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Joint and Marginal Distributions

When we have two random variables X and Y under discussion,

a useful shorthand calls the distribution of the random vector

(X, Y ) the joint distribution and the distributions of the random

variables X and Y the marginal distributions.
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Joint and Marginal Distributions (cont.)

The name comes from imagining the distribution is given by a

table

Y
grass grease grub

red 1/30 1/15 2/15 7/30
X white 1/15 1/10 1/6 1/3

blue 1/10 2/15 1/5 13/30
1/5 3/10 1/2 1

In the center 3× 3 table is the joint distribution of the variables

X and Y . In the right margin is the marginal distribution of X.

In the bottom margin is the marginal distribution of Y .
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Joint and Marginal Distributions (cont.)

The rule for finding a marginal is simple.

To obtain a marginal PMF/PDF from a joint PMF/PDF,
sum or integrate out the variable(s) you don’t want.

For discrete, this is obvious from the definition of the PMF of a
random variable.

fX(x) = Pr(X = x) =
∑
y

fX,Y (x, y)

fY (y) = Pr(Y = y) =
∑
x

fX,Y (x, y)

To obtain the marginal of X sum out y. To obtain the marginal
of Y sum out x.
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Joint and Marginal Distributions (cont.)

For continuous, this is a bit less obvious, but if we define

fX(x) =
∫

fX,Y (x, y) dy

We see that this works when we calculate expectations

E{g(X)} =
∫

g(x)fX(x) dx

=
∫

g(x)
∫

fX,Y (x, y) dy dx

=
∫∫

g(x)fX,Y (x, y) dy dx

The top line is the definition of E{g(X)} if we accept fX as the

PDF of X. The bottom line is the definition of E{g(X)} if we

accept fX,Y as the PDF of (X, Y ). They must agree, and do.
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Joint and Marginal Distributions (cont.)

Because of non-uniqueness of PDF — we can redefine on a set

of probability zero without changing the distribution — we can’t

say the marginal obtained by this rule is the unique marginal, but

it is a valid marginal.

To obtain the marginal of X integrate out y. To obtain the

marginal of Y integrate out x.
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Joint and Marginal Distributions (cont.)

The word “marginal” is entirely dispensable, which is why we

haven’t needed to use it up to now.

The term “marginal PDF of X” means exactly the same thing

as the the term “PDF of X”.

It is the PDF of the random variable X, which may be redefined

on sets of probability zero without changing the distribution of

X.

“Joint” and “marginal” are just verbal shorthand to distinguish

the univariate distributions (marginals) from the bivariate distri-

bution (joint).
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Joint and Marginal Distributions (cont.)

When we have three random variables X, Y , and Z under dis-

cussion, the situation becomes a bit more confusing.

By summing or integrating out one variable we obtain any of

three bivariate marginals fX,Y , fX,Z, or fY,Z.

By summing or integrating out two variables we obtain any of

three univariate marginals fX, fY , or fZ.

Thus fX,Y can be called either a joint distribution or a marginal

distribution depending on context. fX,Y is a marginal of fX,Y,Z,

but fX is a marginal of fX,Y .
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Joint and Marginal Distributions (cont.)

But the rule remains the same

To obtain a marginal PMF/PDF from a joint PMF/PDF,
sum or integrate out the variable(s) you don’t want.

For example

fW,X(w, x) =
∫∫

fW,X,Y,Z(w, x, y, z) dy dz

Write out what you are doing carefully like this. If the equation
has the same free variables on both sides (here w and x), and the
dummy variables of integration (or summation) do not appear
as free variables, then you are trying to do the right thing. Do
the integration correctly, and your calculation will be correct.
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Joint, Marginal, and Independence

If X1, . . ., Xn are IID with PMF/PDF f , then the joint distribu-

tion of the random vector (X1, . . . , Xn) is

f(x1, . . . , xn) =
n∏

i=1

f(xi)

In short, the joint is the product of the marginals when the

variables are independent.

We already knew this. Now we have the shorthand of “joint”

and “marginals”.
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Conditional Probability and Expectation

The conditional probability distribution of Y given X is the prob-

ability distribution you should use to describe Y after you have

seen X.

It is a probability distribution like any other. It is described by

in any of the ways we describe probability distributions: PMF,

PDF, DF, or by change-of-variable from some other distribution.

The only difference is that it the conditional distribution is a

function of the observed value of X. Hence its parameters, if

any, are functions of X.
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Conditional Probability and Expectation (cont.)

So back to the beginning. Nothing we have said in this course

tells us anything about this new notion of conditional probability

and expectation.

It is yet another generalization. When we went from finite to

infinite sample spaces, some things changed, although a lot re-

mained the same. Now we go from ordinary, unconditional prob-

ability and expectation and some things change, although a lot

remain the same.
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Conditional Probability and Expectation (cont.)

The conditional PMF or PDF of Y given X is written f(y | x).

It determines the distribution of the variable in front of the bar

Y given a value x of the variable behind the bar X.

The function y 7→ f(y | x), that is, the f(y | x) thought of a a

function of y with x held fixed, is a PMF or PDF and follows all

the rules for such.
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Conditional Probability and Expectation (cont.)

In particular,

f(y | x) ≥ 0, for all y

and in the discrete case ∑
y

f(y | x) = 1

and in the continuous case∫
f(y | x) dy = 1
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Conditional Probability and Expectation (cont.)

From conditional PMF and PDF we define conditional expecta-

tion

E{g(Y ) | x} =
∫

g(y)f(y | x) dy

and conditional probability

Pr{Y ∈ A | x} = E{IA(Y ) | x}

=
∫

IA(y)f(y | x) dy

=
∫
A

f(y | x) dy

(with integration replaced by summation if Y is discrete).
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Conditional Probability and Expectation (cont.)

The variable behind the bar just goes along for the ride. It is

just like a parameter.

In fact this is one way to make up conditional distributions. Com-

pare

fλ(x) = λe−λx, x > 0, λ > 0

and

f(y | x) = xe−xy, y > 0, x > 0
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Conditional Probability and Expectation (cont.)

Formally, there is no difference whatsoever between a paramet-

ric family of distributions and a conditional distribution. Some

people like to write f(x | λ) instead of fλ(x) to emphasize this

fact.

People holding non-formalist philosophies of statistics do see dif-

ferences. Some, usually called frequentists, although this issue

really has nothing to do with infinite sequences and the law of

large numbers turned into a definition of expectation, would say

there is a big difference between f(x | y) and fλ(x) because Y is

a random variable and λ is not.

More on this next semester.
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Conditional Probability and Expectation (cont.)

Compare. If the distribution of X is Exp(λ), then

E(X) =
∫ ∞
0

xf(x) dx =
∫ ∞
0

xλe−λx dx =
1

λ

If the conditional distribution of Y given X is Exp(x), then

E(Y | x) =
∫ ∞
0

yf(y | x) dy =
∫ ∞
0

yxe−xy dy =
1

x

Just replace x by y and λ by x in that order.
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Conditional Probability and Expectation (cont.)

