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Axioms

An expectation operator is a mapping X 7→ E(X) of random

variables to real numbers that satisfies the following axioms:

E(X + Y ) = E(X) + E(Y )

for any random variables X and Y ,

E(X) ≥ 0

for any random variable X such that X(ω) ≥ 0 for all ω,

E(aX) = aE(X)

for any random variable X and any constant a, and

E(Y ) = 1

where Y is the constant random variable ω 7→ 1.
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Axioms (cont.)

The fourth axiom is usually written, a bit sloppily, as

E(1) = 1

The reason this is sloppy is that on the left-hand side 1 must

indicate a random variable, because the argument of an expecta-

tion operator is always a random variable, and on the right-hand

side 1 must indicate a real number, because the value of an

expectation operator is always a real number.

When we have a constant as an argument of an expectation op-

erator, we always take this to mean a constant random variable.
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Axiom Summary

E(X + Y ) = E(X) + E(Y ) (1)

E(X) ≥ 0, when X ≥ 0 (2)

E(aX) = aE(X) (3)

E(1) = 1 (4)

(3) and (4) together imply

E(a) = a, for any constant a

It can be shown (but we won’t here) that when the sample space

is finite these axioms hold if and only if the expectation operator

is defined in terms of a PMF as we did before.
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Axioms (cont.)

E(X + Y ) = E(X) + E(Y )

says an addition operation can be pulled outside an expectation.

X ≥ 0 implies E(X) ≥ 0

says nonnegativity can be pulled outside an expectation.

E(aX) = aE(X)

says a constant can be pulled outside an expectation.
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Axioms (cont.)

Many students are tempted to overgeneralize, and think anything

can be pulled outside an expectation. Wrong!

In general

E(XY ) 6= E(X)E(Y )

E(X/Y ) 6= E(X)/E(Y )

E{g(X)} 6= g
(
E{X}

)
although we may have equality for certain special cases.
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Axioms (cont.)

We do have

E(X − Y ) = E(X)− E(Y )

because

E(X − Y ) = E{X + (−1)Y } = E(X) + (−1)E(Y )

by axioms (1) and (3).
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Axioms (cont.)

We do have

E(a + bX) = a + bE(X)

because

E(a + bX) = E(a) + E(bX) = a + bE(X)

by axioms (1), (3), and (4).

8



Axiom Summary (cont.)

E(X ± Y ) = E(X)± E(Y )

addition and subtraction come out

X ≥ 0 implies E(X) ≥ 0

nonnegative comes out

E(aX) = aE(X)

constants come out

E(a + bX) = a + bE(X)

linear functions come out. But that’s all!
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Linearity of Expectation

By mathematical induction the “addition comes out” axiom ex-

tends to any finite number of random variables.

For any random variables X1, . . ., Xn

E(X1 + · · ·+ Xn) = E(X1) + · · ·+ E(Xn)

More generally, for any random variables X1, . . ., Xn and any

constants a1, . . ., an

E(a1X1 + · · ·+ anXn) = a1E(X1) + · · ·+ anE(Xn)

This very useful property is called linearity of expectation.
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Linearity of Expectation (cont.)

Using linearity of expectation, we could have calculated the ex-

pectation of a binomial random variable much more simply than

we did before.

If X1, . . ., Xn are random variables having the same expectation

µ, then the random variable Y = X1 + · · ·+ Xn has expectation

nµ.

A Bin(n, p) random variable Y is equal in distribution to the sum

of n IID Ber(p) random variables having expectation p.

Conclusion: E(Y ) = np. No calculation necessary.
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Why Axioms?

Well, partly because mathematicians like them.

Euclid had axioms for geometry. Every other area of mathe-

matics has them too. So probability theory should have them

too.

But also they are very useful, as we just saw.
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Variance

Another word for expectation is mean. We sometimes say E(X)

is the mean of X or the mean of the distribution of X.

The mean of X is our “best guess” value of X before it is

observed (for some definition of “best”).

How far away will X be from the mean when it is observed?

The variance of X

var(X) = E{(X − µ)2}

where µ = E(X), is one notion that helps answer this question.
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Variance (cont.)

A variance is an expectation E{(X−µ)2}, so it is a real number.

Since (X − µ)2 ≥ 0 always, var(X) ≥ 0 for any random variable

X by the axiom about nonnegativity.

This is another important “sanity check”. Probabilities are be-

tween zero and one, inclusive. Variances are nonnegative.
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Variance (cont.)

When there are many probability distributions under considera-

tion, we decorate the variance operator with a parameter

varθ(X) = Eθ{(X − µ)2}

Example: If X is a Ber(p) random variable, then we already know

the mean is p, so the variance is

varp(X) = Ep{(X − p)2} = p(1− p)

(this was a homework problem, we won’t redo it here).
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Why Variance?

Variance is expected squared deviation from the mean. Why that

for a measure of spread-out-ness of a random variable?

Partly mathematical convenience, and partly the deep role it

plays in large sample theory (much more on this later).

But other measures are possible and useful in certain contexts,

for example, E{|X − µ|}, the expected absolute deviation from

the mean.
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Standard Deviation

One issue with variance is that it has the wrong units. If X

is a length with dimension feet (ft). Then µ = E(X) also has

dimension ft. Hence (X−µ)2 and var(X) have dimension square

feet (ft2).

So var(X) is not comparable to values of X.
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Standard Deviation (cont.)

For this reason we introduce

sd(X) =
√

var(X)

(since variances are nonnegative, the square root, meaning non-

negative square root is always defined).

If X has dimension feet (ft), then so does sd(X).

sd(X) is called the standard deviation of X.
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Standard Deviation (cont.)

