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1 Introduction

1.1 Definition

An exponential family of distributions is a statistical model that has log
likelihood of the form

1(0) = (y,0) — c(0), (1)

where y is a vector statistic and 6 is a vector parameter, both having the
same dimension, and

(y,0) =yT0=0Ty=y-0=>",z:0;.

Your humble author has a reason for preferring this angle bracket notation
to either matrix multiplication or to the “dot product” or “scalar product”
notation, but the reason isn’t important for what we are going to do.

This is not the usual definition (Barndorff-Nielsen, 1978, Chapter 8) but
it defines the same concept as the usual definition. Our definition comes
from Geyer (2009).

Recall from the likelihood handout that additive terms that do not con-
tain the parameter can be dropped from log likelihoods, and they may need
to be dropped to get the form (1). Also recall from introductory statistics
that a statistic is a function of the data that does not depend on the pa-
rameter. So y need not be “the data” (in its usual form); rather it may be
a function of the data. Thus if w is the original data, the probability mass
functions (PMF) or probability density functions (PDF), as the case may
be (PMF for discrete data or PDF for continuous data) have the form

Jolw) = W) O—eO) thie) o)

where h(w) is a term not depending on the parameter that is dropped from
the log likelihood to obtain the form (1).

I want to say recall from introductory statistics that any one-to-one
function of the parameter is another parameter, but I am aware that most
introductory statistics courses go out of their way to never mention more
than one parameterization of any particular statistical model. So we will



just say it: any one-to-one function of the (vector) parameter of a statistical
model is another (vector) parameter, and one parameterization is just as
good as another: they all serve to distinguish the probability distributions
in the model.

Many well known and widely used statistical models are exponential
families (including Bernoulli, binomial, Poisson, geometric, negative bino-
mial when the shape parameter is fixed, exponential, gamma, beta, normal,
multinomial, and multivariate normal). In this course, of course, we are
mostly interested in the discrete ones.

But even if you have had the theory sequence (mathematical probability
and statistics) you may not see a connection between the PMF and PDF you
know for these families of distributions and (1). It may be that the usual
data are not the y and the usual parameter is not the 6 in (1), so one needs
to figure out what y and 0 are to get the log likelihood into exponential
family form (examples below, Sections 2 and 5).

A statistic y and parameter 0 that give a log likelihood of the form (1) are
called canonical or natural. The function c is called the cumulant function
of the family. See Section 1.6 below for more on cumulant functions.

1.2 Terminology

Following Barndorff-Nielsen (1978), we are using modern terminology
about exponential families.

An older terminology says “the exponential family” for the collection of
all of what the newer terminology calls exponential families.

e The old terminology says, for example, the family of Poisson distribu-
tions is in the exponential family.

e The new terminology says, for example, the family of Poisson distri-
butions is an exponential family.

The old terminology has nothing to recommend it. It makes the pri-
mary term — exponential family — refer to a heterogeneous collection of
statistical models of no interest in any application.

The new terminology describes a property of statistical models that im-
plies many other properties. It is a key concept of theoretical statistics.

1.3 Affine Functions

An affine function is what most people, including most statisticians, call
a linear function, but which mathematicians, at least when being pedantic,



do not. Starting in courses called “linear algebra” a linear function (also
called linear transformation) is a function f between vector spaces that
preserves the vector space operations, that is,

flz+y) = flx)+ fly), for all vectors z and y (3a)

flax) = af(z), for all scalars a and vectors x (3b)

The special case of (3b) when a = 0 says f(0) = 0, which most people think
linear functions do not have to satisfy.

What most people mean by linear function is a function whose graph is
flat. They are the scalar-to-scalar functions of the form

f(x) =a+ bz,
where a and b are scalars, and vector-to-vector functions of the form
f(x) = a+ Bz,

where a is a vector and B is a matrix. Mathematicians also need to discuss
these kinds of functions, so they give them a name: affine functions.

The relations between the two kinds of functions are (using linear in the
pedantic sense here)

e an affine function is a linear function plus a constant function, and

e a linear function is an affine function f satisfying f(0) = 0.

Your humble author likes to use linear in the pedantic sense and affine
for linear in the sloppy sense. Apologies for the pedantry.
1.4 Non-Uniqueness

The canonical statistic, canonical parameter, and cumulant function of
an exponential family are not unique.

e Any one-to-one affine function of a canonical statistic is another canon-
ical statistic.

e Any one-to-one affine function of a canonical parameter is another
canonical parameter.

e Any scalar-valued affine function of the canonical parameter added to
the cumulant function gives another cumulant function.



These changes cannot be done separately. Changing one requires changes
in the others to keep the form (1).

We usually do not worry about this. We fix one choice of canonical
statistic, canonical parameter, and cumulant function and say “the” canon-
ical statistic, “the” canonical parameter, and “the” cumulant function.

1.5 Non-Degeneracy
The PMF or PDF (2) of an exponential family are never zero. This

means all distributions in the family have the same support (more on this
later).

1.6 Cumulant Functions

Cumulant functions satisfy

(6) = () + log Ey {e?~} (4)

(equation (5) in Geyer, 2009). Whenever # is an interior point of their
domain, they also satisfy

Ey(y) = Ve(0) (5)
varg(y) = Ve(0) (6)
(Barndorff-Nielsen, 1978, Theorem 8.1), where, as in the likelihood handout,
e FE(y) denotes the vector having components F(y;),
e Vc¢(0) denotes the vector having components dc(6)/06;,
e var(y) denotes the matrix having components cov(y;, y;),
e and VZ2¢() denotes the matrix having components 82c(6)/96,;00;.

It is part of the assertion of Theorem 8.1 in Barndorff-Nielsen (1978) that
the derivatives exist whenever 6 is an interior point of the domain.

If there is an equality constraint on the parameter vector, so its compo-
nents are not separately variable, the derivatives in (5) and (6) do not exist
anywhere, but then we can sometimes use (4) to extend the domain of the
cumulant function, as described in the next section, so that derivatives do
exist.



1.7 Fullness and Regularity

In (4) consider # as fixed and 6 as variable, and let 6 vary over the entire
Euclidean space that contains the canonical parameter space, letting c(0)
have the value +00 at points 6 such that the expectation on the right-hand
side does not exist. Then define

O =1{6:cf) <o) (7)

This is called the effective domain of the cumulant function. We can extend
the exponential family to (7) by defining the PMF or PDF by

Fo(@) = Filw) U@ I —e(O) (@) (8)

at points 6 that were not in the originally given canonical parameter space.

We say an exponential family is full if its canonical parameter space is
(7). We say a full exponential family is regular if (7) is an open subset of
the Euclidean space where 6 takes values. Another name for the set (7) is
the canonical parameter space of the full exponential family.

For many exponential families (7) is the whole Euclidean space. But
not for all. Geometric, negative binomial, and two-parameter normal are
examples where (7) is not a whole Euclidean space.

Regularity is very important. Many of the desirable properties of expo-
nential families hold only for regular full exponential families. For example,
if the full family is regular, this means every canonical parameter value @ is
an interior point of the full canonical parameter space (7), and, consequently,
every distribution in the family has mean vector and variance matrix given
by derivatives of the cumulant function (5) and (6).

Fortunately, almost all exponential families that arise in applications are
full and regular. The only examples I know of that don’t are some models
for spatial point processes (Geyer and Mpgller, 1994; Geyer, 1999). Every
exponential family we will look at in this course is regular.

2 Examples I
2.1 Binomial
The binomial distribution has log likelihood
I(m) =xlog(m) + (n — ) log(1 — )

where z is the “usual” data, 7 is the “usual” parameter, and n is neither data
nor parameter but rather a constant. To get this into the form (1), assuming



the family is one-dimensional (which having only one parameter suggests),
we need to write this as a function of x (which will be the canonical statistic
y) times a function of 7 (which will be the canonical parameter §) minus a
function of 6 (the cumulant function). So isolate x

I() = z[log(m) — log(1 — )] + nlog(1l — )

= xlog <F> + nlog(l — )

1—m
and this tells us
e the canonical statistic is z,

e the canonical parameter is

0:10g<17_r7r), (9a)

e and the cumulant function is

c(0) = —nlog(l — ). (9b)
Of course (9b) doesn’t really make sense because it has 6 on one side and 7
on the other. We need to solve (9a) for 7 obtaining

ef

7T:1+€9

(10)
and plug this back into (9b) obtaining

c(0) = —nlog(l —m)

69
= —nlog <1 — 1—|—e‘)>

= -nlo 1
- Tnoe 1+ ef

= nlog (1 + 60)

Since this formula is valid for all 8, we see the binomial family is a regular
full exponential family whose canonical parameter space is the whole of
Euclidean space (one-dimensional Euclidean space in this case).



This change-of-parameter is so important that statisticians give it a name

logit(r) :10g<1iﬂ_> 0<m<l. (11)
(logit is pronounced “low-jit” with a soft “g”).

Note that 0 and 1 are not possible arguments of the logit function. We
get log(0) or division by zero, either of which is undefined. The logit func-
tion maps (0,1) — (—o00,+00). So the binomial family of distributions,
considered as an exponential family, has “usual” parameter space 0 < 7 < 1
and canonical parameter space —oo < 6 < +00).

This is a little surprising because the usual “usual” parameter space is
0 < 7 <1 because otherwise we have no parameter values to be maximum
likelihood estimates when we observe x = 0 or x = n. So exponential family
theory causes some trouble here. Much more on this subject later.

If we think about it a bit more though, this is just the non-degeneracy
property of exponential families (Section 1.5 above) at work. This is why
the degenerate distributions concentrated at + = 0 and = = n (for 7 = 0
and m = 1) cannot be included in the exponential family.

Summary For the binomial distribution
e the canonical statistic is z,
e the canonical parameter is 6 = logit(m),
e the canonical parameter space of the full family is —oco < 8 < +00,

e and the cumulant function is
c(8) =nlog(1l+ ee). (12)

2.2 Poisson

The Poisson distribution has log likelihood

Up) = zlog(p) — p

where z is the “usual” data and p is the “usual” parameter. To get this into
the form (1), assuming the family is one-dimensional (which having only one
parameter suggests), we need to write this as a function of x (which will be
the canonical statistic y) times a function of p (which will be the canonical
parameter #) minus a function of  (the cumulant function). Obviously,



e the canonical statistic is z,

e the canonical parameter is

0 = log(n),
which has inverse function
p=e,
e and the cumulant function is
c(0) =p=é.

Note that 0 is not a possible argument of the log function. The log
function maps (0, 4+00) — (—00,+00). So the Poisson family of distribu-
tions, considered as an exponential family, has “usual” parameter space
0 < p < +o00 and canonical parameter space —oo < 6 < 400).

The Poisson distribution for u = 0 is degenerate, concentrated at zero,
so by the non-degeneracy property (Section 1.5 above) it cannot be included
in the exponential family.

Summary For the Poisson distribution
e the canonical statistic is z,
e the canonical parameter is § = log(u),
e the canonical parameter space of the full family is —oco < 6§ < +00,

e and the cumulant function is

c(6) = €. (13)

2.3 Negative Binomial

The negative binomial distribution has PMF

-1
f($)=<r+x )p’”(l—p)x, x=0,1,... (14)
x
where x is the “usual” data and r and p are the “usual” parameters and

(7") ro(r—1)--(r—z+1)

T z!

10



If we consider both r and p to be unknown parameters, this is not an
exponential family. If we consider r to be known, so p is the only unknown
parameter, then it is an exponential family. So we consider r as known.

Then the log likelihood is

l(p) = rlog(p) + zlog(1 — p).
Obviously,

e the canonical statistic is ,

e the canonical parameter is

0 = log(1 — p),
which has inverse function
P = 1-— 69’

e and the cumulant function is
() = —rlog(p) = —rlog(1 — 69). (15)

The negative binomial distribution for p = 0 does not exist (p = 0 is
not an allowed parameter value). The negative binomial distribution for
p = 1 does exist but is degenerate, concentrated at zero. So this degenerate
distribution cannot be included in the exponential family (by Section 1.5
above).

The log function maps (0,1) — (—00,0). So the negative binomial family
of distributions, considered as an exponential family, has “usual” parameter
space 0 < p < 1 and canonical parameter space —oo < 6 < 0).

We are tempted to use (4) to extend the family, but if we try, we find that
(4) gives us the same cumulant function we already have, so the negative
binomial family as we have described it is already a regular full exponential
family.

Summary For the negative binomial distribution

e the canonical statistic is ,
e the canonical parameter is 6 = log(1 — p),
e the canonical parameter space of the full family is —oco < 6 < 0,

e and the cumulant function is

c(0) = —rlog(1l —€%) (16)

11



Commentary This provides an example where the canonical parameter
space of the full family is not the whole Euclidean space (in this case one-
dimensional Euclidean space).

2.4 Multinomial
The multinomial PDF is

fl@) = (Z) ﬁwff

i=1
where x = (z1, ..., xy) is the vector of cell counts of a contingency table (the
“usual” data vector), where m = (71, ..., 7) is the vector of cell probabilities

(the “usual” parameter vector), where n is the sample size (the sum of the
cell counts), and where (;L) is a multinomial coefficient. The log likelihood
is

k
I(m) = x;log(m)
=1

2.4.1 TryI

It looks like we have exponential family form with the canonical statistic
vector z, canonical parameter vector § having components 6; = log(m;), and
cumulant function the zero function.