Compare. If the distribution of X is Exp(λ), then

Pr(X > a) =
∫ ∞
a

f(x) dx =
∫ ∞
a

λe−λx dx = e−λa

If the conditional distribution of Y given X is Exp(x), then

Pr(Y > a | x) =
∫ ∞
a

f(y | x) dy =
∫ ∞
a

xe−xy dy = e−xa

Just replace x by y and λ by x in that order.
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Conditional Probability and Expectation (cont.)

Compare. If the PDF of X is

fθ(x) =
x + θ

1/2 + θ
, 0 < x < 1

then

Eθ(X) =
∫ 1

0
xfθ(x) dx =

∫ 1

0

x(x + θ)

1/2 + θ
dx =

2 + 3θ

3 + 6θ

If the conditional PDF of Y given X is

f(y | x) =
y + x

1/2 + x
, 0 < y < 1

then

E(Y | x) =
∫ 1

0
yf(y | x) dy =

∫ 1

0

y(y + x)

1/2 + x
dy =

2 + 3x

3 + 6x
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Conditional Probability and Expectation (cont.)

Compare. If the PDF of X is

fθ(x) =
x + θ

1/2 + θ
, 0 < x < 1

then

Prθ(X > 1/2) =
∫ 1

1/2
fθ(x) dx =

∫ 1

1/2

x + θ

1/2 + θ
dx =

3 + 4θ

4 + 8θ

If the conditional PDF of Y given X is

f(y | x) =
y + x

1/2 + x
, 0 < y < 1

then

Pr(Y > 1/2 | x) =
∫ 1

1/2
f(y | x) dy =

∫ 1

1/2

y + x

1/2 + x
dy =

3 + 4x

4 + 8x
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Conditional Probability and Expectation (cont.)

So far, everything in conditional probability theory is just like

ordinary probability theory. Only the notation is different.

Now for the new stuff.
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Normalization

Suppose h is a nonnegative function. Does there exist a constant
c such that h = c · f is a PDF and, if so, what is it?

If we choose c to be nonnegative, then we automatically have
the first property of a PDF

f(x) ≥ 0, for all x.

To get the second property∫
f(x) dx = c

∫
h(x) dx = 1

we clearly need the integral of h to be finite and nonzero, in
which case

c =
1∫

h(x) dx
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Normalization (cont.)

So

f(x) =
h(x)∫
h(x) dx

This process of dividing a function by what it integrates to (or

sums to in the discrete case) is called normalization.

We have already done this several times in homework without

giving the process a name.
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Normalization (cont.)

We say a function h is called an unnormalized PDF if it is non-

negative and has finite and nonzero integral, in which case

f(x) =
h(x)∫
h(x) dx

is the corresponding normalized PDF.

We say a function h is called an unnormalized PMF if it is non-

negative and has finite and nonzero sum, in which case

f(x) =
h(x)∑
x h(x)

is the corresponding normalized PMF.
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Conditional Probability as Renormalization

Suppose we have a joint PMF or PDF f for two random variables

X and Y .

After we observe a value x for X, the only values of the random

vector (X, Y ) that are possible are (x, y) where the x is the same

observed value. That is, y is still a variable, but x has been fixed.

Hence what is now interesting is the function

y 7→ f(x, y)

a function of one variable, a different function for each fixed x.

That is, y is a variable, but x plays the role of a parameter.
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Conditional Probability as Renormalization (cont.)

The function of two variables

(x, y) 7→ f(x, y)

is a normalized PMF or PDF, but we are no longer interested in

it.

The function of one variable

y 7→ f(x, y)

is an unnormalized PMF or PDF, that describes the conditional

distribution. How do we normalize it?
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Conditional Probability as Renormalization (cont.)

Discrete case (sum)

f(y | x) =
f(x, y)∑
y f(x, y)

=
f(x, y)

fX(x)

Continuous case (integrate)

f(y | x) =
f(x, y)∫
f(x, y) dy

=
f(x, y)

fX(x)

In both cases

f(y | x) =
f(x, y)

fX(x)

or

conditional =
joint

marginal
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Joint, Marginal, and Conditional

It is important to remember the relationships

conditional =
joint

marginal

and

joint = conditional×marginal

but not enough. You have to remember which marginal.
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Joint, Marginal, and Conditional (cont.)

The marginal is for the variable(s) behind the bar in the

conditional.

It is important to remember the relationships

f(y | x) =
f(x, y)

fX(x)

and

f(x, y) = f(y | x)fX(x)
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Joint, Marginal, and Conditional (cont.)

All of this generalizes to the case of many variables with the

same slogan.

The marginal is for the variable(s) behind the bar in the

conditional.

f(u, v, w, x | y, z) =
f(u, v, w, x, y, z)

fY,Z(y, z)

and

f(u, v, w, x, y, z) = f(u, v, w, x | y, z)× fY,Z(y, z)
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Joint to Conditional

Suppose the joint is

f(x, y) = c(x + y)2, 0 < x < 1, 0 < y < 1

then the marginal for X is

f(x) =
∫ 1

0
c(x2 + 2xy + y2) dy

= c

(
x2y + xy2 +

y3

3

)∣∣∣∣∣
1

0

= c

(
x2 + x +

1

3

)
and the conditional for Y given X is

f(y | x) =
(x + y)2

x2 + x + 1/3
, 0 < y < 1
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Joint to Conditional (cont.)

The preceding example shows an important point: even though

we did not know the constant c that normalizes the joint distri-

bution, it did not matter.

When we renormalize the joint to obtain the conditional, this

constant c cancels.

Conclusion: the joint PMF or PDF does not need to be normal-

ized, since we need to renormalize anyway.
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Joint to Conditional (cont.)

Suppose the marginal distribution of X is N (µ, σ2) and the con-

ditional distribution of Y given X is N (X, τ2). What is the con-

ditional distribution of X given Y ?

As we just saw, we can ignore constants for the joint distribution.

The unnormalized joint PDF is conditional times marginal

exp(−(y − x)2/2τ2) exp(−(x− µ)2/2σ2)
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Joint to Conditional (cont.)

In aid of doing this problem we prove a lemma that is useful,

since we will do a similar calculation many, many times.

The “e to a quadratic” lemma says that x 7→ eax2+bx+c is an

unnormalized PDF if and only if a < 0, in which case it the

unnormalized PDF of the N (−b/2a,−1/2a) distribution.

First, if a ≥ 0, then x 7→ eax2+bx+c goes to ∞ as either x → ∞
or as x → −∞ (or perhaps both). Hence the integral of this

function is not finite. So it is not an unnormalized PDF.
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Joint to Conditional (cont.)

