mean values (expected cell counts) and the P -value for the test
p.value.hat <- aout[2, "Pr(>Chi)"]
p.value.hat

[1] 0.1845623
mu.hat <- predict(gout.indep, type = "response")
mu.hat

1 2 3 4 5 6
1.706514e+04 1.446060e+04 7.907360e+02 1.266374e+02 3.789151e+01 4.886112e+01
7 8 9 10
4.140376e+01 2.264045e+00 3.625898e-01 1.084914e-01

Now we can do the simulation
set random number generator seed for reproducibility
set.seed(42)

nboot <- 999
p.value.star <- double(nboot)

12

for (iboot in 1:nboot) {
simulate new data from fitted model
counts.star <- rpois(length(mu.hat), lambda = mu.hat)
gout.indep.star <- glm(counts.star ~ malformation + drinks,

family = poisson)
gout.sat.star <- glm(counts.star ~ malformation * drinks,

family = poisson)
aout.star <- anova(gout.indep.star, gout.sat.star, test = "LRT")
p.value.star[iboot] <- aout.star[2, "Pr(>Chi)"]

}
all.p.values <- c(p.value.star, p.value.hat)
mean(all.p.values <= p.value.hat)

[1] 0.143
sd(all.p.values <= p.value.hat) / sqrt(nboot)

[1] 0.01108136

The code above is a bit tricky, so here is the explanation.

• Each time through the loop we simulate new data based on our best estimate of the model under the
null hypothesis. We are assuming Poisson sampling, so we use R function rpois to simulate the data.
This function vectorizes, so it works with mu.hat being a vector.

• The next three statements do exactly the same as the original analysis except that we use the simulated
data rather than the real data.

• Then we extract the P -value from the result of R function anova and store it for future use.

• After the loop terminates, we have nboot simulations from the distribution of the P -value under the
null hypothesis. We also have one more (not simulated) P -value that has the same distribution under
the null hypothesis as the simulated P -values. This is p.value.hat, the value for the real data.

• The estimated P -value is then the fraction of the time the bootstrap simulated P -values p.value.star
are at least as extreme as the P -value for the actual data p.value.hat.

• The last statement calculates the Monte Carlo standard error, how far off our simulation is from what
we would get if we did an infinite number of simulations.

The idea is that, when the asymptotics cannot be trusted, all we can say about a P -value is that is can be
used as a test statistic. We take lower values as stronger evidence against the null hypothesis, but we don’t
know that it is correctly calibrated: we don’t think that we would have P ≤ α with probability α for all α
under the null hypothesis. So we need to simulate the distribution of this test statistic to compute a valid
P -value. And that is what this does. Call the observed value of this test statistic P̂ and the simulated value
of this test statistic P ∗, then Pr(P ∗ ≤ P̂) is the valid P -value.

The trick of including the observed P -value among the simulated P -values guarantees that we cannot get a
spurious bootstrap P -value of zero by making the Monte Carlo sample size too small. The smallest bootstrap
P -value we can get by this procedure is 1 / (nboot + 1).

This trick also comes with an argument that it gives an exact randomized test for any significance level that
is a multiple of 1 / (nboot + 1). Under the null hypothesis, it has the discrete uniform distribution on the
numbers seq(1, nboot + 1) / (nboot + 1).

Assuming Multinomial Sampling

When we simulate, we are not using asymptotics. And we are using exact sampling distributions. Thus
Poisson sampling and multinomial sampling are not equivalent (their equivalence is an asymptotic result).

13

So we can do the same simulation under multinomial sampling.
n <- sum(counts)
p.hat <- mu.hat / n
p.value.star <- double(nboot)
for (iboot in 1:nboot) {

simulate new data from fitted model
counts.star <- rmultinom(1, n, prob = p.hat)
gout.indep.star <- glm(counts.star ~ malformation + drinks,

family = poisson)
gout.sat.star <- glm(counts.star ~ malformation * drinks,

family = poisson)
aout.star <- anova(gout.indep.star, gout.sat.star, test = "LRT")
p.value.star[iboot] <- aout.star[2, "Pr(>Chi)"]

}
all.p.values <- c(p.value.star, p.value.hat)
mean(all.p.values <= p.value.hat)

[1] 0.139
sd(all.p.values <= p.value.hat) / sqrt(nboot)

[1] 0.01095074

The only difference between this simulation and the one before is the line

counts.star <- rmultinom(1, n, prob = p.hat)

and the lines defining n to be the multinomial sample size and p.hat to be the estimated multinomial
parameter vector so we can use it in the statement just above.

14

	Section 9.1 Two-Way Tables
	Section 9.1.1 Only Main Effects
	Section 9.1.3 Interactions
	Section 9.1.5 Hierarchical Models
	Identifiability

	Section 9.2 Three-Way Tables
	Section 9.2.1 Only Main Effects
	The Saturated Model
	Example: High School Student Survey
	Interactions
	Many Models

	Section 9.4 Four-Way and Beyond
	Example: Seat-Belt Use

	Parametric Bootstrap
	Assuming Poisson Sampling
	Assuming Multinomial Sampling