In applications, sd(X) is preferable to var(X).

Since sd(X) has the same units as X, values of X can be directly
compared to sd(X). We say X−µ is “large” if it is large compared
to sd(X).

In theory, var(X) is preferable to sd(X). Generally, sd(X) can
only be calculated by calculating var(X) first. Moreover, it is
variance that appears many theoretical contexts.

When we choose single letters to indicate them, we usually
choose the single letter for standard deviation.

σ = sd(X)

σ2 = var(X)
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Standard Deviation (cont.)

Be careful! It is easy to miss the distinction if you are not paying

attention.

If you are told the variance is θ and you need the standard devi-

ation, then it is
√

θ.

If you are told the standard deviation is θ and you need the

variance, then it is θ2.
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The “Short Cut” Formula

For any random variable X

var(X) = E(X2)− E(X)2

because, with µ = E(X),

var(X) = E{(X − µ)2}
= E(X2 − 2µX + µ2)

= E(X2)− 2µE(X) + µ2E(1)

= E(X2)− 2µ2 + µ2

= E(X2)− µ2
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Variance of the Bernoulli Distribution

For homework we proved that, if X is a Ber(p) random variable,

then E(Xk) = p for all positive integers k.

Hence

var(X) = E(X2)− E(X)2 = p− p2 = p(1− p)
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Variance of the Binomial Distribution

If X is a Bin(n, p) random variable, then for homework we proved

that E{X(X − 1)} = n(n − 1)p2 and in class we proved that

E(X) = np.

Since

E{X(X − 1)} = E(X2 −X) = E(X2)− E(X)

we have

E(X2) = E{X(X − 1)}+ E(X)
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Variance of the Binomial Distribution (cont.)

Hence

var(X) = E(X2)− E(X)2

= E{X(X − 1)}+ E(X)− E(X)2

= n(n− 1)p2 + np− n2p2

= −np2 + np

= np(1− p)
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Mean of the Discrete Uniform Distribution

Suppose X is a random variable having the discrete uniform dis-

tribution on the set {1, . . . , n}. Then

E(X) =
1

n

n∑
i=1

i
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Mean of the Discrete Uniform Distribution (cont.)

There is a story about the famous mathematician Carl Friedrich
Gauss. When he was still in elementary school, the teacher gave
the class the problem of adding the numbers from 1 to 100,
hoping to occupy them for a while, but young Gauss got the
answer almost immediately.

Presumably, he had figured out the following argument. Write
down the numbers to be added twice and add

1 2 . . . 99 100
+ 100 99 . . . 2 1

— — . . . — —
101 101 . . . 101 101

In general, there are n pairs that sum to n + 1, so the total is
n(n + 1), which is twice the desired answer.

26



Mean of the Discrete Uniform Distribution

Hence
n∑

i=1

i =
n(n + 1)

2

and

E(X) =
n + 1

2
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Variance of the Discrete Uniform Distribution

Suppose X is a random variable having the discrete uniform dis-
tribution on the set {1, . . . , n}.

To do the variance we need to know
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6

No cute story for this. We prove by mathematical induction.

To do this we verify the case n = 1 is correct.

1 =
1 · (1 + 1)(2 · 1 + 1)

6
=

1 · 2 · 3
6

That checks.
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Variance of the Discrete Uniform Distribution (cont.)

Then we check that if the n = k case is correct, this implies the

n = k + 1 case.

k+1∑
i=1

i2 = (k + 1)2 +
k∑

i=1

i2

= (k + 1)2 +
k(k + 1)(2k + 1)

6

= (k + 1)

[
(k + 1) +

k(2k + 1)

6

]

= (k + 1)
6k + 6 + 2k2 + k

6
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Variance of the Discrete Uniform Distribution (cont.)

This should equal n(n + 1)(2n + 1)/6 with k + 1 substituted for

n

(k + 1)[(k + 1) + 1][2(k + 1) + 1]

6
= (k + 1)

(k + 2)(2k + 3)

6

= (k + 1)
2k2 + 7k + 6

6
And this is what we got before. So the induction step checks.

And we are done.
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Variance of the Discrete Uniform Distribution (cont.)

var(X) = E(X2)− E(X)2

=

1

n

n∑
i=1

i2

−

1

n

n∑
i=1

i

2

=
1

n
·
n(n + 1)(2n + 1)

6
−

(
n + 1

2

)2

= (n + 1)
[
2n + 1

6
−

n + 1

4

]
= (n + 1)

[
8n + 4− 6n− 6

24

]
=

(n + 1)(n− 1)

12
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Variance of the Discrete Uniform Distribution (cont.)

In summary, for the discrete uniform distribution on {1, . . . , n}

E(X) =
n + 1

2

var(X) =
(n + 1)(n− 1)

12

If you are now panicking about how complicated this calculation

is for this very simple distribution and wondering how hard this

course will be, don’t. This is a fairly horrible example, despite

the simplicity of the distribution.
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The Mean Square Error Formula

The mean square error of a number a considered as a prediction

of (the value of, when observed) a random variable X is

mse(a) = E{(X − a)2}

Write µ = E(X). Then this can also be calculated

mse(a) = var(X) + (µ− a)2
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Proof of the Mean Square Error Formula

mse(a) = E{(X − a)2}
= E{(X − µ + µ− a)2}
= E{(X − µ)2 + 2(µ− a)(X − µ) + (µ− a)2}
= E{(X − µ)2}+ 2(µ− a)E(X − µ) + (µ− a)2

= var(X) + (µ− a)2

because

E(X − µ) = E(X)− µ = 0
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Minimizing Mean Square Error

The number a considered as a prediction of a random variable

X that minimizes the mean square error

mse(a) = var(X) + (µ− a)2

is clearly a = µ, because the first term on the right-hand side does

not contain a, and the second term on the right-hand, being a

square, is nonnegative, and minimized when a = µ, which makes

it zero.