In case a < 0 we compare exponents with a normal PDF

ax2 + bx + c

and

−
(x− µ)2

2σ2
= −

x2

2σ2
+

xµ

σ2
−

µ2

2σ2

and we see that

a = −1/2σ2

b = µ/σ2

so

σ2 = −1/2a

µ = bσ2 = −b/2a

works.
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Joint to Conditional (cont.)

Going back to our example with joint PDF

exp

(
−

(y − x)2

2τ2
−

(x− µ)2

2σ2

)

= exp

(
−

y2

2τ2
+

xy

τ2
−

x2

2τ2
−

x2

2σ2
+

xµ

σ2
−

µ2

2σ2

)

= exp

([
−

1

2τ2
−

1

2σ2

]
x2 +

[
y

τ2
+

µ

σ2

]
x +

[
−

y2

2τ2
−

µ2

2σ2

])

37



Joint to Conditional (cont.)

we see that

exp

([
−

1

2τ2
−

1

2σ2

]
x2 +

[
y

τ2
+

µ

σ2

]
x +

[
−

y2

2τ2
−

µ2

2σ2

])
does have the form e to a quadratic, so the conditional distribu-

tion of X given Y is normal with mean and variance

µcond =

µ
σ2 + y

τ2

1
σ2 + 1

τ2

σ2
cond =

1
1
σ2 + 1

τ2
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Joint to Conditional (cont.)

An important lesson from the preceding example is that we didn’t

have to do an integral to recognize that the conditional was a

brand name distribution. If we recognize the functional form of

y 7→ f(x, y) as a brand name PDF except for constants, then we

are done. We have identified the conditional distribution.
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Review

So far we have done two topics in conditional probability theory.

The definition of conditional probability and expectation is just
like the definition of unconditional probability and expectation:
variables behind the bar in the former act just like parameters in
the latter.

One converts between joint and conditional with

conditional = joint/marginal

joint = conditional×marginal

although one often doesn’t need to actually calculate the marginal
in going from joint to conditional; recognizing the unnormalized
density is enough.
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Conditional Expectations as Random Variables

An ordinary expectation is a number not a random variable.
Eθ(X) is not random, not a function of X, but it is a function
of the parameter θ.

A conditional expectation is a number not a random variable.
E(Y | x) is not random, not a function of Y , but it is a function
of the observed value x of the variable behind the bar.

Say E(Y | x) = g(x).

g is an ordinary mathematical function, and x is just a number,
so g(x) is just a number.

But g(X) is a random variable when we consider X a random
variable.
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Conditional Expectations as Random Variables

If we write

g(x) = E(Y | x)

then we also write

g(X) = E(Y | X)

to indicate the corresponding random variable.

Wait a minute? Isn’t conditional probability about the distribu-

tion of Y when X has already been observed to have the value

x and is no longer random?

Uh. Yes and no. Before, yes. Now, no.
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Conditional Expectations as Random Variables (cont.)

The woof about “after you have observed X but before you

have observed Y ” is just that, philosophical woof that may help

intuition but is not part of the mathematical formalism. None of

our definitions of conditional probability and expectation require

it.

So when we now say that E(Y | X) is a random variable that is

a function of X but not a function of Y , that is what it is.
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The General Multiplication Rule

If variables X and Y are independent, then we can “factor” the

joint PDF or PMF as the product of marginals

f(x, y) = fX(x)fY (y)

If they are not independent, then we can still “factor” as condi-

tional times marginal

f(x, y) = fY |X(y | x)fX(x)

= fX|Y (x | y)fY (y)
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The General Multiplication Rule (cont.)

When there are more variables, there are more factorizations

f(x, y, z) = fX|Y,Z(x | y, z)fY |Z(y | z)fZ(z)

= fX|Y,Z(x | y, z)fZ|Y (z | y)fY (y)

= fY |X,Z(y | x, z)fX|Z(x | z)fZ(z)

= fY |X,Z(y | x, z)fZ|X(z | x)fX(x)

= fZ|X,Y (z | x, y)fX|Y (x | y)fY (y)

= fZ|X,Y (z | x, y)fY |X(y | x)fX(x)
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The General Multiplication Rule (cont.)

This is actually clearer without the clutter of subscripts

f(x, y, z) = f(x | y, z)f(y | z)f(z)

= f(x | y, z)f(z | y)f(y)

= f(y | x, z)f(x | z)f(z)

= f(y | x, z)f(z | x)f(x)

= f(z | x, y)f(x | y)f(y)

= f(z | x, y)f(y | x)f(x)

and this considers only factorizations in which each “term” has

only one variable in front of the bar.

None of this has anything to do with whether a variable has been

“observed” or not.
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Iterated Expectation

If X and Y are continuous

E{E(Y | X)} =
∫

E(Y | x)f(x) dx

=
∫ [∫

yf(y | x) dy

]
f(x) dx

=
∫∫

yf(y | x)f(x) dy dx

=
∫∫

yf(x, y) dy dx

= E(Y )

The same is true if X and Y are discrete (replace integrals by
sums).

The same is true if one of X and Y is discrete and the other
continuous (replace one of the integrals by a sum).
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Iterated Expectation Axiom

In summary

E{E(Y | X)} = E(Y )

holds for any random variables X and Y that we know how to

deal with.

It is taken to be an axiom of conditional probability theory. It

is required to hold for anything anyone wants to call conditional

expectation.
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Other Axioms for Conditional Expectation

The following are obvious from the analogy with unconditional

expectation.

E(X + Y | Z) = E(X | Z) + E(Y | Z) (1)

E(X | Z) ≥ 0, when X ≥ 0 (2)

E(aX | Z) = aE(X | Z) (3)

E(1 | Z) = 1 (4)
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Other Axioms for Conditional Expectation (cont.)

The “constants come out” axiom (3) can be strengthened. Since

variables behind the bar play the role of parameters, which be-

have like constants in these four axioms, any function of the

variables behind the bar behaves like a constant.

E{a(Z)X | Z} = a(Z)E(X | Z)

for any function a.
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Conditional Expectation Axiom Summary

E(X + Y | Z) = E(X | Z) + E(Y | Z) (1)

E(X | Z) ≥ 0, when X ≥ 0 (2)

E{a(Z)X | Z} = a(Z)E(X | Z) (3*)

E(1 | Z) = 1 (4)

E{E(X | Z)} = E(X) (5)

We have changed the variables behind the bar to boldface to in-
dicate, that these also hold when there is more than one variable
behind the bar.

We see that, axiomatically, ordinary and conditional expecta-
tion are just alike except that (3*) is stronger than (3) and the
iterated expectation axiom (5) applies only to conditional expec-
tation.
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Consequences of Axioms

All of the consequences we derived from the axioms for expec-

tation carry over to conditional expectation if one makes appro-

priate changes of notation.

Here are some.

The best prediction of Y that is a function of X is E(Y | X)

when the criterion is expected squared prediction error.

