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1 Introduction

Graphical models come in many kinds. There are graphical models where
all the variables are categorical (Lauritzen, 1996, Chapter 4). There are
graphical models where the variables are jointly multivariate normal (Lau-
ritzen, 1996, Chapter 5). There are graphical models where some of the
variables are categorical and the rest are conditionally jointly multivariate
normal given the categorical ones (Lauritzen, 1996, Chapter 6).

Since this is a course in categorical data, we will only be interested in
graphical models having only categorical variables.

2 Undirected Graphs

An undirected graph consists of a set whose elements are called nodes
and a set whose elements are called edges and which are unordered pairs of
nodes. We write G = (N,E) where G is the graph, N is the node set, and
E is the edge set.

Figure 1 (on p. 2) is an example. The nodes are U , V , W , X, and Z
and the edges are the line segments.

A graph is called simple if it has no repeats of its edges, which our
insistence that the edges are a set (which cannot have repeats) rather than
a multiset (which can) already rules out, and if it has no loops (edges of
the form (n, n)). We are only interested in simple graphs. The graph in
Figure 1 is simple.

A graph (N1, E1) is a subgraph of (N2, E2) if N1 ⊂ N2 and E1 ⊂ E2,
where ⊂ means subset (we do not use ⊆ to mean subset).

A graph is complete if every pair of nodes is connected by an edge.
(Lauritzen, 1996, Section 2.1.1).

A clique in a graph is the node set of a maximal complete subgraph,
one that is not a subgraph of another complete subgraph (Lauritzen, 1996,
Section 2.1.1). The cliques in Figure 1 are {U}, {V,W}, and {W,X,Z}.

A path in an undirected graph is a sequence of edges (ni, ni+1), i = 1,
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Figure 1: An Undirected Graph.

. . . , k. For example,

V W X Z

is a path in the graph in Figure 1. We can say that this path goes from V
to Z or from Z to V . Since the edges are undirected, there is no implied
direction.

If A, B, and C are sets of nodes of a graph, then we say that C separates
A and B if every path from a node in A to a node in B goes through C (has
an edge, one of whose nodes is in C). In the graph in Figure 1, the node set
{W} separates the node sets {U, V } and {X,Z}.

3 Undirected Graphs and Probability

A log-linear model for a contingency table is any model having one of the
“sampling schemes” (Poisson, multinomial, product multinomial) described
in Section 7 of the exponential families handout (Geyer, 2016).

Such a model is hierarchical if for every interaction term in the model
all main effects and lower-order interactions involving variables in that term
are also in the model.

The interaction graph for a hierarchical model is an undirected graph
that has nodes that are the variables in the model and an edge for every
pair of variables that appear in the same interaction term (Lauritzen, 1996,
Section 4.3.3).

A hierarchical model is graphical if its terms correspond to the cliques
of its interaction graph (Lauritzen, 1996, Section 4.3.3). Repeating what
we said in the preceding section, the cliques the graph in Figure 1 are {U},
{V,W}, and {W,X,Z}. So the graphical model having this graph has for-
mula

∼ U + V ∗W + W ∗X ∗ Z.
Not every hierarchical model is graphical. For example, the hierarchical
model with formula

∼ U + V ∗W + W ∗X + X ∗ Z + Z ∗W
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has the same interaction graph. But it is not graphical because it does not
have the term W ∗X ∗ Z.

A Markov property for a graph having random variables for nodes tells us
something about conditional independence or factorization into marginals
and conditionals. The relevant Markov property for log-linear models is the
following, which is stated in Section 4.3.3 in Lauritzen (1996) and said to
follow from Theorems 3.7 and 3.9 in Lauritzen (1996).

Theorem 1. If C separates A and B in the interaction graph then the
variables in A are conditionally independent of those in B given those in C.

The conclusion of the theorem is often written

A⊥⊥B | C.

It means, of course, that the conditional distribution factorizes

f(yA∪B | yC) = f(yA | yC)f(yB | yC)

where we have the usual abuse of notation that the three f ’s denote three
different functions, the conditional PMF’s of the indicated sets of variables,
and where we are now using the notation yS for subvectors of the response
vector y of the probability model (described on p. 47 of the handout on
exponential families, Geyer, 2016).