Conclusion: E(X) is the best prediction of X, where “best” is

defined to mean minimizing mean square error of the prediction.
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Minimizing Mean Square Error (cont.)

Philosophically, this can’t serve as a definition of expectation,

because the definition would be circular. Mean square error is

defined in terms of expectation, and expectation is defined in

terms of mean square error.

Practically, this does give a very precise property of expectation

that does tell us something important.

Moreover, it makes mathematically precise our blather about

thinking of expectation as best prediction. It is, but only when

“best” means minimizing mean square error.
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Mean and Variance of Linear Functions

If X is a random variable and a and b are constants, then

E(a + bX) = a + bE(X)

var(a + bX) = b2 var(X)

These are used often, remember them.

The first we have seen before and is intuitively obvious, the other
not so obvious. Write µ = E(X). Then

var(a + bX) = E{[(a + bX)− (a + bµ)]2}
= E{(bX − bµ)2}
= E{b2(X − µ)2}
= b2E{(X − µ)2}
= b2 var(X)
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Mean of a Random Vector

For any random vector X = (X1, . . . , Xn) we define

E(X) = µ

where µ = (µ1, . . . , µn) and

µi = E(Xi), i = 1, . . . , n

The expectation of a random vector is a vector, the components

of which are the expectations of the components of the random

vector.
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Mean of a Random Vector (cont.)

In one sense, E(X) = µ is merely a notational convenience. We

write one vector equation, rather than n scalar equations

µi = E(Xi), i = 1, . . . , n

In another sense, this is an important concept, trivial though it

may be, because it is essential part of treating X as a single

object (rather than n objects, its components).
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Variance of a Random Vector

So if the mean of a random vector is an ordinary numeric vector,

is the same true for variance? No!
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Covariance

The covariance of random variables X and Y is

cov(X, Y ) = E{(X − µ)(Y − ν)}

where

µ = E(X)

ν = E(Y )
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Covariance (cont.)

Covariance generalizes variance.

cov(X, X) = var(X)

because

cov(X, X) = E{(X − µ)(X − µ)} = E{(X − µ)2} = var(X)

The covariance of a random variable with itself is the variance.
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Covariance (cont.)

A covariance operator is a symmetric function of its arguments

cov(X, Y ) = cov(Y, X)

because multiplication is commutative.
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Covariance (cont.)

The generalization of the “short cut” formula to covariance is

cov(X, Y ) = E(XY )− E(X)E(Y )

Note that in case X = Y we get the “short cut” formula for

variance.

The proof is a homework problem.
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Covariance (cont.)

The generalization of the formula about taking out linear func-

tions to covariance is

cov(a + bX, c + dY ) = bd cov(X, Y )

Note that in case X = Y , a = b, and c = d we get the formula

we already proved for variance.

The proof is a homework problem.
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Variance of a Random Vector (cont.)

The variance of a random vector X = (X1, . . . , Xn) is an ordinary

numeric matrix, the n×n matrix having components cov(Xi, Xj)

var(X) =


var(X1) cov(X1, X2) · · · cov(X1, Xn)

cov(X2, X1) var(X2) · · · cov(X2, Xn)
... ... . . . ...

cov(Xn, X1) cov(Xn, X2) · · · var(Xn)



Why?
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Notational Conventions

We have a convention X for random variables, x for ordinary
variables.

We have another convention A for sets, a for elements.

We have another convention A for matrices, a for vectors.

Combining the first and third, we have X for random vectors, X

for random variables (random scalars).

But now we are in trouble. We can’t tell whether a boldface
capital letter is a random vector or an ordinary matrix.

Similarly, we would be in trouble if we had a random matrix.
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Notational Conventions (cont.)

Typographical conventions can’t do everything.

Sometimes you just have to read what symbols are defined to

mean.

Or sometimes you just have to figure out from the context in

which a symbol is used what it could possibly mean.
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Notational Conventions (cont.)

If we write

M = var(X)

then you just have to figure out

• the argument of the variance operator must be a random

thingummy, presumably a random vector because of the bold-

face, although the text should make this clear, and

• that makes M an ordinary (non-random) matrix, which is

why it is (also) denoted by a boldface capital letter.
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Matrix Multiplication

A course named “linear algebra” is not a prerequisite for this

course, but you are assumed to have at least seen matrices and

matrix multiplication somewhere. For review, if A and B are

matrices, and the column dimension of A is the same as the row

dimension of B, then the product AB = C is defined by

cik =
∑
j

aijbjk

where aij are components of A and similarly for the other two.

The row dimensions of C and A are the same. The column

dimensions of C and B are the same.
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Matrix Multiplication (cont.)

If A is k ×m and B is m× n, then C is k × n and

cik =
m∑

j=1

aijbjk, i = 1, . . ., k and k = 1, . . ., n
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Matrix Multiplication (cont.)

Multiplication of ordinary numbers (scalars) is commutative

ab = ba

for any numbers a and b.

Matrix multiplication is not. In general,

AB 6= BA

In general, it is not even true that AB and BA are both defined.

The dimensions may be such that only one is defined.
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Multiplying a Matrix and a Vector

If we think of vectors as matrices having one dimension (row or
column) equal to one, then we don’t have to define a new kind
of multiplication involving vectors. If vectors are matrices, then
we use the matrix multiplication already defined.