The best prediction of Y that is a function of X is the median

of the conditional distribution of Y given X when the criterion

is expected absolute prediction error.
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Best Prediction

Suppose X and Y have joint distribution

f(x, y) = x + y, 0 < x < 1, 0 < y < 1.

What is the best prediction of Y when X has been observed?
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Best Prediction

When expected squared prediction error is the criterion, the an-

swer is

E(Y | x) =

∫ 1
0 y(x + y) dy∫ 1
0 (x + y) dy

=

xy2

2 + y3

3

∣∣∣∣1
0

xy + y2

2

∣∣∣∣1
0

=
x
2 + 1

3

x + 1
2
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Best Prediction (cont.)

When expected absolute prediction error is the criterion, the

answer is the conditional median, which is calculated as follows.

First we find the conditional PDF

f(y | x) =
x + y∫ 1

0 (x + y) dy

=
x + y

xy + y2

2

∣∣∣∣1
0

=
x + y

x + 1
2
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Best Prediction (cont.)

First we find the conditional DF. For 0 < y < 1

F (y | x) = Pr(Y ≤ y | x)

=
∫ y

0

x + s

x + 1
2

ds

=
xs + s2

2

x + 1
2

∣∣∣∣∣∣
y

0

=
xy + y2

2

x + 1
2
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Best Prediction (cont.)

Finally we have to solve the equation F (y | x) = 1/2 to find the
median.

xy + y2

2

x + 1
2

=
1

2

is equivalent to

y2 + 2xy −
(
x +

1

2

)
= 0

which has solution

y =
−2x +

√
4x2 + 4

(
x + 1

2

)
2

= −x +

√
x2 + x +

1

2
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Best Prediction (cont.)

Here are the two types compared for this example.

0.0 0.2 0.4 0.6 0.8 1.0
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e 
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Conditional Variance

Conditional variance is just like variance, just replace ordinary

expectation with conditional expectation.

var(Y | X) = E{[Y − E(Y | X)]2 | X}
= E(Y 2 | X)− E(Y | X)2

Similarly

cov(X, Y | Z) = E{[X − E(X | Z)][Y − E(Y | Z)] | Z}
= E(XY | Z)− E(X | Z)E(Y | Z)
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Conditional Variance (cont.)

var(Y ) = E{[Y − E(Y )]2}
= E{[Y − E(Y | X) + E(Y | X)− E(Y )]2}
= E{[Y − E(Y | X)]2}

+ 2E{[Y − E(Y | X)][E(Y | X)− E(Y )]}
+ E{[E(Y | X)− E(Y )]2}
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Conditional Variance (cont.)

By iterated expectation

E{[Y − E(Y | X)]2} = E
(
E{[Y − E(Y | X)]2 | X}

)
= E{var(Y | X)}

and

E{[E(Y | X)− E(Y )]2} = var{E(Y | X)}

because E{E(Y | X)} = E(Y ).
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Conditional Variance (cont.)

E{[Y − E(Y | X)][E(Y | X)− E(Y )]}
= E

(
E{[Y − E(Y | X)][E(Y | X)− E(Y )] | X}

)
= E

(
[E(Y | X)− E(Y )]E{[Y − E(Y | X)] | X}

)
= E

([
E(Y | X)− E(Y )

][
E(Y | X)− E{E(Y | X) | X)}

])
= E

([
E(Y | X)− E(Y )

][
E(Y | X)− E(Y | X)E(1 | X)

])
= E

([
E(Y | X)− E(Y )

][
E(Y | X)− E(Y | X)

])
= 0
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Conditional Variance (cont.)

In summary, this is the iterated variance theorem

var(Y ) = E{var(Y | X)}+ var{E(Y | X)}
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Conditional Variance (cont.)

If the conditional distribution of Y given X is Gam(X, X) and 1/X

has mean 10 and standard deviation 2, then what is var(Y )?

First

E(Y | X) =
α

λ
=

X

X
= 1

var(Y | X) =
α

λ2
=

X

X2
= 1/X

So

var(Y ) = E{var(Y | X)}+ var{E(Y | X)}
= E(1/X) + var(1)

= 10
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Conditional Probability and Independence

X and Y are independent random variables if and only if

f(x, y) = fX(x)fY (y)

and

f(y | x) =
f(x, y)

fX(x)
= fY (y)

and, similarly

f(x | y) = fX(x)
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Conditional Probability and Independence (cont.)

Generalizing to many variables, the random vectors X and Y are

independent if and only if the conditional distribution of Y given

X is the same as the marginal distribution of Y (or the same

with X and Y interchanged).
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Bernoulli Process

A sequence X1, X2, . . . of IID Bernoulli random variables is called

a Bernoulli process.

The number of successes (Xi = 1) in the first n variables has the

Bin(n, p) distribution where p = E(Xi) is the success probability.

The waiting time to the first success (the number of failures

before the first success) has the Geo(p) distribution.
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Bernoulli Process (cont.)

Because of the independence of the Xi, the number of failures

from “now” until the next success also has the Geo(p) distribu-

tion.

In particular, the numbers of failures between successes are in-

dependent and have the Geo(p) distribution.
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Bernoulli Process (cont.)

Define

T0 = 0

T1 = min{ i ∈ N : i > T0 andXi = 1 }
T2 = min{ i ∈ N : i > T1 andXi = 1 }

...

Tk+1 = min{ i ∈ N : i > Tk andXi = 1 }
...

and

Yk = Tk − Tk−1 − 1, k = 1,2, . . . ,

then the Yk are IID Geo(p).
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Poisson Process

The Poisson process is the continuous analog of the Bernoulli

process. We replace Geo(p) by Exp(λ) for the interarrival times.

Suppose T1, T2, . . . are IID Exp(λ), and define

Xn =
n∑

i=1

Ti, n = 1,2, . . . .

The one-dimensional spatial point process with points at X1, X2,

. . . is called the Poisson process with rate parameter λ.
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Poisson Process (cont.)

The distribution of Xn is Gam(n, λ) by the addition rule for ex-

ponential random variables.

We need the DF for this variable. We already know that X1,

which has the Exp(λ) distribution, has DF

F1(x) = 1− e−λx, 0 < x < ∞.
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Poisson Process (cont.)

For n > 1 we use integration by parts with u = sn−1 and dv =

e−λs ds and v = −(1/λ)e−λs, obtaining

Fn(x) =
λn

Γ(n)

∫ x

0
sn−1e−λs ds

= −
λn−1

(n− 1)!
sn−1e−λs

∣∣∣∣∣
x

0
+
∫ x

0

λn−1

(n− 2)!
sn−2e−λs ds

= −
λn−1

(n− 1)!
xn−1e−λx + Fn−1(x)

so

Fn(x) = 1− e−λx
n−1∑
k=0

(λx)k

k!
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Poisson Process (cont.)