Repeating what we said in the preceding section, in the graph in Figure 1,
{W} separates {U, V } and {X,Z}. So if Figure 1 is the interaction graph
of a graphical model, we have

U, V ⊥⊥X,Z |W.

Perhaps not quite so obvious, in the same graph the empty set separates
U from all the other nodes. Since there are no paths from U to any other
node. Every path from U to another node (there are none of them) goes
through the empty set. Thus we can also say

U ⊥⊥ V,W,X,Z | ∅.

But, since conditioning on an empty set of variables is the same as not
conditioning. We can also say

U ⊥⊥ V,W,X,Z

meaning U is (unconditionally) independent of the rest of the variables.
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Figure 2: A Directed Graph.

4 Directed Graphs

A directed graph consists of a set whose elements are called nodes and
a set whose elements are called edges and which are ordered pairs of nodes.
When drawing a directed graph, the edges are drawn as arrows to indicate
the direction. Figure 2 shows a directed graph.

A path in a directed graph is a sequence of edges (ni, ni+1), i = 1, . . . ,
k. Since the edges are directed, there is an implied direction. We say the
path goes from n1 to nk+1. For example,

V W X Z

is a path from V to Z in the graph in Figure 2.
A directed graph is called acyclic if it has no cycles, which are paths that

return to their starting point. The graph in Figure 2 is acyclic. Directed
acyclic graphs are so important that they have a well-known TLA (three-
letter acronym) DAG.

In a DAG the parents of a node u are the nodes from which edges go to
u. The set of parents of u is denoted pa(u). In Figure 2 we have

pa(U) = ∅
pa(V ) = ∅

pa(W ) = {V }
pa(X) = {W}
pa(Z) = {W,X}

5 Directed Acyclic Graphs and Probability

Every DAG that has nodes that are the variables in a statistical model is
associated with a factorization of the joint distribution for that model into
a product of marginal and conditional distributions

f(y) =
∏
i∈N

f(yi | ypa(i))

4



(Lauritzen, 1996, Section 4.5.1). Using the parent sets we found in the
preceding section, the graph in Figure 2 has the factorization

f(u, v, w, x, z) = f(z | w, x)f(x | w)f(w | v)f(v)f(u). (1)

This agrees with the separation properties of the corresponding undi-
rected graph discussed in Section 3 above. A general factorization, valid for
any probability model would be

f(u, v, w, x, z) = f(z | u, v, w, x)f(u, v, w, x)

= f(z | u, v, w, x)f(x | u, v, w)f(u, v, w)

= f(z | u, v, w, x)f(x | u, v, w)f(w | u, v)f(u, v)

= f(z | u, v, w, x)f(x | u, v, w)f(w | u, v)f(v | u)f(u)

Comparing this general factorization with (1) we see that we have

f(z | u, v, w, x) = f(z | w, x)

f(x | u, v, w) = f(x | w)

f(w | u, v) = f(w | v)

f(v | u) = f(v)

which imply

Z ⊥⊥ U, V |W,X

X ⊥⊥ U, V |W
W ⊥⊥ U | V
V ⊥⊥ U

all of which are Markov properties that can be read off the undirected graph
in Figure 1.

6 Directed Acyclic Graphs and Causality

DAGs are also widely used to indicate causal relationships (Pearl, 2009;
Spirtes, et al., 2001). The idea is that a directed edge

V W

indicates that changes in V cause changes in W .
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Authorities on causal inference (Pearl, 2009; Spirtes, et al., 2001) under-
stand that correlation is not causation. But they do insist that independence
implies lack of causation.

If two variables are independent, then there cannot be a causal relation-
ship between them (because that would induce dependence). If two variables
are conditionally independent given a set S of other variables, then there
cannot be a direct causal relationship. Any causal link must be indirect, the
path from one to the other going through S.

Direction of causality cannot be inferred from independence, conditional
or unconditional. If U and V are dependent, then changes in U may cause
changes in V or changes in V may cause changes in U or changes in some
other variable W may cause changes in both U and V .

There are two ways one can infer direction of causality. One is what is
called “intervention” in the causal inference literature. It is the same thing
that statisticians are talking about when they refer to controlled experi-
ments. The other way is to simply assume that only one direction for edges
makes sense (scientific sense, business sense, whatever).

In short, statistics can give you an undirected graph, but only controlled
experiments or assumptions can give direction and causal interpretation of
the edges.
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