As we shall eventually see, this is correct but misleading. If we use (5)
and (6) on the zero function we get that y has mean vector zero and variance
matrix zero, which is incorrect. But we are not allowed to use those formulas
because the components of 8, as we have defined them in this section, are
not separately variable: the components of 7 are constrained to sum to one.
And that translates to a complicated nonlinear constraint on the canonical

parameters
k
d =1, (17)
i=1

That looks annoying. So we try something else.

2.4.2 Try II

If we eliminate one of the components, say 7, we get log likelihood

k—1 k—1
(7, .., T—1) = a1 log (1 — Zm) + Zmz log(m;)

i=1 =1

12



But since we are trying to put this in exponential family form in which
the canonical statistic vector and canonical parameter vector must have the
same dimension, we have to also eliminate the corresponding component of
x. We can do that because the components of = are constrained to sum to
n. If we use that fact to eliminate x; we get

k—1 k—1 k—1
miy oo Met) = (n - le> log (1 - Zm) + sz log(m;)
i=1 i=1 i=1
k—1 k—1 k—1
=nlog <1 — Zm) + sz [log(ﬂ'i) — log (1 — Zm)]
i=1 i=1

=1

k—1 k—1
-
=nlog|1— m | + zilog | —————

and this has exponential family form with
e canonical statistic vector (z1,...,Tk_1),

e canonical parameter vector (0y,...,60,_1), where

T
0; =log | ————— 18
g<1—2§=_117ri> 1)

e and cumulant function

k—1
0(91, R 79k71) = —nlog <1 - Z 7Ti> > (19)
=1

except that (as usual) this doesn’t make sense with 0’s on the left-hand side

and 7’s on the right-hand side, so we have to solve for the 7’s in terms of the

@’s and plug in. Reintroduce 7, = 1 — Ef;ll m; and plug into (18) obtaining

or A
o
Tk
or
m; = mpedi (20)



and this also holds for i = k if we define 6 = 0 (which we may do because
there was no definition of 0y before). Since the 7’s must sum to 1, summing
(20) gives

k k—1
1 :ﬂ'kzeei = Tk <1+Z€9i)
i=1 =1

and
1

e
and (plugging this back into (20))

Tk

el

1Y len

Uy

and (plugging this back into (19))

k—1 0.

e 1
c(01,...,0k_1) =—nlog | 1— E R
1"‘2?:11 el

i=1
k—1
=nlog (1 + 269’)
i=1

I don’t know what you think of this, but I think it is horribly messy. Also
arbitrary. Clearly, which 7; we choose to eliminate is arbitrary. But we also
know (Section 1.4 above) that there is a lot more arbitrariness than that in
choosing canonical statistic, canonical parameter, and cumulant function.

2.4.3 Try III

Let’s try again, this time not eliminating parameters or statistics, and
using (4) to define the cumulant function. Let v in (4) be the canonical
parameter vector for the multinomial distribution having probability vector
p = (p1,...,pk). Let S denote the sample space of the multinomial distri-
bution: the set of all vectors x having nonnegative integer components that

14



sum to n. Then (4) says

c(0) = c(ip) +log » _ etmf=v) . ()]ﬁ[

€S

— () +log 3 T w0 ()Hp

z€s

k

c w) + IOgZ Helz‘(eiwi)] . (Z) szxz
i=1 i=1

zeS

= () +1log Y (Z) pr’ wil0imv)

zeS

We use the multinomial theorem to evaluate the sum over the sample space.
If we take v to be the vector with all components zero and p to be the vector
with all components equal to 1/k, which we are free to do because 1 and p
were arbitrary, we get

k
c(0) = c(v) + nlog < Zeei>
= c(1) +nlog <]1 Z €9¢>

k
= ¢(¢) — nlog(k) + nlog (Z 691')

i=1

and, since we are free to choose ¢(1)), we can choose it to cancel the —n log(k),

finally obtaining
k
c(0) = nlog <Z 69i>

=1

T =

15



But now we have lost track of what the usual parameters are in this
parameterization. We use (5) to find them again.

Oc(0 0i
Bla) = nmy = 20 _
i >img €%
SO ;
e’i
’7Tj = —k (21)
D ict el
2.4.4 Summary
Try II For the multinomial family of dimension k and sample size n
e the canonical statistic is the vector (z1,...,x_1) whose components
are all but one of the category counts,
e the canonical parameter is the vector (01,...,0,_1), where
0; = log <7Tl> , (22a)
Tk

e the canonical parameter space of the full family is the whole of (k—1)-
dimensional Euclidean space,

e and the cumulant function is
k—1
c(0) = nlog (1 + Z 60’) (22b)
i=1

Binomial Distribution The binomial distribution is the k = 2 case of the
multinomial distribution when the “try II” parameterization is used. If 1 is
the number of successes and x5 is the number of failures, then we eliminate
x9 from the canonical statistic vector, just leaving the scalar variable x1.
Because the 7’s sum to one we have my = 1 —m; and plugging this into (22a)
gives the analogous equation for the binomial distribution (9a). Also (22b)
is the same as the analogous equation for the binomial distribution (12).

Try IIT For the multinomial family of dimension k£ and sample size n
e the canonical statistic is the vector x of category counts

e the canonical parameter is the vector 6,

16



e the canonical parameter space of the full family is the whole of k-
dimensional Euclidean space,

e the cumulant function is

k
c(f) =nlog (Z 60i> (23)

i=1

Commentary This provides an example where we have three different
ways to put the distribution in exponential family form and we can choose
the one we like.

Try I seemed simple at first but is complicated by the nonlinear con-
straint on the parameters (17). Try II is ugly but simple to use. Try III is
elegant but a little more complicated.

Try I is the special case of Try III where we impose the constraint (17).
Try II is the special case of Try III where we impose the constraint 6y = 0
and then don’t consider 6, part of the canonical parameter vector and don’t
consider zj part of the canonical statistic vector.

Try IIT is complicated by the fact that the mapping between canonical
parameters and usual parameters (21) is not a one-to-one mapping. If one
adds the same constant to all of the 6; on the right-hand side of (21), then it
does not change the left-hand side. In order to get a one-to-one relationship
we need to impose a constraint on the canonical parameters. We can choose
the constraint to be anything convenient. We can use the ones already
mentioned, (17) and 0 = 0. But we can also use others.

Try III is important because it keeps all the cell counts as components
of the canonical statistic vector. This makes it much easier to reason about
models. In the complicated exponential family models that arise in aster
models (Geyer, Wagenius, and Shaw, 2007; Geyer, 2015), it is essential that
the canonical statistic vector be the full vector of counts. Thus we have to
use the “try III” parameterization.

We can explain the difference between try II and try III as follows. In
try IT we think that getting a one-to-one correspondence between usual
parameters and canonical parameters is so important that we do it right
away and make all the math and other reasoning about models very messy.
In try III we think that getting a one-to-one correspondence is not important,
and we do not allow it to mess up the math and other reasoning. We can
impose a constraint to get one-to-one correspondence whenever we want.

17



3 Independent and Identically Distributed

If we observe data independent and identically distributed (IID) from
any statistical model, the joint distribution is the product of marginal dis-
tributions

folzr,... zn) = [ [ folas)
=1

so the likelihood is also a product
L0(0) = T fole)
i=1
and the log likelihood is a sum
1(6) =3 Tog o).
i=1

When we apply this to exponential families, the log likelihood is (1) with
y changed to y; and summed

Thus we see that IID sampling produces a new exponential family and

e the canonical statistic is ) . ; yi,
e the canonical parameter is 6,

e and the cumulant function is ne(0).
or

e the canonical statistic for sample size n is the sum of the canonical
statistics for the sampled individuals,

e the canonical parameter is the same for all sample sizes,

e and the cumulant function for sample size n is n times the cumulant
function for sample size one.

This explains many “addition rules” for distributions (sum of IID binomial
is binomial, sum of IID Poisson is Poisson, sum of IID normal is normal,
and so forth for other exponential families).

18



4 Sufficiency

4.1 Definition

Fisher (1922) invented the concept of sufficiency and sufficient statistics.
A scalar or vector statistic (function of the data that does not depend on
parameters) is sufficient if the the conditional distribution of the whole data
given that statistic does not depend on parameters, in notation, if w is the
whole data and y is the statistic, then y is sufficient if the distribution of w
given y does not depend on the parameters.

4.2 The Sufficiency Principle

Fisher argued that the sufficient statistic extracts all of the information
in the data relevant to estimating the parameters. If y is sufficient and w is
the whole data and we write joint equals marginal times conditional

folw,y) = f(w | y)fo(y),

only the marginal depends on the parameters. So Fisher argued that we

should use that marginal to estimate parameters, because the conditional

does not involve the parameters and hence has nothing to do with them.

Fisher’s argument was later dubbed the sufficiency principle: statistical

inference should only depend on the data through the sufficient statistics.
The likelihood may be written

L(0) = foly)

(as usual we may drop multiplicative terms from the likelihood that do
not contain parameters). Thus likelihood inference and Bayesian inference
automatically obey the sufficiency principle. It is only ad hoc methods of
estimation that may violate it.

4.3 The Neyman-Fisher Factorization Criterion

The definition of sufficient statistics is hard to apply (you have to factor
the joint distribution into marginal times conditional), but the Neyman-
Fisher factorization criterion (Fisher, 1922; Neyman, 1935; Halmos and
Savage, 1949) is much easier to apply. This says a vector statistic is suffi-
cient if and only if there is a version of the likelihood (possibly obtained by
dropping some multiplicative factors that do not contain the parameters) or
log likelihood (possibly obtained by dropping some additive factors that do
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not contain the parameters) that depends on the whole data only through
that statistic.

From (1) and the Neyman-Fisher factorization criterion we see that the
canonical statistic vector of an exponential family is always a sufficient statis-
tic vector. From Section 3 we see that the dimension of the sufficient statistic
vector does not change as the sample size changes. This is not automatic.
There are statistical models that have no sufficient statistic vector of smaller
dimension than the whole data (the Cauchy location family, for example).

4.4 The Pitman-Koopman-Darmois Theorem

The so-called Pitman-Koopman-Darmois theorem (Pitman, 1936; Koop-
man, 1936; Darmois, 1935) says this property exponential families have that
in IID sampling the dimension of the sufficient statistic vector does not
change as the sample size changes actually characterizes exponential fami-
lies under certain side conditions.

Without side conditions the theorem simply isn’t true. The uniform
(0, 8) statistical model has sufficient statistic max(x,...,z,), which is one-
dimensional for all n, but this model is not an exponential family. The
theorem rules this out by a side condition that requires the support of the
distributions in the family to not depend on the parameter.

Pitman, Koopman, and Darmois each independently proved that under
this side condition the only continuous statistical models that have suffi-
cient statistics whose dimension does not depend on the sample size in 11D
sampling are exponential families.

There are analogs of the Pitman-Koopman-Darmois theorem for discrete
data but they add ugly and unmotivated side conditions to get the theorem.
They are what my brother-in-law’s thesis advisor called “ham and eggs the-
orems” (if we had some ham, we’d have ham and eggs, if we had some eggs).
Nevertheless, Pitman-Koopman-Darmois theory did kick off the subject of
exponential families.

4.5 Linear Models

To a statistician, the term linear model (LM) means simple linear regres-
sion or multiple linear regression with the usual assumptions (IID normal
errors having mean zero). This includes analysis of variance (ANOVA),
which is just multiple linear regression when all predictors are categorical.
More precisely, these usual assumptions are

yi = 1+ Poxit + Bazia + - + BpTip—1 + € (24)
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where the observed data for the i-th individual comprises
e y; (response variable) and
® T;1, ..., Tjp (predictor variables),

where

e ¢; is an unobserved random variable (error), the error variables for all
individuals being assumed IID normal with mean zero,

and where
® 1, ..., Bp are unknown parameters,
e and the error variance is another unknown parameter.

In the original theory (Galton, 1886; Galton and Dickson, 1886) that gave
the methodology its name “regression” and the phenomenon “regression

towards the mean” the individuals were assumed IID with (y;, i1, ..., Zip)
a multivariate normal random vector. Then the conditional distribution of
Yi given x;1, ..., Tj is normal with mean

B+ Boxir + B3xio + - + Bpip-1

(for some parameters 1, ..., (p) and variance that does not depend on
Zil, ..., Tip, that is, the regression equation (24) holds. Galton and Dick-
son (1886) showed this only for the p = 1 case, but this is now known to
be a theorem about the multivariate normal distribution (Anderson, 2003,
Theorem 2.5.1) that holds for general p.

But later authors realized that only the conditional distribution mat-
tered. It does not matter what the marginal distribution of z;1, ..., x;p is
if statistical inference is done conditionally. This also allows for the case
where some or all of the predictor variables are not random but fixed by
experimental design. For example, in ANOVA z;1, ..., z;, are all dummy
variables that indicate categories, and they aren’t random. So modern prac-
tice is to assume nothing about the marginal distribution of z;1, ..., x;, or
even that they are random. The only assumptions are that (24) holds with
the e; IID mean-zero normal.