There are exactly n points in the interval (0, t) if Xn < t < Xn+1,

and

Pr(Xn < t < Xn+1) = 1− Pr(Xn > tor Xn+1 < t)

= 1− Pr(Xn > t)− Pr(Xn+1 < t)

= 1− [1− Fn(t)]− Fn+1(t)

= Fn(t)− Fn+1(t)

=
(λt)n

n!
e−λt

Thus we have discovered that the probability distribution of the

random variable Y which is the number of points in (0, t) has

the Poi(λt) distribution.

73



Memoryless Property of the Exponential Distribution

If the distribution of the random variable X is Exp(λ), then so

is the conditional distribution of X − a given the event X > a,

where a > 0.

This conditioning is a little different from what we have seen

before. The PDF of X is

f(x) = λe−λx, x > 0.

To condition on the event X > a we renormalize the part of the

distribution on the interval (a,∞)

f(x | X > a) =
λe−λx∫∞

a λe−λx dx
= λe−λ(x−a)
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Memoryless Property of the Exponential Distribution (cont.)

Now define Y = X − a. The “Jacobian” for this change-of-

variable is equal to one, so

f(y | X > a) = λe−λy, y > 0,

and this is what was to be proved.
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Poisson Process (cont.)

Suppose bus arrivals follow a Poisson process (they don’t but

just suppose). You arrive at time a. The waiting time until the

next bus arrives is Exp(λ) by the memoryless property. Then

the interarrival times between following buses are also Exp(λ).

Hence the future pattern of arrival times also follows a Poisson

process.

Moreover, since the distribution of time of the arrival of the next

bus after time a does not depend on the past history of the

process, the entire future of the process (all arrivals after time

a) is independent of the entire past of the process (all arrivals

before time a).
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Poisson Process (cont.)

Thus we see that for any a and b with 0 < a < b < ∞, the number

of points in (a, b) is Poisson with mean λ(b − a), and counts of

points in disjoint intervals are independent random variables.

Thus we have come the long way around to our original definition

of the Poisson process: counts in nonoverlapping intervals are

independent and Poisson distributed, and the expected count in

an interval of length t is λt for some constant λ > 0 called the

rate parameter.
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Poisson Process (cont.)

We have also learned an important connection with the expo-

nential distribution. All waiting times and interarrival times in

a Poisson process have the Exp(λ) distribution, where λ is the

rate parameter.

Summary:

• Counts in an interval of length t are Poi(λt).

• Waiting and interarrival times are Exp(λ).
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Multinomial Distribution

So far all of our brand name distributions are univariate. We will

do two multivariate ones. Here is the first.

A random vector X = (X1, . . . , Xk) is called multivariate Bernoulli

if its components are zero-or-one-valued and sum to one almost

surely. These two assumptions imply that exactly one of the Xi

is equal to one and the rest are zero.

The distributions of these random vectors form a parametric

family with parameter

E(X) = p = (p1, . . . , pk)

called the success probability parameter vector.
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Multinomial Distribution (cont.)

The distribution of Xi is Ber(pi), so

E(Xi) = pi

var(Xi) = pi(1− pi)

for all i.

But the components of X are not independent. When i 6= j we

have XiXj = 0 almost surely, because exactly one component of

X is nonzero. Thus

cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

= −pipj
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Multinomial Distribution (cont.)

We can write the mean vector

E(X) = p

and variance matrix

var(X) = P− ppT

where P is the diagonal matrix whose diagonal is p. (The i, i-th

element of P is the i-th element of p. The i, j-th element of P

is zero when i 6= j.)
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Multinomial Distribution (cont.)

If X1, X2, . . ., Xn are IID multivariate Bernoulli random vectors

(the subscript does not indicate components of a vector) with

success probability vector p = (p1, . . . , pk), then

Y =
n∑

i=1

Xi

has the multinomial distribution with sample size n and success

probability vector p, which is denoted Multi(n,p).

Suppose we have an IID sample of n individuals and each indi-

vidual is classified into exactly one of k categories. Let Yj be the

number of individuals in the j-th category. Then Y = (Y1, . . . , Yk)

has the Multi(n,p) distribution.
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Multinomial Distribution (cont.)

Since the expectation of a sum is the sum of the expectations,

E(Y) = np

Since the variance of a sum is the sum of the variances when

the terms are independent (and this holds when the terms are

random vectors too),

var(Y) = n(P− ppT )
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Multinomial Distribution (cont.)

We find the PDF of the multinomial distribution by the same
argument as for the binomial.

First, consider the case where we specify each Xj

Pr(Xj = xj, j = 1, . . . , n) =
n∏

j=1

Pr(Xj = xj) =
k∏

i=1

p
yi
i

where

(y1, . . . , yk) =
n∑

j=1

xj,

because in the product running from 1 to n each factor is a
component of p and the number of factors that are equal to pi
is equal to the number of Xj whose i-th component is equal to
one, and that is yi.
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Multinomial Coefficients

Then we consider how many ways we can rearrange the Xj values

and get the same Y, that is, how many ways can we choose which

of the individuals are in first category, which in the second, and

so forth?

The answer is just like the derivation of binomial coefficients.

The number of ways to allocate n individuals to k categories so

that there are y1 in the first category, y2 in the second, and so

forth is (n
y

)
=
( n

y1, y2, . . . , yk

)
=

n!

y1! y2! · · · yk!

which is called a multinomial coefficient.
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Multinomial Distribution (cont.)

The PDF of the Multi(n,p) distribution is

f(y) =
(n
y

) k∏
i=1

p
yi
i
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Multinomial Theorem

The fact that the PDF of the multinomial distribution sums to

one is equivalent to the multinomial theorem k∑
i=1

ai

n

=
∑

x∈Nk

x1+···+xk=n

(n
x

) k∏
i=1

a
xi
i

of which the binomial theorem is the k = 2 special case.

As in the binomial theorem, the ai do not have to be negative

and do not have to sum to one.
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Multinomial and Binomial

However, the binomial distribution is not the k = 2 special case

of the multinomial distribution.

If the random scalar X has the Bin(n, p) distribution, then the

random vector (X, n−X) has the Multi(n,p) distribution, where

p = (p,1− p).

The binomial arises when there are two categories (convention-

ally called “success” and “failure”). The binomial random scalar

only counts the successes. A multinomial random vector counts

all the categories. When k = 2 it counts both successes and

failures.
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Multinomial and Degeneracy

Because a Multi(n,p) random vector Y counts all the cases, we
have

Y1 + · · ·+ Yk = n

almost surely.

Thus a multinomial random vector is not truly k dimensional,
since we can always write any one count as a function of the
others

Y1 = n− Y2 − · · · − Yk

So the distribution of Y is “really” k − 1 dimensional at best.

Further degeneracy arises if pi = 0 for some i, in which case
Yi = 0 almost surely.
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Multinomial Marginals and Conditionals

The short story is all the marginals and conditionals of a multi-

nomial are again multinomial, but this is not quite right.