However, we keep the lower case boldface for vectors, even when
thinking of them as matrices. So now there are two kinds of
vectors, row vectors

x =
(
x1 x2 . . . xn

)
and column vectors

x =


x1
x2
...

xn


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Transpose of a Matrix

If A has components aij, then the transpose of A, denoted AT

has components aji.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
... ... . . . ...

am1 am2 . . . amn



AT =


a11 a21 . . . am1
a12 a22 . . . am2
... ... . . . ...

a1n a2n . . . amn


Note (AT )T = A.
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Symmetric Matrices

A matrix M is symmetric if MT = M .

Expressed in components, this says mij = mji for all i and j.

Note that a symmetric matrix is automatically square, meaning

the row and column dimensions are the same.

Because cov(Xi, Xj) = cov(Xj, Xi), every variance matrix is sym-

metric.
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Transpose of a Vector

The transpose of a row vector is a column vector and vice versa.
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Linear Functions

The analog of scalar-to-scalar linear functions

x 7→ a + bx

is vector-to-vector linear functions

We have row vector to row vector linear functions

x 7→ a + xB

and have column vector to column vector linear functions

x 7→ a + Bx

Almost the same, but slightly different, very confusing.
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A Completely Arbitrary Convention

To avoid this confusion, we make a rule

Whenever we think of a vector as a matrix, it is always

a column vector!

Almost everybody uses the same convention.

This does not mean vectors are really matrices. They aren’t.

Treating vectors as matrices is just a stupid mathematician trick

that avoids a separate definition for the meaning of AB and Bx.
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Linear Functions (cont.)

Now row vector to row vector linear functions

xT 7→ aT + xTB

and column vector to column vector linear functions

x 7→ a + Bx

look different enough so they can’t be confused.

The lower case boldface letters are column vectors unless they

are transposes, in which case they are row vectors.
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Matrix Multiplication and Transposition

(AB)T = BTAT

(ABC)T = CTBTAT

(ABCD)T = DTCTBTAT

and so forth. Also

(Ax)T = xTAT

(xTB)T = BTx
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Linear Functions (cont.)

Taking transposes of both sides of the column vector to column

vector linear function

x 7→ a + Bx

gives the row vector to row vector linear function

xT 7→ aT + xTBT

so it enough to know about one.

The preference in the “completely arbitrary convention” for col-

umn vectors means we only need to do one of these.
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Linear Functions (cont.)

Finally things get simple (but don’t forget all that stuff about
transposes).

A general vector-to-vector linear function has the form

y = a + Bx

where the dimensions have to be such that the expression makes
sense

y︸︷︷︸
m×1

= a︸︷︷︸
m×1

+ B︸︷︷︸
m×n

x︸︷︷︸
n×1

for any m and n.

This function maps vectors of dimension n to vectors of dimen-
sion m.
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Linear Functions (cont.)

If X is a random vector and if a and B are a non-random vector

and matrix, respectively, then

E(a + BX) = a + BE(X)

var(a + BX) = B var(X)BT

Sometimes we write this a bit more neatly. If X is a random

vector having mean vector µ and variance matrix M and if a and

B are a non-random vector and matrix, respectively, then

E(a + BX) = a + Bµ

var(a + BX) = BMBT
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Linear Functions (cont.)

Since we have no other theorems about mean vectors and vari-

ance matrices, we must reduce this to the scalar case by intro-

ducing components.

E(a + BX) = a + Bµ

written out in components is

E

ai +
∑
j

bijXj

 = ai +
∑
j

bijE(Xj)

and this is just linearity of expectation.
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Inner and Outer Products

For vectors x and y of the same dimension n,

xTy =
n∑

i=1

xiyi

is a scalar (1× 1 matrix), and

xyT

is an n× n matrix with components xiyj.

The former is called the inner product of these two vectors and

the latter is called the outer product.
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Linear Functions (cont.)

Another expression for the variance matrix is

var(X) = E{(X− µ)(X− µ)T}

where µ = E(X). The argument of the expectation operator is

an outer product.

var(a + BX) = E{[(a + BX)− (a + Bµ)][(a + BX)− (a + Bµ)]T}
= E{(BX−Bµ)(BX−Bµ)T}
= E{[B(X− µ)][B(X− µ)]T}
= E{B(X− µ)(X− µ)TBT}
= BE{(X− µ)(X− µ)T}BT

= B var(X)BT
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Positive Definite Matrices

What is the property of variance matrices analogous to the prop-

erty var(X) ≥ 0 for random variables?

Consider the linear function x 7→ bTx. This is a special case of

the the general linear function formula with a = 0 and bT = B.

Hence

0 ≤ var(bTX) = bTMb

where M = var(X).
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Positive Definite Matrices (cont.)

An arbitrary symmetric matrix M is positive semidefinite if

bTMb ≥ 0, for all vectors b

and is positive definite if

bTMb > 0, for all nonzero vectors b

(the zero vector is the vector having all components zero).

Every variance matrix is symmetric and positive semidefinite.
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Variance of a Sum

We now want to look at the special case where the linear func-

tion is the sum of the components. If u is the vector whose

components are all equal to one, then

uTX =
n∑

i=1

Xi

where X = (X1, . . . , Xn).
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Variance of a Sum (cont.)

If M is the variance matrix of X, then

var

 n∑
i=1

Xi

 = uTMu

=
n∑

i=1

n∑
j=1

cov(Xi, Xj)

=
n∑

i=1

var(Xi) +
n∑

i=1

n∑
j=1
j 6=i

cov(Xi, Xj)

=
n∑

i=1

var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

cov(Xi, Xj)

70



Variance of a Sum (cont.)

In short the variance of a sum is the sum of all the variances and

all the covariances.

Variance is more complicated than expectation.