It is important to understand that it is called a linear model because (24)
is linear in the 8’s not because it is linear in the z’s. In fact, when nonlinear
functions of the data are used for predictors, as in polynomial regression
when

yi = B1 + Bawi + Baxi + - + Bpl T + e
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it is still a linear model (because it is linear in the 8’s). In fact, one can (as
in polynomial regression) make up new predictor variables that are functions
of the originally given predictor variables. We do this all the time (dummy
variables corresponding to categorical predictors, “interaction” terms, and
lots more). So %1, ..., Zj don’t have to be the originally given data, they
can be any made-up functions of the originally given data.

But (24) is very unwieldy notation. The notation becomes much simpler
and also much more powerful if we shift to matrix notation. We do this
in two steps. First we notice that in (24) we need not treat 1 as special,
because (24) is the special case of

yi = Brxin + Pozio + Baxis + -+ + BpTip + € (25)

where x;; = 1 for all 7. Since (25) is more general than (24) we shift to that.
Now we shift to matrix notation. If

e y is the random vector having components y;,

e M is the non-random matrix having components z;; (nonrandom be-
cause the inference is conditional on the x;;),

e (3 is the non-random (parameter) vector having components [3;,

e ¢ is the random vector having components e;,

then (25) can be written
y=Mp+e. (26)

As an example of the power of matrix notation the maximum likelihood
estimate (MLE) of 5 can be written

B=(MTM) My (27)

but we won’t even give a reference for that (it can be found in any book
on linear regression) because it is irrelevant to this course. For us, linear
models are just a step on the way to generalized linear models (GLM) and
exponential family canonical affine models (about which more below). The
only point (for us) of (27) is that you couldn’t express it without matrix
notation. Other advantages of matrix notation will arise as we go along.
The matrix M is called the model matriz by some statisticians and the
design matriz by other statisticians. In a designed experiment in which none
of the predictors are random, rather they are all fixed by the experimental
design, M incorporates everything about the design that is relevant to sta-
tistical data analysis (hence the name “design matrix”). In an observational
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study in which some of the predictors may be random, but are treated as
fixed in the statistical analysis (because conditioning on a variable is the
same as treating it as fixed) and nothing was “designed,” the name “model
matrix” seems more appropriate. Your humble author being a computer
nerd, always says “model matrix” because that is what R calls it (the R
function model .matrix is what turns R formulas into model matrices; ordi-
nary users never call this function, but it is called inside R functions like 1m
and glm to do this job).

4.6 Canonical Affine Submodels

The notion of canonical affine submodels of exponential families was only
proposed recently (Geyer, et al., 2007) but in hindsight is only a general-
ization of generalized linear models like logistic regression (Agresti, 2013,
Chapter 5) and Poisson regression with log link (Agresti, 2013, Section 4.3)
and of log-linear models for contingency tables (Agresti, 2013, Chapters 9
and 10) that had long been used.

Geyer, et al. (2007) is about a class of exponential family models they
call “aster models” that are like generalized linear models except that they
allow

e different components of the response vector are allowed to have differ-
ent families, some Bernoulli, some Poisson, some normal, etc.,

e and components of the response vector that are measurements on the
same individual can be dependent with the dependency structure spec-
ified by a graphical model.

But we don’t want to talk about aster models now (maybe another handout
if there is time). We just wanted to explain why generalized linear models
had to be generalized.

A canonical affine submodel of an exponential family arises when the
canonical parameter vector of an exponential family is modeled affinely

0=a+ Mg (28)
where
e 0 is the canonical parameter of the full model,
e ¢ is a non-random vector called the offset vector,

e M is a non-random matrix called the model matriz,
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e and [ is the submodel parameter vector.

The name comes from 6 being the canonical parameter and it being an affine
function of j3.

When a = 0, which is the usual case, we say canonical linear submodel
because then 6 is a linear function of .

The R functions 1m and glm have an offset argument that, when used,
would change the name to “affine model” or “generalized affine model” if
one wanted to be pedantic, but nobody says this. Since offsets are very
rarely used, this doesn’t matter much. But the “linear” in LM and GLM is
pedantically correct for models without offsets and sloppily correct (using
“linear” in the sense most people use it) even with offsets.

Now we come to the theory of canonical affine submodels, which is very
simple. Plugging (28) into (1) we get the submodel log likelihood

I(B) = (y,a+ MpB) — c(a+ MpB)
=y"(a+ MB) — c(a+ MB)
=y a+y"MB—cla+ MB)
=y a+BTM"y — c(a+ MB)
=yTa+ (M"y)"B - cla+ MB)
= (y,a) + (M"y, B) — c(a + MB)

and we are allowed to drop the additive term that does not contain the
parameter [ obtaining

1(B) = (M"y,B) — c(a+ MP) (29)

which we see again has exponential family form, hence the submodel is itself
an exponential family with

e canonical statistic vector M7y,
e canonical parameter vector [,

e and cumulant function defined by
Csub(ﬁ) = C(a + Mﬂ) (30)

The reader may be thinking, so what? But as we shall see, exponential
family theory is very powerful. It has a lot of consequences we haven’t
even hinted at yet. For now all we know is that M7y, being the submodel
canonical statistic vector, is a sufficient statistic vector for the submodel. (It
contains all of the information in the whole data that is useful for estimating

B

24



4.7 Sufficient Dimension Reduction

There is a lot of local interest in the School of Statistics at the Uni-
versity of Minnesota in the “sufficient dimension reduction” program (Cook
and Weisberg, 1991; Cook, 1998; Cook and Adragni, 2009). This is not the
place to explain that. We just want to remember that the original suffi-
cient dimension reduction was Fisher’s notion of a sufficient statistic (which
Cook and co-authors are also using) and Koopman-Pitman-Darmois theory
which says that exponential families have the sufficient dimension reduction
property in IID sampling.

In exponential family contexts, the fact that the submodel canonical
statistic vector is sufficient for a canonical affine submodel explains why lin-
ear models, some generalized linear models (logistic regression and Poisson
regression with log link, for example), and log-linear models for categorical
data also do “sufficient dimension reduction.”

Of course, the point of the sufficient dimension reduction program of
Cook and co-authors is to do sufficient dimension reduction nonparamet-
rically without assuming a particular parametric submodel is correct. So
these notions are a bit different. But they are very closely related.

5 Examples II

5.1 Logistic Regression

Suppose we have regression-like data, each individual has a response y;
and a bunch of predictors z;1, ..., x4 (possibly some originally given and
some made up) and the y; are all Bernoulli (zero-or-one-valued). As with
linear models, we collect the y; into a vector y and collect the predictors
into a model matrix M.

Now, however, the “response equals mean function plus error” formalism
used in linear models (equations (24), (25), and (26) above) makes no sense
for two reasons.

e Modeling means linearly makes no sense because they are bounded.
Write pu; = E(y;). Then 0 < p; < 1. But if we collect the means into
a vector p and model them as yu = M S, we will get values of u that
violate the constraints.

One might think there would be some mathematical magic that could
make this idea work (constrained optimization perhaps), but there is
none found in the literature, which suggests it is a hopeless idea.
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e The “means plus error” is also bad because the “errors” y; — u; do not
have any distribution with well studied properties.

In short, to make progress, we need to ditch two key ideas of linear models
e response equals means plus error,
e and means are linear functions of the parameters.

What to do? Exponential families and sufficient dimension reduction to
the rescue. The distribution of the response vector y is exponential family
(Bernoulli is binomial with sample size one, and we have seen that binomial
is exponential family (Section 2.1) if we assume (as in LM) that components
of the response are independent (or conditionally independent given the pre-
dictors if we are fussy about thinking of the predictors as possibly random
variables that we are treating as fixed by conditioning on them) then the
joint distribution of the y; is the product of the marginals and the distribu-
tion of the whole vector y is exponential family. Introducing the canonical
parameters

0; = logit(u;), for all 7,
the log likelihood is

n
l(@) = Z[yzez — C(@Z)]
i=1
where ¢ is the cumulant function for the Bernoulli family (the case n =1 of
equation (12)), and this has exponential family form

1(0) = (y,0) — c(0)

where we collect the 6; into a vector 6 and define

=1

using what mathematicians call “abuse of notation” in that we are using the
same letter ¢ for two different functions; on the left-hand side it is a function
of the vector 6, but on the right-hand side it is a function of the scalar ;.

Canonical linear models § = M (when there is no offset, the usual case)
or canonical affine models # = a + M (when there is an offset) have the
sufficient dimension reduction property.

This idea is what is usually called “logistic regression” for reasons that
will be explained when we get to GLM theory.

This is a really good idea. These models work great and are widely used.
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5.2 Poisson Regression with Log Link

Apply the same ideas to Poisson data. Now we assume the y; are inde-
pendent (or conditionally independent given the predictors if being pedantic)
Poisson.

We get exactly the same story as in the preceding section except the
canonical parameters for the Poisson

0; = log(u;), for all 4, (31)

are different from those for the Bernoulli, as are the cumulant functions
(equation (13)). Everything else is the same as in the preceding section.
Canonical linear submodels and canonical affine submodels have the suf-
ficient dimension reduction property. And this too is a really good idea.
These models work great and are widely used.

The term “log link” won’t make sense until we get to GLM. The “log”
refers to the log in (31). The “link” is a term of GLM theory.

6 Maximum Likelihood Estimation

Maximum likelihood estimation is much nicer in exponential families
than in general statistical models. The reason is that cumulant functions are
convex functions (Barndorff-Nielsen, 1978, Theorem 7.1) and consequently
log likelihoods are concave functions. Moreover, they are strictly convex
and strictly concave (respectively) if the canonical statistic vector is not
concentrated on a hyperplane, that is, if the components of the canonical
statistic vector do not satisfy a linear constraint that holds with probability
one (again Barndorff-Nielsen, 1978, Theorem 7.1).

This is not the place to define convexity and concavity. There are many
equivalent characterizations (Rockafellar and Wets, 1998, Theorems 2.13
and 2.14). We will just explain the important consequences.

6.1 Identifiability

A parameterization is identifiable if each different parameter value cor-
responds to a different distribution. Every parameterization we have talked
about in this document is identifiable except for one (the “try III” parame-
terization for the multinomial).

Identifiability in full exponential families is fairly simple, described by
Theorem 1 in Geyer (2009), which we condense.
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Theorem 1. For a full exponential family with canonical statistic vector y,
canonical parameter vector 6, canonical parameter space ©, and log likelihood

L,

(a) the canonical parameterization fails to be identifiable if and only if
there exists a nonzero vector 6 such that (y,d) is constant,

(b) and this happens if and only if 8 and 6 + rd correspond to the same
distribution for all real r and all § € O,

(¢c) and this happens if and only if [(0 +rd) is a constant function of r for
all real v and all 6 € ©.

Any vector § satisfying these conditions is called a direction of constancy
of the family by Geyer (2009).

Every parameterization discussed in this document is identifiable except
one. The try III parameterization of the multinomial distribution is not
identifiable by part (a) of the theorem because of the constraint

k
> vi=n,
i=1
which can be written in vector notation

<y7 5> =n,

where § = (1,1,...,1). So this ¢ is a direction of constancy of the multino-
mial family of distributions with the “try III” canonical parameterization.

6.2 Mean-Value Parameters
For a regular full exponential family, use (5) to define
= Ey(y) = Ve(0). (32)
The vector p is called the mean-value parameter vector.

Theorem 2. The mean-value parameterization of a regqular full exponential
family is always identifiable: every distribution in the family has a mean
vector, and different distributions have different mean vectors.
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A proof is given in Appendix A.

Let us look at mean-value parameter for canonical affine submodels (Sec-
tion 4.6). In this context, it helps to introduce the name saturated model
for the original model that the submodels are submodels of. Recall that the
saturated model canonical parameter vector 6§ and the submodel canonical
parameter [ are related by (28).

By the multivariable chain rule

aCsub(ﬁ
28, 85, Z 09 aﬁg XZ:M i (33)

where m;; are the components of the model matrix M. And this can be
written in matrix notation

vCsub(ﬁ) = MTH‘

Of course, this has to turn out this way. We know the canonical statistic of
the submodel is M Ty, so its mean has to be M7 1 by linearity of expectation.

Let us denote the submodel mean-value parameter by 7. Then the rela-
tions between the submodel and saturated model parameters are

0=a+ Mp
r=M"pu

6.3 Canonical versus Mean-Value Parameters
A quote from my master’s level theory notes

Parameters are meaningless quantities. Only probabilities and
expectations are meaningful.

Of course, some parameters are probabilities and expectations, but most
exponential family canonical parameters are not.
A quote from Alice in Wonderland

‘If there’s no meaning in it,” said the King, ‘that saves a world
of trouble, you know, as we needn’t try to find any.’

Realizing that canonical parameters are meaningless quantities “saves a
world of trouble.” We “needn’t try to find any.”

We have to have canonical parameters to because PMF and canonical
affine submodels are specified in terms of them. But we want our interpre-
tations to be in terms of mean-value parameters, since those are the ones
directly related to probabilities and expectations.
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This is even more obvious when we specify canonical linear submod-
els using the R formula mini-language and we have categorical predictors.
There are a great many arbitrary choices for the canonical parameters of a
canonical linear submodel (Section 6.7.11 below). But expected cell counts
(mean-value parameters) do not change so long as the submodel is the same.