It is true for conditionals and “almost true” for marginals.
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Multinomial Univariate Marginals

One type of marginal is trivial. If (Y1, . . . , Yk) has the Multi(n,p)

distribution, where p = (p1, . . . , pk), then the marginal distribu-

tion of Yj is Bin(n, pj), because it is the sum of n IID Bernoullis

with success probability pj.
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Multinomial Marginals

What is true, obviously true from the definition, is that collapsing
categories gives another multinomial, and the success probability
for a collapsed category is the sum of the success probabilities
for the categories so collapsed. Suppose we have

category Obama McCain Barr Nader Other
probability 0.51 0.46 0.02 0.01 0.00

and we decide to collapse the last three categories obtaining

category Obama McCain New Other
probability 0.51 0.46 0.03

The principle is obvious, although the notation can be a little
messy.
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Multinomial Marginals

Since the numbering of categories is arbitrary, we consider the

marginal distribution of Yj+1, . . ., Yk.

That marginal distribution is not multinomial since we need to

add the “other” category, which has count Y1 + · · ·+ Yj, to be

able to classify all individuals.

The random vector Z = (Y1 + · · · + Yj, Yj+1, . . . , Yk) has the

Multi(n,q) distribution, where q = (p1 + · · ·+ pj, pj+1, . . . , pk).
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Multinomial Marginals (cont.)

We can consider the marginal of Yj+1, . . ., Yk in two different

ways. Define W = Y1 + · · ·+ Yj. Then

f(w, yj+1, . . . , yk) =
( n

w, yj+1, . . . , yk

)
(p1 + · · ·+ pj)

wp
yj+1
j+1 · · · p

yk
k

is a multinomial PMF of the random vector (W, Yj+1, . . . , Yk).

But since w = n− yj+1 − · · · − yk, we can also write

f(yj+1, . . . , yk) =
n!

(n− yj+1 − · · · − yk)! yj+1! · · · yk!

× (p1 + · · ·+ pj)
n−yj+1−···−ykp

yj+1
j+1 · · · p

yk
k

which is not, precisely, a multinomial PMF.
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Multinomial Conditionals

Since the numbering of categories is arbitrary, we consider the

conditional distribution of the Y1, . . ., Yj given Yj+1, . . ., Yk.

f(y1, . . . , yj | yj+1, . . . , yk) =
f(y1, . . . , yk)

f(yj+1, . . . , yk)

=

n!
y1! ··· ,yk!

n!
(n−yj+1−···−yk)! yj+1! ··· yk!

×
p
y1
1 · · · pyk

k

(p1 + · · ·+ pj)
n−yj+1−···−ykp

yj+1
j+1 · · · p

yk
k

=
(y1 + · · ·+ yj)!

y1! · · · yj!

j∏
i=1

(
pi

p1 + · · ·+ pj

)yi
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Multinomial Conditionals (cont.)

Thus we see that the conditional distribution of Y1, . . ., Yj given

Yj+1, . . ., Yk is Multi(m,q) where

m = n− Yj+1 − . . .− Yk

and

qi =
pi

p1 + · · ·+ pj
, i = 1, . . . , j
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The Multivariate Normal Distribution

A random vector having IID standard normal components is

called standard multivariate normal. Of course, the joint dis-

tribution is the product of marginals

f(z1, . . . , zn) =
n∏

i=1

1√
2π

e−z2
i /2

= (2π)−n/2 exp

−1

2

n∑
i=1

z2
i


and we can write this using vector notation as

f(z) = (2π)−n/2 exp
(
−

1

2
zTz

)
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Multivariate Location-Scale Families

A univariate location-scale family with standard distribution hav-

ing PDF f is the set of all distributions of random variables that

are invertible linear transformations Y = µ + σX, where X has

the standard distribution. The PDF’s have the form

fµ,σ(y) =
1

|σ|
f

(
y − µ

σ

)
A multivariate location-scale family with standard distribution

having PDF f is the set of all distributions of random vectors

that are invertible linear transformations Y = µ + BX where X

has the standard distribution. The PDF’s have the form

fµ,B(y) = f
(
B−1(y − µ)

)
· |det(B−1)|
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The Multivariate Normal Distribution (cont.)

The family of multivariate normal distributions is the set of all

distributions of random vectors that are (not necessarily invert-

ible) linear transformations Y = µ + BX, where X is standard

multivariate normal.
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The Multivariate Normal Distribution (cont.)

The mean vector and variance matrix of a standard multivariate

normal random vector are the zero vector and identity matrix.

By the rules for linear transformations, the mean vector and zero

matrix of Y = µ + BX are

E(Y) = E(µ + BX)

= µ + BE(X)

= µ

var(Y) = var(µ + BX)

= B var(X)BT

= BBT
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The Multivariate Normal Distribution (cont.)

The transformation Y = µ + BX is invertible if and only if the

matrix B is invertible, in which case the PDF of Y is

f(y) = (2π)−n/2·|det(B−1)|·exp
(
−

1

2
(y − µ)T (B−1)TB−1(y − µ)

)
This can be simplified. Write

var(Y) = BBT = M

Then

(B−1)TB−1 = (BT )−1B−1 = (BBT )−1 = M−1

and

det(M)−1 = det(M−1) = det
(
(B−1)TB−1

)
= det

(
B−1

)2
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The Multivariate Normal Distribution (cont.)

Thus

f(y) = (2π)−n/2 det(M)−1/2 exp
(
−

1

2
(y − µ)TM−1(y − µ)

)
Thus, as in the univariate case, the distribution of a multivariate

normal random vector having a PDF depends only on the mean

vector µ and variance matrix M.

It does not depend on the specific matrix B used to define it as

a function of a standard multivariate normal random vector.
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The Spectral Decomposition

Any symmetric matrix M has a spectral decomposition

M = ODOT ,

where D is diagonal and O is orthogonal, which means

OOT = OTO = I,

where I is the identity matrix, which is equivalent to saying

O−1 = OT
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The Spectral Decomposition (cont.)

A symmetric matrix M is positive semidefinite if

wTMw ≥ 0, for all vectors w

and positive definite if

wTMw > 0, for all nonzero vectors w.
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The Spectral Decomposition (cont.)

Since

wTMw = wTODOTw = vTDv,

where

v = OTw and w = Ov,

a symmetric matrix M is positive semidefinite if and only if the

diagonal matrix D in its spectral decomposition is. And similarly

for positive definite.
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The Spectral Decomposition (cont.)

If D is diagonal, then

vTDv =
∑
i

∑
j

vidijvj =
∑
i

diiv
2
i

because dij = 0 when i 6= j.

Hence a diagonal matrix is positive semidefinite if and only if all

its diagonal components are nonnegative, and a diagonal matrix

is positive definite if and only if all its diagonal components are

positive.
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The Spectral Decomposition (cont.)