The expectation of a sum is the sum of the expectations, but

the analog is not — in general — true for variance.
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Uncorrelated

Random variables X and Y are uncorrelated if cov(X, Y ) = 0.

Then

0 = cov(X, Y ) = E(XY )− E(X)E(Y )

so “multiplication comes out of expectation”

E(XY ) = E(X)E(Y )

Note that this holds, not in general, but if and only if X and Y

are uncorrelated.
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Variance of a Sum (cont.)

We say a sequence of random variables X1, . . ., Xn is uncorrelated

if Xi and Xj are uncorrelated whenever i 6= j. Then

var

 n∑
i=1

Xi

 =
n∑

i=1

var(Xi)

(the variance of the sum is the sum of the variances).

Note this holds if the random variables are uncorrelated, not in

general.
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Axiomatic Characterization of Independence

A sequence X1, . . ., Xn is independent if and only if

E

 n∏
i=1

hi(Xi)

 =
n∏

i=1

E{hi(Xi)}

for any functions h1, . . ., hn.

“Multiplication comes out of expectation” not just for the vari-

ables themselves, but for any functions of them.

From this is clear that, if X1, . . ., Xn are independent, then so

are g1(X1), . . ., gn(Xn) for any functions g1, . . ., gn.
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Axiomatic Characterization of Independence (cont.)

We prove the two notions of independent are the same. Suppose

the PMF factors

f(x) =
n∏

i=1

fi(xi)

and the support is a product S1 × · · · × Sn, then

E

 n∏
i=1

hi(Xi)

 =
∑

x1∈S1

· · ·
∑

xn∈Sn

n∏
i=1

hi(xi)fi(xi) =
n∏

i=1

E{hi(Xi)}
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Axiomatic Characterization of Independence (cont.)

Conversely, suppose the “multiplication comes out of expecta-

tion” property holds. Consider the case hi = I{xi} — that is,

each hi is the indicator function of the point xi — so

f(x) = Pr(X1 = x1 and · · · andXn = xn)

= E

 n∏
i=1

I{xi}(Xi)


=

n∏
i=1

E
(
I{xi}(Xi)

)
=

n∏
i=1

fi(xi)
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Independent versus Uncorrelated

Independent implies uncorrelated. The converse is, in general,

false.

If X and Y are independent, then

cov(X, Y ) = E(XY )−E(X)E(Y ) = E(X)E(Y )−E(X)E(Y ) = 0
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Independent versus Uncorrelated (cont.)

Conversely, let X be any nonconstant random variable such that
X and −X have the same distribution. An example is the uniform
distribution on {−2,−1,0,1,2}.

Then X and Y = X2 are uncorrelated

cov(X, Y ) = cov(X, X2)

= E(X3)− E(X)E(X2)

= E(−X3)− E(−X)E(X2)

= − cov(X, Y )

the second equals sign being that X and −X have the same
distribution.

Since the only number x that satisfies x = −x is zero, we have
cov(X, Y ) = 0.
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Independent versus Uncorrelated (cont.)

Conversely, the PMF of the random vector (X, Y ) is given by the

table

y = x2

0 0 1 4
−2 0 0 1/5
−1 0 1/5 0

x 0 1/5 0 0
−1 0 1/5 0
−2 0 0 1/5

The support is not a Cartesian product, so the variables are not

independent.

79



Independent versus Uncorrelated (cont.)

Independent implies uncorrelated.

Uncorrelated does not imply independent.

Uncorrelated is a pairwise property: cov(Xi, Xj) = 0 only looks

at two variables at a time.

Independent is not a pairwise property: this was a homework

problem.
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Exchangeability

We want to consider some dependent sequences of random vari-
ables.

The simplest form of dependence is exchangeability.

A function f is one-to-one if f(x) = f(y) implies x = y, that is,
one point maps to one value and no other point maps to that
value.

A one-to-one function π : {1, . . . , n} → {1, . . . , n} is called a per-
mutation because it produces a reordering of 1, . . ., n.

We know there are n! such functions (the number of permuta-
tions of n things).
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Exchangeability

A sequence of random variables X1, . . ., Xn is exchangeable if

the random vectors X = (X1, . . . , Xn) and Y = (Xπ(1), . . . , Xπ(n))

have the same distribution for any permutation π.

In particular, X1, . . ., Xn are identically distributed but may be

dependent.

Every variable has the same variance as any other, and every

pair of different variables has the same covariance as any other.

Thus

var

 n∑
i=1

Xi

 = n var(X1) + n(n− 1) cov(X1, X2)
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Sampling With and Without Replacement

When the random variables X1, . . ., Xn are uniformly distributed

on a set S of size N and we define

Yi = g(Xi)

for any function g : S → R, then we say Xn, . . ., Xn are a sample

of size n from a population S of size N .

Note: the sample X1, . . ., Xn is random, but the population

S = {x1, . . . , xN} is not.

We can think of the Yi as being measurements of one real-valued

quantity on the individuals in the sample.
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Sampling With and Without Replacement

If X1, . . ., Xn are independent random variables, then we say we

are sampling with replacement.

The picture is that we have written the names on the individuals

on slips of paper, put all of the slips in a urn, mixed well, and

drawn one which is X1.

Then we draw another, but in order for the situation to be exactly

the same as before, we need the same slips in the urn, well mixed,

as before. Thus we put the slip with the name of X1 back in

the urn (replace it) and mix well. Then we draw another which

is X2. And so on for the rest.
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Sampling With and Without Replacement (cont.)

Sampling with replacement is not the way real surveys are done.

They are done without replacement which means the slips are

not put back in the urn after draws.

In sampling with replacement, the same individual may appear

multiple times in the sample. In sampling without replacement,

the individuals in the sample are all different.