6.4 Maximum Likelihood

Theorem 3. For a regular full exponential family, MLE need not exist,
but if they do they are points where the first derivative vector of the log
likelihood is zero. Moreover, every point where the first derivative vector of
the log likelihood is zero is an MLE. If the canonical parameterization is
identifiable, then the MLE for the canonical parameter vector is unique.
MLE for the mean-value parameter are always unique. If the canonical
parameterization is not identifiable and 61 and b5 are distinct MLE for the
canonical parameter, then 01 — 0y is a direction of constancy. Consequently,
different MLE always correspond to the same probability distribution.

This is Corollary 2 in Geyer (2009).
With the log likelihood given by (1), the first derivative vector is

where in the last line we need to think of the mean-value parameter as a
function of the canonical parameter. Setting this equal to zero and solving
gives

fi=1y (34)

This says

the MLE for the mean-value parameter (/i) is the observed value
of the canonical statistic vector y

or, for short,
observed equals expected.

This is the most important property of maximum likelihood. It is the key
to interpreting MLE for regular full exponential families.
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Let us look at maximum likelihood for canonical affine submodels (Sec-
tion 4.6). By (33)

View(B8) = M (y —p) = M7y — 7. (35)

Again the MLE is a point where the first derivative vector of the log likeli-
hood is zero, so now we have

F=MTp=M"y (36)
and this is

a canonical affine submodel of a regular full exponential family is
itself a regular full exponential family, so the MLE for its mean-
value parameter (M7 i) is the observed value of its canonical
statistic vector M1y

and we still say “observed equals expected” for short.

Equation (36) is not useful for computation. The PMF of the family
are defined in terms of the canonical parameters (8). So we need MLE
for canonical parameters, and the only way to find them is, in general, to
maximize the log likelihood.

But “observed equals expected” is the key to interpreting MLE for reg-
ular full exponential families. It is the only simple property the MLE have.
In regard to interpreting MLE, the mean-value parameters are meaningful
and the canonical parameters meaningless.

6.5 Fisher Information

Applying the multivariable chain rule again to (33) gives

ZZ ) 90; 99, 920
86]86k ae 9 98, 0B ae aﬁjaﬂk

And this can be written in matrix notation
VZesub(8) = MT[V2e(0)| M
Remembering the formula for Fisher information

1(0) = —B{V*1(0)}
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we see that for exponential families we have

VIi(#) =y —Ve(0)
V3(0) = —V?¢(9)

and expectation of a constant is that constant, so
1(9) = V3¢(6)

the Fisher information matrix for the canonical parameter is the second
derivative matrix of the cumulant function. Using our work above on sub-
models, we see that

I(3) = MTI(0)M (37)

where we are indulging in “abuse of notation” in using the same letter for
two different functions. Here I(f) is the Fisher information matrix for the
submodel canonical parameter and () is the Fisher information matrix for
the saturated model canonical parameter. Perhaps it would be better to
write

Isub(ﬁ) = MTlsat(e)M

and we are also assuming that 6 and [ are related by (28), that 6 and
are values of the saturated model and submodel canonical parameters that
correspond to the same distribution.

For the canonical parameter vector of a regular full exponential family
there is no difference between observed and expected Fisher information,
because observed Fisher information is already nonrandom.

Now we (or the computer) are ready to do any form of likelihood infer-
ence. We know the log likelihood and Fisher information, and everything
we want to do is a function of them (Wilks, Rao, Wald hypothesis tests and
confidence intervals).

6.6 Sufficient Dimension Reduction Revisited

Any one-to-one function of a sufficient statistic vector is another suffi-
cient statistic vector. Thus if we are using identifiable parameterizations,
MLE of all parameters are sufficient statistic vectors. So are other one-to-
one functions of any of the sufficient statistic vectors we know.
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6.7 Examples 111
6.7.1 Data

We use the example data from Table 2.6 in Agresti (2013) which is about
death penalty verdicts in court cases cross-classified by race of victim and
race of defendant. Rather than put the data in a table the way Agresti does,
we put them in the form that the R function glm likes. For binomial data,
the response is specified “as a two-column matrix with the columns giving
the numbers of successes and failures” (quoted from help(glm)). Here we,
perhaps insensitively, have coded the first column in Agresti’s table as “suc-
cess” and that happens to be death penalty = "yes". Mathematically, it
doesn’t matter which we call success and which failure so long as we keep
track of which is which. The categorical predictors victim and defendant
are vectors of class factor, as is usual for regression on categorical variables.

victim <- factor(rep(c("white", "black"), each = 2))

defendant <- factor(rep(c("white", "black"), times = 2))

deathpenalty <- matrix(c(53, 11, 0, 4, 414, 37, 16, 139),
ncol = 2, dimnames = list(NULL, c("yes", "no")))

We check that our data matches the data in Agresti (2013).

data.frame(victim, defendant, deathpenalty)

##  victim defendant yes no

## 1 white white 53 414
## 2 white black 11 37
## 3 black white 0 16
## 4 Dblack black 4 139
6.7.2 Fit

Now we can try a logistic regression.

gout <- glm(deathpenalty ~ victim + defendant,
family = binomial, x = TRUE)

gout.summary <- summary(gout)

gout . summary

33



##

## Call:

## glm(formula = deathpenalty ~ victim + defendant, family = binomial,
## x = TRUE)

##

## Deviance Residuals:

## 1 2 3 4

## 0.02660 -0.06232 -0.60535 0.09379

##

## Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -3.5961 0.5069 -7.094 1.30e-12 **x*
## victimwhite 2.4044 0.6006 4.003 6.25e-05 *x*x
## defendantwhite -0.8678 0.3671 -2.364 0.0181 =*
#H#t ———

## Signif. codes:

## 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

##

## (Dispersion parameter for binomial family taken to be 1)
##

## Null deviance: 22.26591 on 3 degrees of freedom
## Residual deviance: 0.37984 on 1 degrees of freedom
## AIC: 19.3

##

## Number of Fisher Scoring iterations: 4

This is an example of logistic regression with response vector having
dimension four and model matrix

modmat <- gout$x
modmat

##  (Intercept) victimwhite defendantwhite

## 1 1 1 1
## 2 1 1 0
## 3 1 0 1
## 4 1 0 0
## attr(,"assign")

## [1] 0 1 2

## attr(,"contrasts")
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## attr(,"contrasts")$victim
## [1] "contr.treatment"

##

## attr(,"contrasts")$defendant
## [1] "contr.treatment"

6.7.3 Observed Equals Expected

Now we want to check “observed equals expected” (it must check, of
course, unless the R function glm is buggy, which we don’t expect — we
just want to see for ourselves).

y <- deathpenalty[ , "yes"]

n <- rowSums(deathpenalty)

mu <- predict(gout, type = "response")
y

## [1] 53 11 0 4

## [1] 467 48 16 143
mu

## 1 2 3 4
## 0.11310026 0.23296207 0.01138621 0.02669805

What the R function glm is calling mean values obviously aren’t. They
appear to be probabilities rather than means. That’s right. Quoting from
help(predict.glm)

type: the type of prediction required. The default is on the scale
of the linear predictors; the alternative "response" is on the
scale of the response variable. Thus for a default binomial
model the default predictions are of log-odds (probabilities
on logit scale) and type = "response" gives the predicted
probabilities.

So we need to multiply u = np
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mu <- n * mu
and now we check

all.equal(t(modmat) %#*% mu, t(modmat) %*% y)

## [1] TRUE

we use the R function all.equal, which allows for small error due to
inexactness of computer arithmetic, to compare “real” numbers in the com-
puter (understanding that the computer’s “real” numbers are not real real
numbers).

We see the fits from the R function glm with family = binomial and
the default link, which is "logit", do indeed satisfy the observed equals
expected property. And what are the elements of the submodel canonical
statistic MTy? Obviously

e total number of death-penalty verdicts

e total number of death-penalty verdicts when victim was white

e total number of death-penalty verdicts when defendant was white
Subtracting either of the latter two from the first gives

e total number of death-penalty verdicts when victim was black

e total number of death-penalty verdicts when defendant was black

So observed and (MLE estimates of) expected for these quantities are also
equal. And subtracting any of these from the corresponding sample sizes
(which are considered non-random for binomial GLM) gives

e total number of non-death-penalty verdicts

e total number of non-death-penalty verdicts when victim was white

e total number of non-death-penalty verdicts when defendant was white
e total number of non-death-penalty verdicts when victim was black

e total number of non-death-penalty verdicts when defendant was black

So observed equals expected for these quantities too.
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6.7.4 Wald Tests

The printout of the R function summary.glm gives the P-values for (two-
tailed) Wald tests of null hypotheses that the various parameters are zero.
The Wald test comparing this model (alternative hypothesis) with its sub-
model that sets the submodel canonical parameter named victimwhite to
zero says this parameter is highly statistically significant (P = 6.247 x
1075) and the analogous test for the submodel canonical parameter named
defendantwhite says this parameter is statistically significant (P = 0.0181).
The other parameter is uninteresting.

Of course, as sophisticated statisticians, we all know that correlation
is not causation and regression isn’t either. Since this is not data from a
controlled experiment, it only shows association not causation. But what
the P-values do say is that if we dropped the predictor variable victim
from the model, that model would not fit the data as well. And similarly
for dropping defendant.

Why there were statistically significantly more death penalty verdicts in
these data when the victim was white and statistically significantly fewer
death penalty verdicts in these data when the defendant was white is some-
thing these data cannot answer. Given American history, one suspects racial
prejudice, but by who, when, or where is not something these data say any-
thing about. Nor is it even certain, from these data, that that is the causal
explanation. Correlation is not causation even when you don’t have a story
to explain why not.

We should also comment about, what is again obvious to us as sophisti-
cated statisticians, that these procedures are approximate and that asymp-
totic distributions are nearly correct for large n in terms of absolute error
(lapproximate — exact|) not relative error (|approximate — exact|/|exact|).

A number like P = 6.247 x 107> has relatively small absolute error.
The correct interpretation is that the true P-value is very small, less than
0.001, say, if n is large enough. There is no justfication for taking even
the order of magnitude of the asymptotic P-value seriously. That would be
assuming small relative error, not small absolute error. No matter how small
the asymptotic P-values are, say 10712, the interpretation is still the same:
very small, less than 0.001, say, if n is large enough. The farther the observed
value of the test statistic is out in the tail of its asymptotic distribution under
the null hypothesis, the worse the asymptotic approximation is in terms of
relative error. Here, with the sample sizes
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n
## [1] 467 48 16 143

not humongous, maybe we shouldn’t be sure that P ~ 6.247 x 1075 even
means P < 0.001.

6.7.5 Wald Confidence Intervals

We extract the estimates and standard errors from the output of the
method of R generic function summary for objects of class "glm"

beta <- gout.summary$coefficients[ , "Estimate"]
beta.stderr <- gout.summary$coefficients[ , "Std. Error"]

and then the Wald confidence intervals for confidence level
conf.level <- 0.95
are

crit <- gnorm((1 + conf.level) / 2)
crit

## [1] 1.959964

beta["victimwhite"] + c(-1, 1) * crit *
beta.stderr["victimwhite"]

## [1] 1.227258 3.581629

beta["defendantwhite"] + c(-1, 1) * crit =*
beta.stderr["defendantwhite"]

## [1] -1.5872489 -0.1483444

6.7.6 Likelihood Ratio Tests

To do likelihood ratio (Wilks) tests, we need to actually fit the models
that drop these parameters.
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dropl(gout, ~ victim, test = "LRT")

## Single term deletions

##

## Model:

## deathpenalty ~ victim + defendant

## Df Deviance AIC LRT Pr(>Chi)

## <none> 0.3798 19.30

## victim 1 20.7298 37.65 20.35 6.45e-06 **xx

## -

## Signif. codes:

## 0 "sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Since your humble author does not regularly use the R function drop1
and wants to check that this is indeed doing what he thinks it is doing, we
check it.

gout.no.victim <- glm(deathpenalty ~ defendant,
family = binomial)
anova(gout.no.victim, gout, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: deathpenalty ~ defendant

## Model 2: deathpenalty ~ victim + defendant
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 2 20.7298

## 2 1 0.3798 1 20.35 6.45e-06 *xx*x
## -—-

## Signif. codes:

## 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We do indeed get the same test statistic and P-value both ways, so the
following must be correct too.

dropl(gout, ~ defendant, test = "LRT")
## Single term deletions

#i#t
## Model:
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## deathpenalty ~ victim + defendant

#it Df Deviance AIC LRT Pr(>Chi)
## <none> 0.3798 19.300

## defendant 1  5.3940 22.314 5.0142 0.02514 =*
## ——-

## Signif. codes:

## 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Note that the Wald and Wilks tests do not agree exactly, although they
do agree approximately.

6.7.7 Likelihood Ratio Confidence Intervals

The R recommended package MASS (Ripley, et al., 2015), which goes
with the book Venables and Ripley (2002), has a function confint.glm
which purports to do likelihood based confidence intervals (and we saw that
it agreed with clearly correct calculations in the one-dimensional case in a
previous handout). Let’s try that

library (MASS)
confint (gout)

## Watting for profiling to be done...

#i# 2.5 % 97.5 %
## (Intercept) -4 . 775566 -2.7349458
## victimwhite 1.306854 3.7176025

## defendantwhite -1.563332 -0.1140439

Again, these agree approximately but not exactly with the Wald inter-
vals.