Since the spectral decomposition

M = ODOT

holds if and only if

D = OTMO,

we see that M is invertible if and only if D is, in which case

M−1 = OD−1OT

D−1 = OTM−1O
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The Spectral Decomposition (cont.)

If D and E are diagonal, then the i, k component of DE is

∑
j

dijejk =

0, i 6= k

diieii, i = k

Hence the product of diagonal matrices is diagonal. And the i, i

component of the product is the product of the i, i components

of the multiplicands.

From this, it is obvious that a diagonal matrix D is invertible if

and only if its diagonal components dii are all nonzero, in which

case D−1 is the diagonal matrix with diagonal components 1/dii.
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The Spectral Decomposition (cont.)

If D is diagonal and positive semidefinite with diagonal compo-

nents dii, we define D1/2 to be the diagonal matrix with diagonal

components d
1/2
ii .

Observe that

D1/2D1/2 = D

so D1/2 is a matrix square root of D.
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The Spectral Decomposition (cont.)

If M is symmetric and positive semidefinite with spectral decom-

position

M = ODOT ,

we define

M1/2 = OD1/2OT ,

Observe that

M1/2M1/2 = OD1/2OTOD1/2OT = M

so M1/2 is a matrix square root of M.
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The Multivariate Normal Distribution (cont.)

Let M be any positive semidefinite matrix. If X is standard

multivariate normal, then

Y = µ + M1/2X

is general multivariate normal with mean vector

E(Y) = µ

and variance matrix

var(Y) = M1/2 var(X)M1/2 = M1/2M1/2 = M

Thus every positive semidefinite matrix is the variance matrix of

a multivariate normal random vector.

111



The Multivariate Normal Distribution (cont.)

A linear function of a linear function is linear

µ1 + B1(µ2 + B2X) = (µ1 + B1µ2) + (B1B2)X

thus any linear transformation of a multivariate normal random

vector is multivariate normal. To figure out which multivari-

ate normal distribution, calculate its mean vector and variance

matrix.

112



The Multivariate Normal Distribution (cont.)

If X has the N (µ,M) distribution, then

Y = a + BX

has the multivariate normal distribution with mean vector

E(Y) = a + BE(X) = a + Bµ

and variance matrix

var(Y) = B var(X)BT = BMBT
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Addition Rule for Univariate Normal

If X1, . . ., Xn are independent univariate normal random vari-

ables, then X1 + · · ·+ Xn is univariate normal with mean

E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn)

and variance

var(X1 + · · ·+ Xn) = var(X1) + · · ·+ var(Xn)
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Addition Rule for Multivariate Normal

If X1, . . ., Xn are independent multivariate normal random vec-

tors, then X1 + · · ·+Xn is multivariate normal with mean vector

E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn)

and variance matrix

var(X1 + · · ·+ Xn) = var(X1) + · · ·+ var(Xn)
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Partitioned Matrices

When we write

A =

(
A1
A2

)
and say that it is a partitioned matrix, we mean that A1 and A2

are matrices with the same number of columns stacked one atop

the other to make one matrix A.
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Multivariate Normal Marginal Distributions

Marginalization is a linear mapping, that is, the mapping(
X1
X2

)
7→ X1

is linear. Hence every marginal of a multivariate normal distribu-

tion is multivariate normal, and, of course, the mean vector and

variance matrix of X1 are

µ1 = E(X1)

M11 = var(X1)
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Multivariate Normal and Degeneracy

We say a multivariate normal random vector Y is degenerate

if its variance matrix M is not positive definite (only positive

semidefinite).

This happens when there is a nonzero vector a such that

aTMa = 0,

in which case

var(aTY) = aTMa = 0

and aTY = c almost surely for some constant c.

118



Multivariate Normal and Degeneracy (cont.)

Since a is nonzero, it has a nonzero component ai, and we can
write

Yi =
c

aj
−

1

ai

n∑
j=1
j 6=i

ajYj

This means we can always (perhaps after reordering the compo-
nents) partition

Y =

(
Y1
Y2

)
so that Y2 has a nondegenerate multivariate normal distribution
and Y1 is a linear function of Y2, say

Y1 = d + BY2, almost surely
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Multivariate Normal and Degeneracy (cont.)

Now that we have written

Y =

(
d + BY2

Y2

)
we see that the distribution of Y is completely determined by the

mean vector and variance matrix of Y2, which are themselves

part of the mean vector and variance matrix of Y.

Thus we have shown that the distribution of every multivariate

normal random vector, degenerate or nondegenerate, is deter-

mined by its mean vector and variance matrix.
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Partitioned Matrices (cont.)

When we write

A =

(
A11 A12
A21 A22

)
and say that it is a partitioned matrix, we mean that A11, A12,

A21, and A22 are all matrices, that fit together to make one

matrix A.

A11 and A12 have the same number of rows.

A21 and A22 have the same number of rows.

A11 and A21 have the same number of columns.

A12 and A22 have the same number of columns.
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Symmetric Partitioned Matrices

A partitioned matrix

A =

(
A11 A12
A21 A22

)
partitioned so that A11 is square is symmetric if and only if A11

and A22 are symmetric and

A21 = AT
12
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Partitioned Mean Vectors

If

X =

(
X1
X2

)
is a partitioned random vector, then its mean vector

E(X) = E

{(
X1
X2

)}
=

(
E(X1)
E(X2)

)
=

(
µ1
µ2

)
= µ

is a vector partitioned in the same way.
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Covariance Matrices

If X1 and X2 are random vectors, with mean vectors µ1 and µ2,

then

cov(X1,X2) = E{(X1 − µ1)(X2 − µ2)
T}

is called the covariance matrix of X1 and X2.

Note well that, unlike the scalar case, the matrix covariance

operator is not symmetric in its arguments

cov(X2,X1) = cov(X1,X2)
T

124



Partitioned Variance Matrices

If

X =

(
X1
X2

)
is a partitioned random vector, then its variance matrix

var(X) = var

{(
X1
X2

)}

=

(
var(X1) cov(X1,X2)

cov(X2,X1) var(X2)

)

=

(
M11 M12
M21 M22

)
= M

is a square matrix partitioned in the same way.
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Multivariate Normal Marginal Distributions (cont.)

If

X =

(
X1
X2

)
is a partitioned multivariate normal random vector having mean

vector

µ =

(
µ1
µ2

)
and variance matrix

var(X) =

(
M11 M12
M21 M22

)
then the marginal distribution of X1 is N (µ1,M11).
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Partitioned Matrices (cont.)

Matrix multiplication of partitioned matrices looks much like or-

dinary matrix multiplication. Just think of the blocks as scalars.

AB =

(
A11 A12
A21 A22

)(
B11 B12
B21 B22

)

=

(
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
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Partitioned Matrices (cont.)

A partitioned matrix

A =

(
A11 A12
A21 A22

)
is called block diagonal if the off-diagonal blocks are zero, that

is, A12 = 0 and A21 = 0.