In sampling with replacement, X1, . . ., Xn are IID. In sampling

without replacement, X1, . . ., Xn are exchangeable.
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Sampling With and Without Replacement (cont.)

In sampling with replacement, the random vector (X1, . . . , Xn) is

uniformly distributed on the Nn possible assignments of values

x1, . . ., xN to variables X1, . . ., Xn.

In sampling without replacement, the random vector (X1, . . . , Xn)

is uniformly distributed on the (N)n ways to choose n things from

N things if order matters or on the
(
N
n

)
ways to choose n things

from N things if order doesn’t matter.
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Sampling With and Without Replacement (cont.)

We are interested in the mean and variance of

Y n =
1

n

n∑
i=1

Yi

In case Y1, . . ., Yn are independent, which is the case in sampling

with replacement, we know

E

 n∑
i=1

Yi

 =
n∑

i=1

E(Yi)

var

 n∑
i=1

Yi

 =
n∑

i=1

var(Yi)
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Sampling With and Without Replacement (cont.)

In case Y1, . . ., Yn are IID with mean µ and variance σ2, which is
the case in sampling with replacement, this becomes

E

 n∑
i=1

Yi

 = nµ

var

 n∑
i=1

Yi

 = nσ2

Hence

E

1

n

n∑
i=1

Yi

 = µ

var

1

n

n∑
i=1

Yi

 =
σ2

n
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Sampling With and Without Replacement (cont.)

Thus we have proved the following. If Y1, . . ., Yn are IID with

mean µ and variance σ2, then

E(Y n) = µ

var(Y n) =
σ2

n

In particular, this holds for sampling with replacement.
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Sampling With and Without Replacement (cont.)

One of these formulas, E(Y n) = µ, is the same for sampling

without replacement because the expectation of a sum is the

sum of the expectations regardless of whether the variables are

independent or dependent.

The variance formula changes. Write c = cov(Yi, Yj), i 6= j.

Then

var

 n∑
i=1

Yi

 = nσ2 + n(n− 1)c
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Sampling With and Without Replacement (cont.)

In the case of sampling without replacement, c is determined by

the fact that in case n = N where the sample is the population,

there is no randomness in
∑

i Yi, it is just the sum over the pop-

ulation (the order of individuals in the sample does not matter

in the sum).

Hence

0 = var

 N∑
i=1

Yi

 = Nσ2 + N(N − 1)c

and

c = −
σ2

N − 1
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Sampling With and Without Replacement (cont.)

Plugging this value for c back into the general formula gives

var

 n∑
i=1

Yi

 = nσ2 + n(n− 1)c

= nσ2 − n(n− 1) ·
σ2

N − 1

= nσ2
[
1−

n− 1

N − 1

]
= nσ2 ·

N − n

N − 1
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Sampling With and Without Replacement (cont.)

In sampling with replacement (and for IID in general)

E(Y n) = µ

var(Y n) =
σ2

n

In sampling without replacement

E(Y n) = µ

var(Y n) =
σ2

n
·
N − n

N − 1

The factor (N − n)/(N − 1) is negligible when N is much larger

than n and is often ignored. The area of statistics that is careful

about such things is called finite population sampling. The factor

(N − n)/(N − 1) is called the finite population correction.
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The Hypergeometric Distribution

If Y1, . . ., Yn are IID Bernoulli, then Z = Y1+ · · ·+Yn is binomial.

What is the analog for sampling without replacement?

More precisely, suppose we have a sample without replacement

of size n from a finite population of size N , and we “measure”

on each individual a zero-or-one-valued variable Yi. What is the

probability of observing x ones? This depends on how many ones

are in the population, say r.

f(x) =

(
r
x

)(
N−r
n−x

)
(
N
n

) , x ∈ N and0 ≤ x ≤ r and0 ≤ n− x ≤ N − r

This is called the hypergeometric distribution with parameters

N , n, and r. We won’t use it enough to require an abbreviation.
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The Hypergeometric Distribution Theorem

The fact that probabilities sum to one for the hypergeometric

distribution gives us the following highly nonobvious theorem

min(r,n)∑
x=max(0,n+r−N)

(r

x

)(N − r

n− x

)
=

(N

n

)

95



The Hypergeometric Distribution (cont.)

Just as with the binomial distribution, the hypergeometric distri-

bution is the distribution of a random variable Z = Y1 + · · ·+ Yn

where the Yi are identically distributed and Bernoulli, but not

independent.

In this case, Y1, . . ., Yn are exchangeable and arise from sampling

without replacement. Thus we can use our formulas for the

mean and variance of Z derived for general sampling without

replacement.

E(Z) = nE(Y1)

var(Z) = n var(Y1) ·
N − n

N − 1
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The Hypergeometric Distribution (cont.)

Since Y1 is zero-or-one valued, it is Ber(p) for some p, and our

formulas become

E(Z) = np

var(Z) = np(1− p) ·
N − n

N − 1

The only thing remaining to do is figure out that p = x/N , the

fraction of ones in the population. This follows from the fact

that X1 is uniformly distributed on the population.
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Time Series

“Time series” is just another name for a sequence X1, . . ., Xn of

random variables. The index, the i in Xi is called “time” whether

it really is or not.

Examples, would be the price of a stock on consecutive days,

the cholesterol level of a patient in consecutive lab tests, or

the number of ears on consecutive corn plants along a row in a

cornfield.

Note that in the last example, “time” is not time.
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Time Series (cont.)

A fancier name for a time series is stochastic process.

Statistics books generally say “time series”.

Probability books generally say “stochastic process”.
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Time Series (cont.)

Without some structure, we can’t say anything about time series.

