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Conditional Probability

Conditional probability is just like unconditional probability except it depends on the observed value(s) of
some random variable(s).

If there are two random variables X and Y , and you observe X before you observe Y , then what you find out
about X may change what you expect to find out about Y when you observe it.

If the (joint) probability mass function (PMF) for X and Y is f , then the conditional PMF of Y given X
is proportional to f(x, y) thought of as a function of y for fixed x. So when we are conditioning on x, the
variable x is no longer playing the role of a random variable. It is fixed at its observed value throughout the
discussion. Thus the PMF of Y given X is

f(y | x) = c · f(x, y)

where the constant c is chosen to make the left-hand side a probability distribution thought of as a function
of y for fixed x, that is,

f(y | x) ≥ 0, for all y∑
y

f(y | x) = 1

The PMF f( · |x) depends on x, but x is not an argument of the function, so it is really more like a parameter.
In fact, there is really no difference between a parametric family of probability distributions fθ and a
conditional distribution. In both case the distribution depends on something that is not considered and
argument.

For this reason, Bayesian statisticians always write parametric families as conditional distributions. They
write f(x | θ) instead of fθ(x), but that is getting a bit ahead of ourselves.

The main point of this section is that conditioning changes the distribution, and the conditioning variable(s)
is/are treated as fixed in the conditional distribution.

Agresti Section 1.2.5

Poisson Sampling

When we assume Poisson sampling we are assuming that the cells of the contingency table, which contain
counts (nonnegative-integer-valued random variables), are independent Poisson (not necessarily with the same
mean, hence not necessarily identically distributed).
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Multinomial Sampling

If we start with Poisson sampling and condition on the total we get multinomial sampling. If X1, . . . , Xn

are independent Poisson random variables and N = X1 + · · ·+Xn, then the conditional distribution of the
random vector X = (X1, . . . , Xn) given N is multinomial.

Recall that individuals being sampled form a Poisson process if no individual has any influence on any other.
If you take a sample of such individuals over a fixed time interval, then you get Poisson sampling. If you take
a sample of such individuals until you get a predetermined number of individuals, then you get multinomial
sampling.

Conditioning on N is the same as fixing N .

Product Multinomial Sampling

Here we fix more than one sum of counts. Let A be a partition of the index set of the counts. This means
each index i is an element of exactly one A ∈ A. Now we fix (condition on)

NA =
∑
i∈A

Xi, A ∈ A.

Now let XA denote the subvector of X than has just components Xi for i ∈ A. Then these subvectors are
independent random vectors conditional on all of the NA. And the conditional distribution of XA given all of
the NA is multinomial with sample size NA.

For a more concrete example, suppose we have a two-way table, in which the data form a matrix. If we
condition on the row sums (those are the NA defined above), then the rows of the table are independent
multinomial random vectors. If we condition on the column sums, then the columns of the table are
independent multinomial random vectors.

If we start with Poisson sampling, and condition on NA, A ∈ A as defined above, then we get product
multinomial sampling.

If we start with multinomial sampling, and condition on NA, A ∈ A as defined above, then we get product
multinomial sampling.

Suppose B is a partition of the index set that is coarser than A, which means that every element of A is
contained in some element of B. If we start with product multinomial sampling for partition B and condition
on NA, A ∈ A as defined above, then we get product multinomial sampling for partition A.

In all three cases, no matter where we start, when we condition on more stuff we get the same thing as if we
had decided to fix that stuff in advance.

Summary

Whether you consider this deep or trivial is up to you.

We will find that most of the time it doesn’t matter what sampling scheme we “assume” because the same
statistical inference results. (But not always.)
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Likelihood Inference

Likelihood Function

For parametric family of distributions with PMF fθ, the likelihood for the model when the observed data are
x is just PMF

L(θ) = fθ(x)

with the roles of the parameter and data interchanged. In the PMF the data x is the variable and the
parameter θ is fixed. In the likelihood (left-hand side) the data x is fixed at its observed value and the
parameter θ is the variable.

You may think this is trivial, but everybody in statistics observes this pedantic distinction. You can really see
the difference when it comes to calculus. The derivative of the likelihood function L requires us to differentiate
with respect to θ (because that is the variable in that function). The derivative of the PMF fθ requires us to
differentiate with respect to x (because that is the variable in that function).

Log Likelihood Function

For mathematical convenience, the log likelihood is often preferred.

l(θ) = logL(θ)

Modifications

For reasons that cannot be fully understood until we are done with both frequentist likelihood inference and
Bayesian inference (all of which is likelihood-based) it makes no difference whatsoever to statistical inference
(frequentist or Bayesian) if

• additive terms that do not contain the parameter(s) are dropped from the log likelihood

• multiplicative terms that do not contain the parameter(s) are dropped from the likelihood

“Principle” (in Scare Quotes) of Maximum Likelihood

You might see in places where they dumb down thing to the point of being wrong. That the maximizer of
the likelihood is a good point estimate of the parameter.

This is not a “principle” you should find in any statistics book.

There are statistical models such that the more data you have the worse the maximum likelihood estimator
(MLE) is.

What is true is that for statistical models satisfying “suitable regularity conditions” (and neither we nor
Agresti go into what that is) we have the following results.

1. the MLE is a consistent and asymptotically normal (CAN) estimator of the parameter, and no other
estimator can do better asymptotically than the MLE, except perhaps at a negligible set of parameter
values.