A partitioned variance matrix

var

{(
X1
X2

)}
=

(
var(X1) cov(X1,X2)

cov(X2,X1) var(X2)

)

is block diagonal if and only if cov(X2,X1) = cov(X1,X2)
T is

zero, in which case we say the random vectors X1 and X2 are

uncorrelated.
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Uncorrelated versus Independent

As in the scalar case, uncorrelated does not imply independent

except in the special case of joint multivariate normality. We now

show that if Y1 and Y2 are jointly multivariate normal, meaning

the partitioned random vector

Y =

(
Y1
Y2

)
is multivariate normal, then cov(Y1,Y2) = 0 implies Y1 and Y2

are independent random vectors, meaning

E{h1(Y1)h2(Y2)} = E{h1(Y1)}E{h2(Y2)}

for any functions h1 and h2 such that the expectations exist.
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Uncorrelated versus Independent (cont.)

It follows from the formula for matrix multiplication of parti-

tioned matrices that, if

M =

(
M11 0
0 M22

)
and M is positive definite, then

M−1 =

(
M−1

11 0

0 M−1
22

)
and

(y − µ)TM−1(y − µ) = (y1 − µ1)
TM−1

11 (y1 − µ1)

+ (y2 − µ2)
TM−1

22 (y2 − µ2)

where y and µ are partitioned like M.

130



Uncorrelated versus Independent (cont.)

f(y) = (2π)−n/2 det(M)−1/2 exp
(
−

1

2
(y − µ)TM−1(y − µ)

)
∝ exp

(
−

1

2
(y1 − µ1)

TM−1
11 (y1 − µ1)

−
1

2
(y2 − µ2)

TM−1
22 (y2 − µ2)

)
= exp

(
−

1

2
(y1 − µ1)

TM−1
11 (y1 − µ1)

)
× exp

(
−

1

2
(y2 − µ2)

TM−1
22 (y2 − µ2)

)
Since this is a function of y1 times a function of y2, the random

vectors Y1 and Y2 are independent.
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Uncorrelated versus Independent (cont.)

We have now proved that if the blocks of the nondegenerate
multivariate normal random vector

Y =

(
Y1
Y2

)
are uncorrelated, then they are independent.

If Y1 is degenerate and Y2 nondegenerate, we can partition Y1
into a nondegenerate block Y3 and a linear function of Y3, so

Y =

d3 + B3Y3
Y3
Y2


If Y1 and Y2 are uncorrelated, then Y3 and Y2 are uncorrelated,
hence independent, and that implies the independence of Y1 and
Y2 (because Y1 is a function of Y3).
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Uncorrelated versus Independent (cont.)

Similarly if Y2 is degenerate and Y1 nondegenerate,

If Y1 and Y2 are both degenerate we can partition Y1 as before

and partition Y2 similarly so

Y =


d3 + B3Y3

Y3
d4 + B4Y4

Y4


If Y1 and Y2 are uncorrelated, then Y3 and Y4 are uncorrelated,

hence independent, and that implies the independence of Y1 and

Y2 (because Y1 is a function of Y3 and Y2 is a function of Y4).
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Uncorrelated versus Independent (cont.)

And that finishes all cases of the proof that, if Y1 and Y2 are

random vectors that are jointly multivariate normal and uncor-

related, then they are independent.
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Multivariate Normal Conditional Distributions

Suppose

X =

(
X1
X2

)
is a partitioned multivariate normal random vector and

E(X) = µ =

(
µ1
µ2

)

var(X) = M =

(
M11 M12
M21 M22

)
and X2 is nondegenerate, then

(X1 − µ1)−M12M
−1
22 (X2 − µ2)

is independent of X2.
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Multivariate Normal Conditional Distributions (cont.)

The proof uses uncorrelated implies independent for multivariate

normal.

cov{X2, (X1 − µ1)−M12M
−1
22 (X2 − µ2)}

= E{[X2 − µ2][(X1 − µ1)−M12M
−1
22 (X2 − µ2)]

T}
= E{(X2−µ2)(X1−µ1)

T}−E{(X2−µ2)[M12M
−1
22 (X2−µ2)]

T}
= E{(X2 − µ2)(X1 − µ1)

T} − E{(X2 − µ2)(X2 − µ2)
TM−1

22 MT
12}

= E{(X2 − µ2)(X1 − µ1)
T} − E{(X2 − µ2)(X2 − µ2)

T}M−1
22 MT

12

= cov(X2,X1)− cov(X2,X2)M
−1
22 MT

12

= M21 −M22M
−1
22 MT

12

= M21 −MT
12

= 0
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Multivariate Normal Conditional Distributions (cont.)

Thus, conditional on X2 the conditional distribution of

(X1 − µ1)−M12M
−1
22 (X2 − µ2)

is the same as its marginal distribution, which is multivariate

normal with mean vector zero and variance matrix

var(X1)− cov(X1,X2)M
−1
22 MT

12 −M12M
−1
22 cov(X2,X1)

+ M12M
−1
22 var(X2)M

−1
22 MT

12

= M11 −M12M
−1
22 M21 −M12M

−1
22 M21

+ M12M
−1
22 M22M

−1
22 M21

= M11 −M12M
−1
22 M21
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Multivariate Normal Conditional Distributions (cont.)

Since

(X1 − µ1)−M12M
−1
22 (X2 − µ2)

is conditionally independent of X2, its expectation conditional on

X2 is the same as its unconditional expectation, which is zero.

0 = E{(X1 − µ1)−M12M
−1
22 (X2 − µ2) | X2}

= E(X1 | X2)− µ1 −M12M
−1
22 (X2 − µ2)

(because functions of X2 behave like constants in the conditional

expectation). Hence

E(X1 | X2) = µ1 + M12M
−1
22 (X2 − µ2)
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Multivariate Normal Conditional Distributions (cont.)

Thus we have proved that, in the case where X2 is nondegen-

erate, the conditional distribution of X1 given X2 is multivariate

normal with

E(X1 | X2) = µ1 + M12M
−1
22 (X2 − µ2)

var(X1 | X2) = M11 −M12M
−1
22 M21

It is important, although we will not use it until next semester,

that the conditional expectation is a linear function of the vari-

ables behind the bar and the conditional variance is a constant

function of the variables behind the bar.
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Multivariate Normal Conditional Distributions (cont.)

In case X2 is degenerate, we can partition it

X2 =

(
d + BX3

X3

)
where X3 is nondegenerate. Conditioning on X2 is the same as
conditioning on X3, because fixing X3 also fixes X2.

Hence the conditional distribution of X1 given X2 is the same as
the conditional distribution of X1 given X3, which is multivariate
normal with mean vector

E(X1 | X3) = µ1 + M13M
−1
33 (X3 − µ3)

and variance matrix

var(X1 | X3) = M11 −M13M
−1
33 M31
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