If a time series is an arbitrary bunch of random variables, then

anything about it is arbitrary.
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Stationary Time Series

A time series is strictly stationary if the distribution of a block

of length k of consecutive variables

(Xi+1, Xi+2, . . . , Xi+k)

does not depend on i (every block of length k has the same

distribution).

A time series is weakly stationary if

E(Xi)

and

cov(Xi, Xi+k)

do not depend on i, and the latter holds for every k ≥ 0.
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Weakly Stationary Time Series

Every variable has the same mean: E(Xi) = µ for all i.

Every pair of variables separated by the same distance has the

same covariance. Define

γk = cov(Xi, Xi+k)

(the definition makes sense because the right-hand side does not

depend on i). The function N → R defined by k 7→ γk is called

the autocovariance function of the time series.

102



Weakly Stationary Time Series (cont.)

By the same argument as for IID and exchangeable random vari-

ables, we have E(Xn) = µ.

Using the autocovariance function

var

 n∑
i=1

Xi

 =
n∑

i=1

var(Xi) + 2
n−1∑
i=1

n∑
j=i+1

cov(Xi, Xj)

= nγ0 + 2
n−1∑
k=1

(n− k)γk
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Weakly Stationary Time Series (cont.)

Summary: If X1, . . ., Xn is a weakly stationary time series

E(Xn) = µ

var(Xn) =
1

n

γ0 + 2
n−1∑
k=1

n− k

n
· γk


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AR(1) Time Series

A simple example of a weakly stationary time series is the au-

toregressive order one, AR(1) for short, time series.

Let Z1, Z2, . . . be IID random variables with mean zero and

variance τ2. Let X0 be any random variable having mean zero

and independent of the Zi, and recursively define

Xn = ρXn−1 + Zn, n = 1,2, . . . ,

where ρ is a real number. The time series X1, X2, . . . is AR(1).
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AR(1) Time Series (cont.)

By linearity of expectation

E(Xn) = ρE(Xn−1) + E(Zn) = 0

Since Xn−1 is a function of Z1, . . ., Zn−1, which are independent

of Zn,

var(Xn) = ρ2 var(Xn−1) + var(Zn)

= ρ2 var(Xn−1) + τ2
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AR(1) Time Series (cont.)

In order for this time series to be weakly stationary, all of the Xn

must have the same variance, say var(Xn) = σ2. Then

σ2 = ρ2σ2 + τ2

which we solve for σ2 obtaining

σ2 =
τ2

1− ρ2

Weak stationarity requires −1 < ρ < 1.
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AR(1) Time Series (cont.)

For k > 0

cov(Xn+k, Xn) = cov(ρXn+k−1 + Zn+k, Xn)

= ρ cov(Xn+k−1, Xn) + cov(Zn+k, Xn)

= ρ cov(Xn+k−1, Xn)

because Zn+k and Xn are independent random variables. Hence

cov(Xn+1, Xn) = ρ cov(Xn, Xn) = ρ var(Xn) = ρσ2

cov(Xn+2, Xn) = ρ cov(Xn+1, Xn) = ρ2σ2

cov(Xn+k, Xn) = ρkσ2
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AR(1) Time Series (cont.)

In summary, for a weakly stationary AR(1) time series

E(Xn) = 0

and

cov(Xn+k, Xn) = ρkσ2

hold for all n and all k ≥ 0, and the parameter ρ must satisfy

−1 < ρ < 1.

109



Monotonicity of Expectation

Suppose U ≤ V , which means U(ω) ≤ V (ω) for all ω.

Then we know V −U ≥ 0, hence E(V −U) ≥ 0. Since E(V −U) =

E(V )− E(U), we conclude E(U) ≤ E(V ).

In summary,

U ≤ V implies E(U) ≤ E(V )
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Markov’s Inequality

For any nonnegative any random variable Y and positive real

number λ

Pr(Y ≥ λ) ≤
E(Y )

λ

This is called Markov’s inequality.

The proof is simple

λI[λ,∞)(Y ) ≤ Y

always holds, hence

E(Y ) ≥ E{λI[λ,∞)(Y )} = λE{I[λ,∞)(Y )} = λPr(Y ≥ λ)

and rearranging this gives Markov’s inequality.
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Chebyshev’s Inequality

The special case of Markov’s inequality where Y = (X−µ)2 with

µ = E(X) is called Chebyshev’s inequality.

Pr{(X − µ)2 ≥ λ} ≤
E{(X − µ)2}

λ
=

var(X)

λ

This is usually rewritten with absolute values rather than squares

Pr(|X − µ| ≥ δ) ≤
var(X)

δ2

where δ =
√

λ.

Note that variance cannot be replaced by standard deviation

here; the square root of a probability makes no sense.
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The Law of Large Numbers

Now replace X by

Xn =
1

n

n∑
i=1

Xi

where X1, . . ., Xn are identically distributed with mean µ, but

not necessarily independent or even uncorrelated — they may be

a stationary time series, for example.

We know E(Xn) = µ by linearity of expectation. Chebyshev’s

inequality says

Pr(|Xn − µ| ≥ λ) ≤
var(Xn)

λ2
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The Law of Large Numbers: Uncorrelated Case

Now let us specialize to the case where X1, . . ., Xn are uncorre-

lated (which includes independent). Then

var(Xn) =
σ2

n

where σ2 is the variance of the Xi, which is the same for all

because they are assumed identically distributed.

In this case, Chebyshev’s inequality says

Pr(|Xn − µ| ≥ λ) ≤
σ2

nλ2
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Convergence in Probability to a Constant

A sequence of random variables Z1, Z2, . . . converges in proba-

bility to the constant a if for every λ > 0

Pr(|Zn − a| ≥ λ) → 0, as n →∞.