2. the MLE is a root-n-consistent, that is, √
n(θ̂n − θ)

converges in distribution to a mean-zero normal distribution (a multivariate normal distribution if θ is
a vector), where θ̂n is the MLE for sample size n.
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3. (under somewhat weaker regularity conditions than for item 1) if θ̃n is any root-n-consistent estimator,
that is, √

n(θ̃n − θ)

converges to any distribution whatsoever, and we define θ̂n to be the nearest local maximum of the
likelihood to θ̃n, then θ̂n is again CAN and best possible (except perhaps for a negligible set of parameter
values).

4. The asymptotic variance in the asymptotic (normal) distribution is inverse Fisher information, either
observed or expected.

• Observed Fisher information is minus the Hessian (second derivative) matrix of the log likelihood,
evaluated at the MLE.

• Expected Fisher information is the expectation of observed Fisher information (treating the data
as random).

5. Log-linear models for categorical data analysis that are full exponential families (more on that later)
always satisfy the regularity conditions for item 1.

6. Curved submodels of those in item 4 (for example Agresti Sec. 1.5.4) always satisfy the regularity
conditions for item 3 (but not necessarily for item 1).

Item 4 means that, so long as we can write down the log likelihood and calculate two derivatives, we know
the asymptotic distribution of the MLE (under “suitable regularity conditions”). Item 5 says that for most
models used in this class (but not all), the MLE can be defined as the global maximizer of the log likelihood.
Item 6 says that for all models used in this class, the MLE can be defined as the the nearest local maximum
to a root-n-consistent estimator.

So there is no “principle” that says the global maximizer is best (or even exists). (http://www.stat.umn.
edu/geyer/5102/examp/like.html#mix discusses a statistical model for which the global maximizer never
exists because the supremum of the log likelihood is infinity. Unfortunately, that model is not categorical
data analysis.) But at least for categorical data analysis we do have the estimator of item 6, which we can
call the MLE and does have desirable properties.

Except all of this is as sample size goes to infinity. Nothing says the exact sampling distribution of the MLE
(for the n we are at) is well approximated by the asymptotic distribution no matter what n is.

But Geyer (2013, IMS Collections, Vol. 10, pp. 1–24) following earlier authors shows that if the log likelihood
is well approximated by a quadratic function, then the sampling distribution of the MLE is close to its
asymptotic distribution (Agresti also mentions this). So that gives us some purchase on what we need to
know about whether asymptotic approximation is good.

We can also use simulation (the so-called parametric bootstrap, more on this later) to check how good
asymptotic approximation, and also to make the approximation better if it isn’t good already.

Agresti Section 1.3.2

One quibble. It so happens that the setting the first derivative of the log likelihood equal to zero and solving
for the parameter seems to give the MLE π̂ = x/n. But this is sloppy. The derivative does not exist at the
boundary of the parameter space, and even if one uses one-sided derivatives, calculus does not say that the
derivative is zero if the maximum occurs on the boundary. Thus to be careful, one needs better analysis
(http://www.stat.umn.edu/geyer/5102/slides/s3.pdf slides 20, 21, 25, and 31).

Note that something is fishy about π = 0 and π = 1 anyway. In this case the asymptotic variance is zero
(
√
π(1− π) = 0 in either case). So all the asymptotics says is

√
n(π̂n − π) D−→ 0
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(the right-hand side is the distribution concentrated at zero). It doesn’t tell us much that is useful. (More on
this later.)

Agresti Section 1.3.3

Likelihood-based hypothesis tests come in three kinds.

• Likelihood Ratio Tests, also called Wilks tests.

• Wald Tests.

• Score Tests, also called Rao tests, also called Lagrange Multiplier tests (the latter name mostly used by
economists).

These tests are all asymptotically equivalent in the sense that (under suitable regularity conditions) they are
asymptotically equivalent that means that for very large sample sizes they will have nearly equal values of the
test statistic and P -value for the same data. (The test statistic and P -value are random quantities when the
data are considered random, but for the same data all three tests will have nearly the same test statistics
and P -values. The difference between test statistics for any two of these test will be negligible (for large n)
compared to either test statistic itself.)

Thus asymptotics gives us no reason to choose one or the other.

Recommendations about which to use are based on mathematical convenience, pedagogical convenience, or
simulations. Simulations, of course, must be based on one particular model (or perhaps a few models) and so
cannot be general.

Under mathematical convenience we have

• assuming that one can calculate MLE for both the null and alternative hypotheses, the likelihood ratio
test statistic is

2[l(θ̂big)− l(θ̂little)]

and the asymptotic distribution is chi-square with degrees of freedom that is the difference of dimensions
of the models. So this is actually easiest if one can fit both big and little models.

• the score test requires only the MLE for the little model, not the big. However the test statistic is
complicated to calculate. This it is most useful when the big model is difficult or impossible to fit or
when the user does not want to bother with the big model.

• the Wald test requires only the MLE for the big model, not the little. However the test statistic is
complicated to calculate. This it is most useful when the little model is difficult or impossible to fit or
when the user does not want to bother with the little model.

In particular, R function summary computes lots of P -values for lots of tests all based on having fit only one
model, the big model (and all of the P -values are for tests of little models that have one of the coefficients set
to zero). Thus these must all be Wald tests.

The most famous example of score tests (and one which was invented long before general score tests) is the
Pearson Chi-Square test for categorical data analysis. So whenever we use that, we are using a score test.
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