6.7.8 Rao Tests

The R function drop1 also has an option that purports to do Rao tests.

dropl(gout, ~ victim, test = "Rao")

## Single term deletions
##
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## Model:

## deathpenalty ~ victim + defendant

## Df Deviance AIC Rao score Pr(>Chi)

## <none> 0.3798 19.30

## victim 1 20.7298 37.65 19.638 9.359e-06 **x*
## -—-

## Signif. codes:

## 0 '"sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

dropl(gout, ~ defendant, test = "Rao")

## Single term deletions

##

## Model:

## deathpenalty ~ victim + defendant

## Df Deviance AIC Rao score Pr(>Chi)
## <none> 0.3798 19.300

## defendant 1  5.3940 22.314 5.8089 0.01595 *
HH ——-

## Signif. codes:

## 0 '"+xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Again, these agree approximately but not exactly with the Wald and
Wilks tests.

6.7.9 Summary

Test statistics and asymptotic P-values for test of dropping victim from
the model

‘ Test Statistic P-value

Wald 16.03 6.25 x 1079
Wilks 20.35 6.45 x 10~
Rao 19.64 9.36 x 106

Test statistics and asymptotic P-values for test of dropping defendant
from the model

‘ Test Statistic P-value

Wald 5.59 0.0181
Wilks 5.01 0.0251
Rao 5.81 0.0159
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95% confidence intervals for the submodel canonical parameter named
victimwhite

‘ lower upper
1.23  3.58
1.31 3.72

Wald
Wilks

95% confidence intervals for the submodel canonical parameter named
defendantwhite

‘ lower upper
—-1.59 —-0.15
—1.56 —0.11

Wald
Wilks

There does not seem to be any convenient way in R to do Rao intervals
(a. k. a. score intervals).

6.7.10 Wald Intervals for Mean-Value Parameters

The R function predict.glm also does confidence intervals for mean-
value parameters.

pout <- predict(gout, se.fit = TRUE, type = "response")
low <- pout$fit - crit * pout$se.fit

hig <- pout$fit + crit * pout$se.fit

cbind(low, hig)

it low hig
## 1 0.0844268406 0.14177368
## 2 0.1145521378 0.35137200
## 3 -0.0022005251 0.02497295
## 4 0.0008808397 0.05251525

As always, there is nothing that keeps these confidence intervals in the
parameter space. And we have gone out. These are MLE of cell probabilities
and one of the endpoints in negative.

We can avoid this behavior by making Wald intervals for the saturated
model canonical parameters and mapping them to the mean-value parameter
scale.
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pout <- predict(gout, se.fit = TRUE)

low <- pout$fit - crit * pout$se.fit

hig <- pout$fit + crit * pout$se.fit

invlogit <- function(theta) 1 / (1 + exp(- theta))
low <- invlogit(low)

hig <- invlogit(hig)

cbind(low, hig)

Hit low hig
## 1 0.087439334 0.14509456
## 2 0.135367242 0.37074835
## 3 0.003432917 0.03707991
## 4 0.010054429 0.06897312

The latter seems better for small n. Of course, the two methods are
asymptotically equivalent.

Note: these are confidence intervals for cell probabilities rather than
expected cell counts. Each interval would have to be multiplied by the
corresponding sample size to get the latter.

6.7.11 Arbitrariness of Canonical Parameterization

This section is a short riff on the meaningless of canonical parameters.
It shows various ways in which specifying the model differently would have
lead to very different canonical parameters for exactly the same model.

First principle: when there are any categorical predictors, models with
and without intercept are the same

gout.foo <- glm(deathpenalty ~ O + victim + defendant,
family = binomial)
coefficients(gout)

## (Intercept) victimwhite defendantwhite
#it -3.5961040 2.4044434 -0.8677967

coefficients(gout.foo)

## victimblack victimwhite defendantwhite
## -3.5961040 -1.1916606 -0.8677967
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mu.foo <- n * predict(gout.foo, type = "response")
all.equal (mu.foo, mu)

## [1] TRUE

The submodel canonical parameters don’t even have the same names,
and for some that do have the same names, the values have changed. But
the mean values are the same, so the MLE probability distribution is the
same.

Second principle: when there are multiple categorical predictors, the
order of terms in the formula can matter

gout.bar <- glm(deathpenalty ~ O + defendant + victim,
family = binomial)
coefficients(gout.foo)

#it victimblack victimwhite defendantwhite
## -3.5961040 -1.1916606 -0.8677967

coefficients(gout.bar)

## defendantblack defendantwhite victimwhite
## -3.596104 -4.463901 2.404443

mu.bar <- n * predict(gout.bar, type = "response")
all.equal (mu.bar, mu)

## [1] TRUE

One number is the same in the canonical parameter estimates, but for
parameters that are named differently! The parameters that are named the
same have different numbers! But the model is still the same.

Third principle: when R sets up a factor, the default order of factor
levels is alphabetical, but it doesn’t have to be. Then when setting up
model matrices it drops the dummy variable for the first factor level. But
which was first was arbitrary.

victim.save <- victim

victim <- factor(as.character(victim),
levels = rev(levels(victim)))

victim.save
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## [1] white white black black
## Levels: black white

victim

## [1] white white black black
## Levels: white black

gout.baz <- glm(deathpenalty ~ victim + defendant,
family = binomial)
coefficients(gout)

#it (Intercept) victimwhite defendantwhite
## -3.5961040 2.4044434 -0.8677967

coefficients(gout.baz)

#it (Intercept) victimblack defendantwhite
## -1.1916606 -2.4044434 -0.8677967
mu.baz <- n * predict(gout.baz, type = "response")

all.equal(mu.baz, mu)
## [1] TRUE

Again, the names of the canonical parameters change. And the values
of some parameters with the same name stay the same while the values of
other parameters with the same name are different. But the model remains
the same.

Put victim back the way it was.

victim <- victim.save
Forth principle: the coding of response labels is arbitrary, which of the
deathpenalty values is considered “success” and which “failure” is arbi-

trary. Reverse them.

deathpenalty.save <- deathpenalty
deathpenalty <- deathpenalty[ , 2:1]
deathpenalty

45



## no yes
## [1,] 414 53
## [2,] 37 11
## [3,] 16 O
## [4,] 139 4

gout.qux <- glm(deathpenalty ~ victim + defendant,
family = binomial)

coefficients(gout)

## (Intercept) victimwhite defendantwhite
#it -3.5961040 2.4044434 -0.8677967

coefficients(gout.qux)

## (Intercept) victimwhite defendantwhite
## 3.5961040 -2.4044434 0.8677967
mu.qux <- n * predict(gout.qux, type = "response")

all.equal(n - mu.qux, mu)

## [1] TRUE

The canonical parameters all have the same names, but all now have
opposite signs. In showing that the means are the same so the model is the
same, we have to take into account that mu.qux is predicted “successes” by
the second definition (death penalty “no”) and that mu is predicted “suc-
cesses” by the first definition (death penalty “yes”) so one is n minus the

other.

All of the above, and even more ways that could be illustrated with
more complicated models (we could play lots of games with “interactions”
if we had them), is what we mean when we say canonical parameters are

meaningless.
Put deathpenalty back the way it was.

deathpenalty <- deathpenalty.save

For more examples of the arbitrariness of canonical parameterization,

see Section 7.5 below.
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7 Different Sampling Schemes

A very important point about categorical data analysis (analysis of con-
tingency table data) is that one gets the same results regardless of whether
the assumed sampling scheme “Poisson,” “multinomial,” or “product multi-
nomial.” First we have to explain what these are.

7.1 Sampling Schemes

A partition of a set S is a family A of subsets of of S having the property
that for every x € S there is exactly one A € A such that x € A. If A and
B are two partitions of S, we say that A is finer than B or that B is coarser
than A if for every A € A there is exactly one B € B such that A C B.

Suppose we have a contingency table with k categories. Let I denote the
index set

I=1{1,2,.... k.

Here we are interested in partitions of 1.

We can think of vectors as functions I — R. A vector y is the function
i+ y;. For any subset A of I, let y4 denote the “subvector” of y whose
components have indices in A. Considered as functions, y and y4 have the
same rule ¢ — g; but different domains: but y has domain I and y4 has
domain A.

The point is that components of y4 know which components of y they
are equal to. If A = {3,7,10}, then the components of y4 are y3, y7, and
y10- We don’t renumber them to have the indices be 1, 2, 3 out of some
misguided notation that components of three-dimensional vectors have to
be numbered 1, 2, 3 or it will make us cry (or whatever). If we don’t renum-
ber, then the notation “remembers” which components of y correspond to
which components of y4. If we insist on renumbering then we have lost the
correspondence between components of y and components of y4 and have
to keep track of it by some additional, and probably very clumsy, notation.
What was called a “misguided notation” that vectors are indexed by con-
secutive numbers starting with one is responsible for more clumsy notation
in statistics than any other idea.

The set of all such functions is denoted R’ in set theory. So y is an
element of R? and y4 is an element of RA. In set theory, everything is a set.
The number d is the set {0,1,2,...,d — 1}. So in set theory R? means R
where S = {0,1,2,...,d— 1}. Thus our new notation for finite-dimensional
vector spaces R® for some finite set S essentially the same as the conventional
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notation R? for some nonnegative integer d. The only difference is that set
theory starts counting at zero instead of at one.

The kinds of sampling schemes commonly assumed for contingency tables
are the following.

Poisson The cell counts are independent Poisson random variables.

multinomial The cell counts are components of a multinomial random
vector.

product multinomial The index set I has a partition A, and the vector
y of cell counts is similarly partitioned. The subvectors y4 for A € A
are independent multinomial random vectors.

It is called “product multinomial” because independence implies the joint
PMF is the product of the marginal PMF’s

f) =TI fya)

AeA

(abusing notation by denoting different functions by the same letter f).

7.2 Sampling Schemes and Conditioning
These sampling schemes are related as follows.

e Multinomial is Poisson conditioned on the sample size. If f is the PMF
for the Poisson scheme, then the PMF for the multinomial scheme is

f ] Ziervi=n) (38)
where n is the sample size.

e Product multinomial is Poisson conditioned on the sample sizes for
the elements of the partition. If f is the PMF for the Poisson scheme,
then the PMF for the product multinomial scheme for partition A is

[acaf (wal Xicavi =na) (39)
where n 4 is the sample size for subvector y4.

e Product multinomial is also multinomial conditioned on the sample
sizes for the elements of the partition. If f is the PMF for the multi-
nomial scheme, then the PMF for the product multinomial scheme for
partition A is again given by (39).
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e Product multinomial is also product multinomial for a coarser parti-
tion conditioned on the sample sizes for the elements of a finer parti-
tion. Suppose A and B are partitions of the index set I with A finer
than B. If f is the PMF for the product multinomial scheme for parti-
tion B, then the PMF for the product multinomial scheme for partion
A is again given by (39).

7.3 Sampling Schemes and Maximum Likelihood Estimates

7.3.1 Poisson versus Multinomial

The key is to understand Poisson versus multinomial. When we later
consider product multinomial, the principles remain the same, the math
gets messier but not harder.

Suppose we assume Poisson sampling, have a canonical affine submodel
with parameterization (28), observed data y, cumulant function ¢ given by

c(0) = Z e, (40)

el
and MLE’s
e 3 (for the submodel canonical parameter f3),
e 0 (for the saturated model canonical parameter ),
e i, (for the saturated model mean-value parameter 1), and
e 7, (for the submodel mean-value parameter 7),

which, of course, are related by

0=a+ Mp (41a)
fi = Ve(0) (41b)
F=M"p (41c)

and are all determined by the observed equals expected property
Mty =7 (42)

If the submodel parameterization is identifiable, then B is the unique
submodel canonical parameter value that makes (41a), (41b), and (41c)
lead to (42).
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If the submodel parameterization is not identifiable, then 3 is a (non-
unique) submodel canonical parameter value that makes (41a), (41b), and
(41c) lead to (42).

In the latter case there is a direction ¢ in the submodel parameter space
that is a direction of constancy,

(MTy,8) = y"Ms

is a constant random variable, and ﬁ + ¢ is also an MLE for § for any real
number r.

Now we consider the multinomial sampling scheme. Since we want to
compare Poisson and multinomial, we use the same saturated model canon-
ical statistic vector y for both. This means we cannot have an identifiable
parameterization for the saturated multinomial. Instead we have what we
called the “try III” parameterization in Section 2.4 above. Then we repeat
everything we said above about the Poisson for the multinomial and every-
thing is the same except that the Poisson cumulant function is (40) whereas
the multinomial cumulant function is (23).

Now we make a key assumption. The model for the Poisson sampling
scheme must include an “intercept” term or be equivalent to one that does.
We saw in the preceding section that if there are any categorical predictors,
then leaving out the “intercept” does not change the model (hence the scare
quotes around “intercept”). Formally the requirement is that the vector
dr = (1,1,...,1) be in the column space of the model matrix M, that is,
some linear combination of the columns of M has all components equal to
one.

Theorem 4. Suppose we have a Poisson regression model with the parame-
terization of Section 5.2 and a multinomial model with the parameterization
of Section 2.4.3. Suppose we use the same canonical affine submodel for
both with parameterization (28). And suppose the vector with all compo-
nents equal to one is in the column space of the model matriz. Then MLE
for the models agree in the sense that, for the same data, any MLE for
the Poisson model for any of the four parameter vectors, submodel canon-
ical, submodel mean-value, saturated model canonical, or saturated model
mean-value, is also an MLE for the corresponding parameter vector of the
multinomial model.

Since only part of this theorem is usually stated in textbooks, we give
a proof. Observe that it is crucial that we use the nonidentifiable “try I11”
parameterization of the multinomial to make canonical parameters match.
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Proof. Since both models have the same canonical statistic vector and the
same model matrix, they have the same “observed equals expected” equation
(42) determining they have the same MLE for the submodel mean-value
parameter.

In fact, we see that the Poisson and multinomial sampling schemes not
only agree on (42), they also agree on (41a) and (41c). They only disagree
on (41b), where for the Poisson scheme we differentiate (40) obtaining

i = ¢ (43)

and for the multinomial scheme we differentiate (23) obtaining

0.
. ne’
= ——— (44)
Zje[ el

Suppose 6 is the Poisson MLE. Then (43) holds. Because of the key as-
sumption that d; is in the column space of the model matrix, we have, by
“observed equals expected”

OTA=) fi=0y= u (45)

el el

il

Introduce an abbreviation

(For the multinomial scheme n is the multinomial sample size, but here, for
the Poisson scheme, n isn’t anything in particular, it is just an abbreviation
for the right-hand side of (46)). Plugging (46) into (45) and then using (43)

gives A
Zﬂi = Zeei =n. (47)
i€l i€l
All of this holds for the Poisson MLE’s. Now we want to show that (44)
also holds for the Poisson MLE’s. Plug (47) into (44) obtaining

. nef ne’ 0,

M~ = — = = e
Z Eje] 69‘7- "
and, reading end to end, this is just (43) which characterizes the Poisson
MLE. Hence we conclude that if # is the Poisson MLE, then (43) and (44)
both hold. But (44) characterizes multinomial MLE. Hence the Poisson
MLE is also a multinomial MLE.
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As we said before, since (42), (41a), and (41c) obviously agree for both
schemes, and we have just shown that (41b) also agrees for both schemes,
all MLE for all parameterizations, 5, 0, fi, and 7 agree for both schemes. [

7.3.2 Poisson versus Product Multinomial

Theorem 5. Suppose we have a Poisson regression model with the param-
eterization of Section 5.2 and a product multinomial model for partition A,
each multinomial of the product having the parameterization of Section 2.4.3.
Suppose we use the same canonical affine submodel for both with parame-
terization (28). Define for each A € A the indicator vectors 64, the i-th
component of which is zero if i ¢ A and one if i € A. And suppose that
each of these d4 is in the column space of the model matriz. Then MLE
for the models agree in the sense that, for the same data, any MLE for the
Poisson model for any of the four parameter vectors, submodel canonical,
submodel mean-value, saturated model canonical, or saturated model mean-
value, is also an MLE for the corresponding parameter vector of the product
multinomial model.

Proof. The proof is just like the proof of Theorem 4 except that the multi-
nomial cumulant function (23) is replaced by the product multinomial cu-

mulant function
c(0) = Z na log (Z 69’) . (48)

AcA i€A

Differentiating and plugging in 0 for 0 gives

0;
fi=—AC e A (49)

ZjeA et

So in this proof (49) plays the role of (44) in the proof of Theorem 4.
Then, because of the assumption that d4 is in the column space of the
model matrix, we have

Shi=> hi=06hy=> v (50)
i€EA €A

holding for the Poisson MLE’s. This replaces (45) in the other proof. Then
we just follow the pattern of the other proof, introducing

nA:Zyi (51)

€A
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we see that (50) implies, still for Poisson MLE’s, that
> =na (52)

and plugging this into (49) we see that (49) becomes (43). So the equation
that characterizes product multinomial MLE’s actually holds for Poisson
MLE’s. The rest of the two proofs is the same. ]

7.3.3 Multinomial versus Product Multinomial

Theorem 6. Suppose we have a multinomial regression model and a product
multinomial model for partition A, each multinomial having the parameter-
ization of Section 2.4.3. Suppose we use the same canonical affine submodel
for both with parameterization (28). Define 4 as in Theorem 5, and suppose
that each of these § 4 is in the column space of the model matrix. Then MLE
for the models agree in the sense that, for the same data, any MLE for the
multinomial model for any of the four parameter vectors, submodel canon-
ical, submodel mean-value, saturated model canonical, or saturated model
mean-value, is also an MLE for the corresponding parameter vector of the
product multinomial model.

Proof. The proof is just like the proofs of Theorems 4 and 5 except that now
start with multinomial MLE’s satisfying (44) and need to show that they
also satisfy (49).

Again, because of the assumption that d4 is in the column space of the
model matrix, we have (50), and, introducing the abbreviation (51) we have

i b
ma= Yo=Y O = e (53)

0; 0;
icA icA Zje[ e Zjel e’

This differs from (52) because we plugged in the formula (44) for multinomial
means for fi; rather than the formula (43) for Poisson means.

Now we want to show that if the MLE’s are for the multinomial scheme,
then (49) also holds. Rewrite (53) as

Jjel €A

and plug into (49) obtaining (when i € A)

nAeei nAeei ne’

i = = = ~

>jea i na > jel et >jer et
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and, reading end to end, this is (44). So the equation that characterizes
product multinomial MLE’s actually holds for multinomial MLE’s. The
rest of two proofs is the same as for the two preceding proofs. O

By now the pattern should be obvious. We won’t bother to state or
prove the analogous theorem for product multinomials with coarser and
finer partitions.

7.3.4 Example

Instead we move to an example, the same example we have been doing all
along. But now we use Poisson regression to fit the model. We consider the
logistic regression we have been doing an instance of product multinomial
where there are four multinomials (in this case binomials) in the product.

To do Poisson regression, we reformat the data as follows.

pdata <- data.frame(verdicts = as.vector(deathpenalty),
victim = rep(victim, times = 2),
defendant = rep(defendant, times = 2),
deathpenalty = factor(rep(colnames(deathpenalty),
each = 4)))

We had to stretch the data out into a vector verdicts, and correspond-
ingly had to make the predictors victim and defendant twice as long to
match and also had to make up a new predictor deathpenalty to indicate
which elements of the new response vector verdicts corresponded to which
columns of the old response matrix deathpenalty (having a response matrix
rather than a response vector being a curiosity, of the way the R function
glm specifies binomial GLM’s).

The data are now

pdata

##  verdicts victim defendant deathpenalty

## 1 53 white white yes
## 2 11 white black yes
## 3 0 black white yes
## 4 4 Dblack black yes
## 5 414 white white no
## 6 37 white black no
## 7 16 black white no
## 8 139 black black no
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To fit this model by Poisson regression and have it be equal to the
corresponding product binomial model (logistic regression), we need to have
what Theorem 5 calls the d4 in the model, so we need to include a term
victim * defendant in the R formula, because the dummy variables it
produces are the §4. (The four parts of the product binomial are for the
four victim-race-defendant-race combinations).

We also have a term deathpenalty : (victim + defendant) in the
model because we want to know how well victim + defendant does in
“predicting” whether the death penalty is imposed or not. We did not
need the deathpenalty : when doing logistic regressions because this was
implicit in what we called the “curiosity of the way the R function glm
specifies binomial GLM’s” above (having a response matrix rather than a
response vector).

So do it

gout.poisson <- glm(verdicts ~ victim * defendant +

deathpenalty : (victim + defendant), family = poisson,

data = pdata, x = TRUE)
summary (gout . poisson)
##
## Call:
## glm(formula = verdicts ~ victim * defendant + deathpenalty:(victim +
#Hit defendant), family = poisson, data = pdata, x = TRUE)
##
## Deviance Residuals:
## 1 2 3 4 5 6 7
## 0.02505 -0.05463 -0.60362 0.09251 -0.00895 0.03000 0.04572
##
## Coefficients:
## Estimate Std. Error z value Pr(>|zl|)
## (Intercept) 4.93578 0.08471 58.265 < 2e-16
## victimwhite -1.32980 0.18479 -7.196 6.19e-13
## defendantwhite -2.17465 0.26377 -8.245 < 2e-16
## victimwhite:defendantwhite 4.59497 0.31353 14.656 < 2e-16
## victimblack:deathpenaltyyes -3.59610 0.50691 -7.094 1.30e-12
## victimwhite:deathpenaltyyes -1.19166 0.33809 -3.525 0.000424
## defendantwhite:deathpenaltyyes -0.86780 0.36707 -2.364 0.018074
## -—-
## Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
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##
## (Dispersion parameter for poisson family taken to be 1)
##

#i#t Null deviance: 1225.07955 on 7 degrees of freedom
## Residual deviance: 0.37984 on 1 degrees of freedom
## AIC: 52.42

##

## Number of Fisher Scoring iteratiomns: 3

And we check that we have the same mean vectors for both models,
taking into account what we are now beginning to see as the weirdness of
the way binomial GLM’s work in R.

mu.binomial <- predict(gout, type = "response")

mu.binomial <- n * mu.binomial

mu.binomial <- c(mu.binomial, n - mu.binomial)

mu.poisson <- predict(gout.poisson, type = "response")
all.equal(mu.binomial, mu.poisson, check.attributes = FALSE)

## [1] TRUE

We needed check.attributes = FALSE because the names of the com-
ponents are wrong (again because of the “weirdness of the way binomial
GLM’s work in R”) and without this optional argument R function all.equal
checks attributes, including names, as well as values. It is an error if the
names don’t match.

Now that we know the mean vectors match we know that, since mean
vectors parameterize regular full exponential family models, we have match-
ing MLE probability distributions.

Now look at saturated model canonical parameters.

theta.binomial <- predict(gout)
theta.binomial <- c(theta.binomial,

rep(0, length(theta.binomial)))
theta.binomial <- as.vector(theta.binomial)
theta.poisson <- predict(gout.poisson)
theta.poisson <- as.vector(theta.poisson)
matrix(theta.binomial - theta.poisson, ncol = 2)

#i# [,1] [,2]
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## [1,] -6.026306 -6.026306
## [2,] -3.605982 -3.605982
## [3,] -2.761137 -2.761137
## [4,] -4.935784 -4.935784

We have formatted the difference of the two saturated model MLE canon-
ical parameter vectors in the same way the R function glm requires binomial
response vectors be formatted (in a matrix with two columns). Each row
corresponds to an independent binomial in the product binomial (logistic
regression model). And we know that the vector with all all components
equal to one is a direction of constancy for a multinomial (with “try III”
parameterization, Section 2.4.3). Hence from Theorem 1 so is any vector
with all components equal to each other, because if (y,d) is almost surely
constant, then so is (y,ad) = a(y, d) for any constant a.

So we see that the difference of the two saturated model MLE canonical
parameter vectors is a direction of constancy of the product binomial model,
as must be from the theory of exponential families.

Now look at submodel model canonical parameters, and we get in trou-
ble. The R formula mini-language doesn’t give us anything comparable,
even the lengths of these vectors

names (coefficients(gout))
## [1] "(Intercept)" "victimwhite" "defendantwhite"
names (coefficients(gout.poisson))

## [1] "(Intercept)"

## [2] "victimwhite"

## [3] "defendantwhite"

## [4] "victimwhite:defendantwhite"

## [5] "victimblack:deathpenaltyyes"

## [6] "victimwhite:deathpenaltyyes"

## [7] "defendantwhite:deathpenaltyyes"

We could get a closer match if we used different formulas to specify the

models (so-called intercepts behave really weirdly in complicated situations,
get rid of them, so do *’s for interactions, get rid of them too).
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gout.poisson.alternate <- glm(verdicts ~ 0 + victim : defendant
+ deathpenalty : (victim + defendant), family = poisson,
data = pdata, x = TRUE)

all.equal (predict(gout.poisson, type = "response"),
predict(gout.poisson.alternate, type = "response"))

## [1] TRUE

gout.binomial.alternate <- glm(deathpenalty ~ O + victim
+ defendant, family = binomial, x = TRUE)

all.equal (predict(gout, type = "response"),
predict(gout.binomial.alternate, type = "response"))

## [1] TRUE
Now the 3’s match more closely

coefficients(gout.binomial.alternate)

## victimblack victimwhite defendantwhite
#it -3.5961040 -1.1916606 -0.8677967

coefficients(gout.poisson.alternate)

#i# victimblack:defendantblack
## 4.9357837
## victimwhite:defendantblack
## 3.6059820
## victimblack:defendantwhite
## 2.7611372
## victimwhite:defendantwhite
## 6.0263059
## victimblack:deathpenaltyyes
#i# -3.5961040
## victimwhite:deathpenaltyyes
#it -1.1916606
## defendantwhite:deathpenaltyyes
## -0.8677967

all.equal(as.vector(coefficients(gout.binomial.alternate)),
as.vector(coefficients(gout.poisson.alternate)) [56:7])

## [1] TRUE
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The first four components of coefficients(gout.poisson.alternate)
are the cofficients for what Theorem 5 calls the § 4, the dummy variables for
the sums that are fixed (multinomial sample sizes) in the product binomial
model. The remaining three components of that B vector correspond to
the three components of the B vector for the product binomial (logistic
regression) model. The R formula mini-language doesn’t name them exactly
the same, but they are essentially the same parameters.

One last point before we leave this issue. Theorems 4, 5, and 6 are about
using the same model matrix for both models. But here we clearly didn’t do
that. The reason is identifiability. The extra columns of the model matrix
for gout.poisson.alternate correspond to directions of constancy for the
other model. We need to leave them out for identifiability. We could do
exactly what Theorem 5 says except that the weirdness of the way binomial
GLM’s work in R defeats us. So we won’t bother to match that up.

7.4 Sampling Schemes and Likelihood Ratio Tests

Suppose we want to test nested canonical affine submodels with the
same offset vector and model matrices My and Ms. The nesting hypothesis
means that the column space of M; is a subspace of the column space of
Ms. Usually, but not always, this means that every column of M; is also a
column of M. When we think of models specified by formulas , thus usually
means that every term in the formula for the smaller model is also a term
in the formula for the bigger model.

Theorem 7. Not only do MLE agree for Poisson, multinomial, and product
multinomial sampling schemes, so do likelihood ratio test statistics.

Proof. We have already seem that the MLE [3’ , é, [, and 7 can be considered
the same for both sampling schemes. For the Poisson scheme, the maximized
log likelihood is

1(B) = (y,0) = _ €. (54)
el
For the multinomial scheme, it is

[(B) = (y,0) — nlog (Z eef> : (55)
i€l
For the product multinomial scheme for partition A, it is

1) = (0.0~ 3 malog (z) 56)

AeA €A
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and we need to show that these are the same or at least give the same results
when used in constructing test statistics. Using (46) and (51), equations
(54), (55), and (56) become (respectively)

) = (y,0) — nlog(n)
)= Y nalog(na)

AeA

~
—
=
N—
Il
—~
&
>

and these agree except for constants that cancel when we calculate likelihood
ratio test statistics (which involve differences of log likelihoods). O

Because likelihoods are invariant under reparameterization, Theorem 7
holds for any parameterization.

7.4.1 Example Continued: Wilks Tests
Recall that we did the following likelihood ratio test back in Section 6.7.6

anova(gout.no.victim, gout, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: deathpenalty ~ defendant

## Model 2: deathpenalty ~ victim + defendant
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 2 20.7298

## 2 1 0.3798 1 20.35 6.45e-06 *xx*x
## —-—-

## Signif. codes:

## 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Recall that we put the data back in the form for logistic (product bino-
mial) regression. Put it back in the form for Poisson regression, and fit the
model with no victim effect. Since we put the data back in form for logistic
regression, we have to again convert it to the form for Poisson regression.

gout.poisson.no.victim <- glm(verdicts ~ victim * defendant +
deathpenalty : defendant, family = poisson,
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data = pdata, x = TRUE)

anova(gout.poisson.no.victim, gout.poisson, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: verdicts ~ victim * defendant + deathpenalty:defendant

#H#t
##
##
##
##
##
##

Model 2: verdicts ~ victim * defendant + deathpenalty:(victim + defendant)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 20.7298
2 1 0.3798 1 20.35 6.45e-06 ***
Signif. codes:

O '"xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 " ' 1

The same.

7.4.2 Warning

The R function dropl does not do the right thing with the example of

the preceding section.

dropl(gout.poisson,

##
#Ht
##
##
##
##
##
##
##
##

victim, test = "LRT")
Single term deletions

Model:

verdicts ~ victim * defendant + deathpenalty:(victim + defendant)
Df Deviance AIC LRT Pr(>Chi)

<none> 0.380 52.42

victim 1  64.272 114.31 63.892 1.314e-15 x*x*x

Signif. codes:

O "#xx' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The reason is that it tries to drop everything involving the “predictor”

victim (scare quotes around “predictor” because it isn’t data but just an
indicator variable that tells which cells of the contingency table we are talk-
ing about). If there is a way to get dropl to do the right thing here, your
humble author cannot figure it out.

The lesson here is that anova is a lot safer than drop1l. With anova you

have R objects for both models being compared. You can do summary on
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them, look at their coefficients, and see that they are actually the models
you want to compare. With dropl you can only look at the big model and
can only hope that drop1’s futzing with the R formula does the right thing.
And sometimes, like here, it doesn’t.

7.5 Dropping Variables to Gain Identifiability

The R functions 1m and glm that fit linear models (LM) and generalized
linear models (GLM) automatically drop variables to gain identifiability (or
avoid so-called collinearity).

Because the saturated model for an LM or GLM is always identifiable,
non-identifiability for a canonical affine submodel can only arise due to the
model matrix M being such that § = Mg is not a one-to-one change of
parameter. Then different 3’s (submodel canonical parameter values) cor-
respond to the same 6 (saturated model canonical parameter value), so the
model is obviously not identifiable.

What 1m and glm and other R functions that fit regression models and
have copied 1m and glm do in this case is to find a maximal set of linearly in-
dependent columns of M and use the matrix Mo composed of these columns
as the model matrix. In the language of linear algebra, the columns of M,
are a basis for the column space of M. That means that any vector § = M
can also be expressed at § = M 35 for some vector #5. And this means that
M and M, are different model matrices for the same statistical model.

Because 1m and glm always pick the columns of My to be a subset of
columns of M, we always have Ms a submatrix of M.

Our subvector notation (p. 47 above) can be extended to matrices to
cover this case. Matrices are vectors because they can be added and multi-
plied by scalars. We can think of a matrix M having components m;; as the
function (4, j) — my;. If we let I and J denote the sets over which i and j
range, then our matrix is an element of the vector space R/*7/. An element
of I'x.J is a pair (4, j), so an element of R?”*/ is a function (4, j) — m;;. Then
if A C J, our subvector notation says My 4 is the function (i, j) — m;; de-
fined on I x A. So we are just restricting j to be in A. So this is a submatrix
that has some of the columns of M but not all of them.

So suppose My« 4 is what we were calling Ms before. Then My 84 =
Mpg if B; = 0 for j ¢ A. In short, using the model matrix M, is like
constraining the components of 5 that correspond to columns of M that are
not in M to be zero. The R functions 1m and glm do not say they have
constrained these components of 5 to be zero, instead they put in NA.

Here is a made-up example.
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color <- c("red", "orange", "orange", "yellow", "yellow", "green", "green")
fruit <- c("apple", "orange", "kumquat", "apple", "lemon", "apple", "lime")
count <- rpois(length(color), 10)

foof <- data.frame(color = color, fruit = fruit, count = count)

foof

## color fruit count

## 1 red apple 15

## 2 orange orange 11

## 3 orange kumquat 6

## 4 yellow  apple 12

## 5 yellow lemon 9

## 6 green  apple 5

## 7 green lime 15

gout.foof <- glm(count ~ color + fruit, family = poisson, data = foof)
summary (gout . foof)

##

## Call:

## glm(formula = count ~ color + fruit, family = poisson, data = foof)
##

## Deviance Residuals:
## [1] 0 O O O O O O

##

## Coefficients: (1 not defined because of singularities)
##t Estimate Std. Error z value Pr(>|zl|)

## (Intercept) 1.6094 0.4472  3.599 0.00032 *x**
## colororange 0.7885 0.5394 1.462 0.14379

## colorred 1.0986 0.5164 2.127 0.03338 *
## coloryellow 0.8755 0.5323 1.645 0.10003

## fruitkumquat -0.6061 0.5075 -1.194 0.23236

## fruitlemon -0.2877 0.4410 -0.652 0.51414

## fruitlime 1.0986 0.5164 2.127 0.03338 *
## fruitorange NA NA NA NA

## ——-—

## Signif. codes:

## 0 'xkx' 0.001 'sxx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)
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##

#Hit Null deviance: 9.7158e+00 on 6 degrees of freedom
## Residual deviance: -3.9049e-29 on O degrees of freedom
## AIC: 42.893

##

## Number of Fisher Scoring iterations: 3

What happened? These R functions know they should drop one dummy
variable for each factor if they include an intercept. So it automatically
drops colorgreen and fruitapple. But it automatically keeps the rest.
But here if you know that colororange = 1 and fruitkumquat = 0, then
you know fruitorange = 1, because the only two orange fruits in these data
are oranges and kumquats. That’s non-identifiability or collinearity. So we
have to drop one of these three dummy variables, and which one doesn’t
matter. We get the same statistical model either way, one more example of
regression coefficients are meaningless. The R function glm decides to drop
fruitorange.

IMHO this function should print 0 rather than NA for the estimate for
fruitorange. Instead it leaves it to us to know that NA here means the
same thing as constraining this regression coefficient to be zero.

If we change the order of the levels of the factors, so R will drop different
dummy variables, we get a different collinearity.

color <- factor(color, levels = sort(unique(color), TRUE))
fruit <- factor(fruit, levels sort(unique(fruit), TRUE))

foof <- data.frame(color = color, fruit = fruit, count = count)
foof

#i# color fruit count
## 1 red apple 15
## 2 orange orange 11
## 3 orange kumquat 6
## 4 yellow  apple 12
## 5 yellow lemon 9
## 6 green  apple 5

## 7 green lime 15
gout.foof <- glm(count ~ color + fruit, family = poisson,

data = foof, x = TRUE)
coefficients(gout.foof)
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## (Intercept) colorred colororange colorgreen
##  2.48490665  0.22314355 -0.08701138 -0.87546874
#i# fruitlime  fruitlemon fruitkumquat  fruitapple
##  1.09861229 -0.28768207 -0.60613580 NA

Now it drops fruitapple because

modmat <- gout.foof$x

modmat.good <- modmat[ , colnames(modmat) != "fruitapple"]
modmat .bad <- modmat[ , colnames(modmat) == "fruitapple"]
solve (modmat.good, modmat.bad)

## (Intercept) colorred colororange colorgreen
## 1 0 -1 0
## fruitlime fruitlemon fruitkumquat
## -1 -1 0

which says

fruitapple = (Intercept) — colororange — fruitlime — fruitlemon

(in these data a fruit that is not colored orange and is not a lime or a
lemon is an apple). This is one more example of regression coefficients are
meaningless.

If we change the order of terms in the formula, it will drop something
different.

gout.foof <- glm(count ~ fruit + color, family = poisson,
data = foof, x = TRUE)
coefficients(gout.foof)

## (Intercept) fruitlime  fruitlemon fruitkumquat
##  2.39789527  1.18562367 -0.20067070 -0.60613580
##  fruitapple colorred colororange colorgreen
##  0.08701138  0.22314355 NA -0.87546874

It drops colororange because

modmat <- gout.foof$x

modmat.good <- modmat[ , colnames(modmat) != "colororange"]
modmat.bad <- modmat[ , colnames(modmat) == "colororange"]
solve (modmat.good, modmat.bad)
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## (Intercept) fruitlime  fruitlemon fruitkumquat

## 1 -1 -1 0
##  fruitapple colorred colorgreen
## -1 0 0

which says

colororange = (Intercept) — fruitlime — fruitlemon — fruitapple

(in these data a fruit that is not a lime, lemon, or apple is colored orange).
This is one more example of regression coefficients are meaningless.

But none of the above was what this section has to do with sampling
schemes. That is the following.

If the saturated model has directions of constancy, as it does for the
multinomial and product multinomial sampling schemes, to get identifia-
bility one must also drop columns of the model matrix M that are in the
constancy space of the saturated model.

If the saturated model is multinomial, then one must drop columns of
M that are scalar multiples of what was called 0; above and is labeled
"(Intercept)" when R constructs model matrices (the vector having all
components equal to one). If the saturated model is product multinomial for
partition A, then one must drop columns of M that are linear combinations
of what was called 4, A € A. These are the dummy variables that are put
into the model to force

doui= i, A€A
i€A i€A

to be among the “observed equals expected” equations.

In either case, one drops all of these columns of M when fitting the
multinomial or product multinomial (as the case may be) model. And this
is necessary to obtain identifiability.

7.6 Sampling Schemes and Rao Tests

REVISED DOWN TO HERE

this section is actually wrong

For the Rao test, we do need to be clear about the big and little models
with model matrices My and M, respectively. (We didn’t need to do this for
the Wilks test because both tests use the same maximized log likelihood.)
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The Rao test statistic is given by equations (11) or (12) in the likelihood
handout, which are the same for exponential families because observed and
expected Fisher information for the canonical parameter are the same. We
repeat equation (11) in the likelihood handout here

Ry = (Vin(00) 1,(0,) 7"V (6,)-

Here [,, is the log likelihood for the big model, I,,(0) is Fisher information
for the canonical parameter 6 for sample size n, which is n times Fisher
information for sample size one, but the MLE 6,, is the MLE for the little
model.

For our purposes here we drop the n’s obtaining If sample size is “large
enough”

R = (VI(6))"1(6)"'VI(B). (57)

we have good asymptotic approximation, if not, then we don’t. But either
way, this is our formula for the Rao test statistic. In (57) we still have [
is the log likelihood for the big model, I(0) is the log likelihood for the big
model, and 6 is the MLE for the little model.

We are going to make a few simplifying assumptions about the model
matrices. These are made “without loss of generality” as the saying goes. We
could always make the model matrices have this form (as will be explained
as we go along). The R formula mini-language may not construct model
matrices of this form, but there exist model matrices for the same models
that do have this form. We assume that both models are identifiable. What
this means for M; and M depends on what the saturated model is.

Let V; denote the column space of M;. Each V; is a vector subspace of
R”. Then the nested model condition is V; C Vs.

If the saturated model is Poisson, hence identifiable, then this just says
that the ranks of M; and My are equal to their column dimensions. Alter-
natively, it says that the columns of M; are a linearly independent set of
vectors, a basis for V1, and similarly for the columns of Ms.

If the saturated model is multinomial, hence not identifiable, having a
one-dimensional constancy space, whose one basis vector can be chosen to
be ;7 (defined above, p. 50, to be the vector having all components equal to
one), then this says that the columns of M; are a linearly independent set
of vectors, a basis for V] and that d; ¢ V;, and similarly for the columns of
M.

The reason for the condition d; ¢ V; is that if this were false, there
would exist a § such that d; = M;3. But then this § would be a direction
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of constancy for the i-th model, and that would mean the model would not
be identifiable, which we don’t want.

If the saturated model is product multinomial for partition .4, hence not
identifiable, having a constancy space whose dimension is the number of
elements of A, a basis for which can be taken to be the vectors d4, A € A
(defined above, p. 52, a § 4 is the indicator function of the set A), then this
says that the columns of M; are a linearly independent set of vectors, a basis
for V1 and that 4 ¢ V; for all A € A, and similarly for the columns of Mj.

The reason for the condition 04 ¢ V; for all A € A is similar to the
reason for the similar condition for the multinomial scheme.

We are also going to insist that Ms have the form

My = (M No)

(a partitioned matrix), so all of the columns of M; are also columns of My,
and the columns of M appear in the same order in Ms and before any other
columns of M. The matrix Ny is the left over columns of My, those that
are not columns of Mj. The reason why there is “no loss of generality” here
is that V73 C V,, and it is a theorem of linear algebra that any basis for V;
can be extended to be a basis for V5. Whatever My we started with we can
throw away and define a new My as follows. Take the columns of M7 to be
a basis for V3. Then extend this basis to be a basis for Vs, letting No be
the matrix whose columns are the vectors added to the basis for V; to get a
basis for V5. The old and new M5 determine the same model because both
have the same column space V5.

Now with all of that setup we are finally ready to get back to the Rao
test. By (35) and (37) we have

Viz(0) = M3 (y — 1)
I5(0) = My 1(0) M

where quantities with subscripts 2 refer to the big model (still a submodel of
the saturated model, and quantities without subscripts refer to the saturated
model). Now into l2(f) we want to plug in the MLE for the little model,
which is i characterized by the “observed equals expected” equation for the
little model M ji = M{y.
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So do that plug in

7.6.1 Example Continued: Rao Tests

Recall that in Section 7.4.1 we compared via Wilks’s test the R objects
gout.poisson.no.victim (little model) and gout.poisson (big model)
produced by Poisson regression. We now know that the MLE’s don’t depend
on the sampling scheme. The ones we want are for the little model

theta.twiddle <- predict(gout.poisson.no.victim)
mu.twiddle <- predict(gout.poisson.no.victim, type = "response")

Fisher information for the saturated model evaluated at the MLE for the
little model is

fish.sat <- diag(mu.twiddle)
The corresponding Fisher information for the big model is
modmat <- gout.poisson$x

fish.big <- t(modmat) %} fish.sat %*} modmat
fish.big.inverse <- solve(fish.big)

The score (log likelihood gradient) for the big model evaluated at the
MLE in the little model

y.poisson <- pdata$verdicts

score.big <- t(modmat) %*% (y.poisson - mu.twiddle)
score.big <- zapsmall(score.big)

score.big
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## [,1]

## (Intercept) 0.00000
## victimwhite 0.00000
## defendantwhite 0.00000
## victimwhite:defendantwhite 0.00000
## victimblack:deathpenaltyyes -8.98606
## victimwhite:deathpenaltyyes 8.98606

## defendantwhite:deathpenaltyyes 0.00000
So the Rao test statistic is
rao.poisson <- t(score.big) %* fish.big.inverse %*} score.big

rao.poisson <- as.vector(rao.poisson)
rao.poisson

## [1] 19.63791

Now we want to calculate the same thing assuming product binomial
(logistic regression) sampling.

MLE’s
theta.twiddle <- predict(gout.no.victim)

p-twiddle <- predict(gout.no.victim, type = "response")
mu.twiddle <- n * p.twiddle

Fisher information for the saturated model evaluated at the MLE for the
little model

fish.sat <- diag(n * p.twiddle * (1 - p.twiddle))
Corresponding Fisher information for the big model

modmat <- gout$x

fish.big <- t(modmat) %xJ fish.sat %#*), modmat

fish.big.inverse <- solve(fish.big)

Score for the big model evaluated at the MLE in the little model
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score.big <- t(modmat) %*, (y - mu.twiddle)
score.big <- zapsmall(score.big)
score.big

## [,1]
## (Intercept) 0.00000
## victimwhite 8.98606
## defendantwhite 0.00000

Rao test statistic

rao.binomial <- t(score.big) %xJ, fish.big.inverse %*), score.big
rao.binomial <- as.vector(rao.binomial)
rao.binomial

## [1] 19.63791
all.equal(rao.binomial, rao.poisson)

## [1] TRUE

REVISED DOWN TO HERE

8 Multivariate Monotonicity

The important mapping (32) between canonical and mean value param-
eters of a regular full exponential family has an important property called
multivariate monotonicity. If 61 and 0o are possible values of the canonical
parameter vector and

p1 = Ve(bh)
p2 = Ve(62)

are the corresponding values of the mean-value parameter vector, then
(1 — p2,01 — 62) >0, (58)
and if the canonical parameterization is identifiable

<,u1 — u2,91 — 92> > 0, 91 7& 92. (59)
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Property (58) holding for all #; and 62 in the full canonical parameter
space is called multivariate monotonicity of the mapping from 6 to u (Rock-
afellar and Wets, 1998, Chapter 12). It follows from the derivative matrix of
this mapping being a variance matrix, hence a positive semi-definite matrix,
our equation (6) and Proposition 12.3 in Rockafellar and Wets (1998).

Property (59) holding for all §; and 63 in the full canonical parameter
space with 01 # 05 is called strict multivariate monotonicity of the mapping
from 60 to u (Rockafellar and Wets, 1998, Chapter 12). When the canonical
parameterization is identifiable, it follows from our Theorem 1 that there
is no nonzero vector ¢ such that (y,d) is almost surely constant, which
implies both sides of (6) are positive definite matrices. And this implies
strict multivariate monotonicity by Proposition 12.3 in Rockafellar and Wets
(1998).

Since canonical affine submodels of regular full exponential families are
themselves regular full exponential families, the same theory discussed above
applies to them. If 81 and (B2 are possible values of the submodel canonical
parameter vector and

T = vCsub(/Bl) = MTVC(CL + Mﬁl)
T2 = vcsub(/BQ) = MTVC(CL + Mﬁl)

are the corresponding values of the submodel mean-value parameter vector,
then

(11 — 12,81 — B2) > 0, (60)
and if the canonical parameterization is identifiable
(11 — 12, 81 — B2) >0, B1 # Ba. (61)

So much for the theory of multivariate monotonicity. What is the point?
Why is it even called that?

In the case where there is just one parameter (so § and p are scalars
rather than vectors) equation (58) becomes

(111 — p2) (6 — 62) > 0,

SO 1 — o and 01 — 05 are either both nonnegative or both nonpositive. Hence
01 < 60y implies p1 < pa, and the mapping from 6 to p is a nondecreasing
function.

The term monotone applied to scalar-to-scalar functions usually means
either nondecreasing or nonincreasing. If a scalar-to-scalar function is mul-
tivariate monotone, then it is nondecreasing. So the match is not perfect,
but we can see why the name.
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In the case where there is just one parameter equation (59) becomes

(11 — p2) (61 — 62) > 0,

so w1 — po and 61 — By are either both negative or both positive. Hence
01 < 69 implies pu; < p2, and the mapping from 6 to p is an increasing
function.

The term strictly monotone applied to scalar-to-scalar functions usually
means either decreasing or increasing. If a scalar-to-scalar function is mul-
tivariate monotone, then it is increasing. So again the match is not perfect,
but we can see why the name.

So why is this the multivariate analog of univariate monotonicity? Con-
sider the mapping restricted to a line. Pick two distinct points 61 and 65
in the canonical parameter space and consider the line determined by these
two points

rf1 + (1 — )02, r € R.

Then we consider the part of this line that is in the full canonical parameter
space O given by (7). Define

Tmin = nf{r eR:76; + (1 —r)h €O}
Tmax =sup{r e R: 76, + (1 —r)hy € ©}

("min = —00 and rmyax = +00 are possible values). Then
ro1 + (1 - T)92a Tmin <7 < T'max

is the part of this line in the full canonical parameter space.
The map from canonical to mean-value parameters is nonlinear, so the
corresponding mean values

pr = Ve(réy + (1 —7)6s)

do not lie on a line but rather on a smooth curve. What does the multivariate
monotonicity property say here? Consider r1 and ro with rpm <71 < re <
Tmax. Lhen

[7“1«91 + (1 — 7"1)92] — [7“291 + (1 — 7“2)92] = (7“1 — 7“2)(91 — 92)

and the multivariate monotonicity property becomes

0 < (i, — fhry, (11— 12) (01 — 02)) = (r1 — r2){fry — Hry, 01 — 02)
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SO
</‘LT1 - /‘1"'"2’61 - 92> <0

and
(try5 01 = O2) < (pry, 01 — 62)

Thus the multivariate monotonicity property says
= (i, 01 — 62) (62)

is a nondecreasing function. And following the same logic for the strictly
multivariate monotonicity property would show that (62) is an increasing
function.

If we apply what we just learned to points that change only one coordi-
nate of 8, so 81 — 60, points along a coordinate axis we get the following, which
your humble calls the “dumbed down” version of multivariate monotonic-
ity. (As always 6 is the canonical parameter vector and p is the mean-value
parameter vector and 0; and p; are their components.)

e Increase 6; holding the other components of 6 fixed, and u; either
either increases or stays the same. Other components of u can go any
which way.

e If the canonical parameterization is identifiable, increasing 6; holding
the other components of 6 fixed increases p;.

The reason we call this “dumbed down” is that it is not enough information
to capture the full multivariate monotonicity phenomenon. For example
Shaw and Geyer (2010, Appendix A) found that an important bit of scientific
reasoning about aster models (which are exponential family models) required
the full force of (61). Thinking one coordinate at a time didn’t do the job.

Nevertheless, the “dumbed down” version is a lot easier to explain to
people and so is often used when the full force of the technical definition is
not needed.

In GLM, independence of components of the response vector means that
the model is product exponential family, each component having an ex-
ponential family distribution that does not involve other components. This
means that the mapping 6; — p; is scalar-to-scalar, hence an increasing func-
tion (we never use a nonidentifiable canonical parameterization for GLM sat-
urated models, because that would make the canonical parameter space one-
dimensional and the mean-value parameter space zero-dimensional, which
would give us a degenerate model with only one distribution, and that would
be pointless).

74



So for GLM saturated models, we can reason componentwise. Each u;
is a function of 6; only, and this function is increasing. But this does not
work for GLM canonical affine submodels. Changing one component of £
(the “intercept” component, for example) can change all the components of
the submodel canonical parameter vector 7 (and also all the components of
0 and p).

For other exponential family models, including multinomial models, we
need multivariate monotonicity. There is no available univariate monotonic-

ity.
9 Maximum Entropy

10 Summary

A Proofs

Proof of Theorem 2. What is to be shown is that, if
p1 = Ve(6r)
p2 = Ve(6s)

and p1 = ue, then 61 — 6 is a direction of constancy, so #; and 6 corre-
spond to the same distribution and so p; and po correspond to the same
distribution.

Let 6 = 61 — 05, and let [ be the log likelihood. Then the change of
parameter

0 =05+ s

is a one dimensional canonical affine submodel that has canonical statistic
(y,9), canonical parameter s, and log likelihood

lsun(s) = (y,0)s — (02 + 59)
which has derivative
Gun(8) = (y,6) = (Ve(b + 50),6) (63)
and second derivative

! (s) = —(V2¢c(6y + 56)8,0) (64)

sub
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Using (6) we can rewrite (64) as

—(V2c(0 + 50)68,8) = —6T [V2c(f + 50)] &
=47 varg, +s5(y)0
= —varg,1+s5((y,0))

Now there are two cases.

TCase I: varg,1s5((y,0)) = 0 for some s, in which case (y,d) is almost
surely constant and ¢ is a direction of constancy by Theorem 1 in Geyer
(2009) But that would imply that 6; and 6, index the same distribution so
H1 = p2.

Case II: varg,;s5((y,0)) > 0 for all s such that 63 + sé is in the full
canonical parameter space (7), in which case, since varg,s5((y,0)) > 0 is
also —17 . (s) by (64), it follows that —I. , (s) is increasing in s for all s
and I/ , (s) is decreasing in s for all s. From (63) it follows that I, , (s) is
decreasing in s if and only if —(Ve(0y+s6), d) decreasing in s, which happens
if and only if (Ve(02 4 s0), ) is increasing in s. But by (5) we have

<VC(02 + 35)? 5> = <E92+S5(y)7 6>

and plugging in zero and one into this expression gives

(2,6) < (p1,0)

and this implies p # us.
In conclusion, p; = po implies we are in Case [ so 6 = 61 — 6 is a
direction of constancy. O
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