Since we use this concept a lot, there is a shorthand for it

Zn
P−→ a

From our application of Chebyshev’s inequality to Xn we see

that

Xn
P−→ µ

a statement known as the law of large numbers.
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Convergence in Probability to a Constant (cont.)

The reason why we say convergence in probability to a constant

is that there is a more general notion of convergence in proba-

bility to a random variable, which we will not define and will not

use in this course.
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Philosophy and the Law of Large Numbers

Now we can return to the frequentist philosophy of statistics.

Now we can see that what it tries to do is turn the law of large

numbers into a definition of expectation.

In order to do that, it must somehow use the concept of inde-

pendence or the concept of uncorrelated — both of which are

defined in terms of expectation in conventional probability theory

— without defining them, or at least without defining them in

the conventional way.

No way of accomplishing this has ever been found that is not far

more complicated than conventional probability theory.
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Little Oh Pee Notation

The Chebyshev’s inequality statement

Pr(|Xn − µ| ≥ λ) ≤
σ2

nλ2

which we can rewrite as

Pr(
√

n|Xn − µ| ≥ δ) ≤
σ2

δ2

is actually a lot stronger than the law of large numbers Xn
P−→ µ.

To capture that strength of mathematical idea, we introduce the

following concepts.

118



Little Oh Pee Notation

For any sequence of random variables Z1, Z2, . . . and any se-

quence of positive constants b1, b2, . . ., we write

Zn = op(bn)

read “Zn is little oh pee of bn”, to indicate

Zn

bn

P−→ 0

Using this concept, we can say

Xn − µ = op(n
−α)

for any α < 1/2.
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Bounded in Probability

A sequence of random variables Z1, Z2, . . . is bounded in proba-

bility if for every ε > 0 there exists a λ > 0 such that

Pr(|Zn| ≥ λ) ≤ ε, for all n.
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Big Oh Pee Notation

For any sequence of random variables Z1, Z2, . . . and any se-

quence of positive constants b1, b2, . . ., we write

Zn = Op(bn)

read “Zn is big oh pee of bn”, to indicate that Zn/bn is bounded

in probability

Using this concept, we can say

Xn − µ = Op(n
−1/2)

and this concisely and precisely encapsulates what Chebyshev’s

inequality tells us about the behavior of Xn when n is large.
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The Square Root Law

A widely used textbook for 1001 calls this appearance of the

square root of the sample size the “square root law”

statistical precision varies as the square root of the sam-

ple size
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Big Oh Pee And Little Oh Pee

Zn = op(bn) implies Zn = Op(bn)

and, if bn/an → 0 as n →∞, then

Zn = Op(bn) implies Zn = op(an)
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The Law of Large Numbers: AR(1) Time Series

Consider the AR(1) time series. We know

cov(Xn+k, Xn) = ρkσ2

and

var(Xn) =
1

n

γ0 + 2
n−1∑
k=1

n− k

n
· γk


=

σ2

n

1 + 2
n−1∑
k=1

n− k

n
· ρk


≤

σ2

n

1 + 2
∞∑

k=1

|ρ|k

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The Geometric Series

If −1 < s < 1
∞∑

k=0

sk =
1

1− s

First write

Sn =
n∑

k=0

sk
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The Geometric Series (cont.)

Then

(1− s)Sn =
n∑

k=0

sk −
n+1∑
k=1

sk = 1− sn+1

so

Sn =
1− sn+1

1− s

If |s| < 1, then sn+1 → 0 as n →∞.

That proves the formula on the previous slide.
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The Law of Large Numbers: AR(1) Time Series (cont.)

Continuing the calculation for the AR(1) time series

var(Xn) ≤
σ2

n

1 + 2
∞∑

k=1

|ρ|k


=
σ2

n

−1 + 2
∞∑

k=0

|ρ|k


=
σ2

n
·
1 + |ρ|
1− |ρ|

We see again that var(Xn) is a constant divided by n so again

Xn − µ = Op(n
−1/2)
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The Law of Large Numbers: Exchangeable???

For an exchangeable sequence with var(Xi) = v and cov(Xi, Xj) =
c we have

var(Xn) =
1

n2 (nv + n(n− 1)c) ≤
v

n
+ c

so unless c = 0 and the sequence is uncorrelated, all we can say
is that

Xn − µ = Op(1)

we can’t even say that Xn converges in probability to µ or any-
thing else.

Since every exchangeable sequence is a strictly stationary time
series, we see that the law of large numbers does not hold for
every stationary time series, but it does hold for some, such as
the AR(1) time series.
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The Law of Large Numbers (cont.)

Thus we see that uncorrelated is a sufficient but not necessary

condition for the law of large numbers to hold.

Identically distributed is also not necessary. Consider X1, X2, . . .

all of which have mean µ and are uncorrelated but var(Xn) = σ2

when n is odd and var(Xn) = τ2 when n is even. Then

var(Xn) ≤
σ2 + τ2

n

and

Xn − µ = Op(n
−1/2)

so the square root law holds for this too.
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The Law of Large Numbers (cont.)

In summary, if X1, X2, . . . all have the same mean µ, then

Xn − µ = Op(n
−1/2)

holds

• always if the Xi are identically distributed and uncorrelated,

• sometimes if the Xi form a weakly stationary time series, and

• sometimes even if the Xi are not identically distributed.

It all depends on the size of var(Xn).
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Axioms for Probabilities

So far we have mostly ignored probabilities in this “chapter”

(slide deck) except that since probability is a special case of

expectation

Pr(A) = E(IA)

all our theory about expectation has implications for probabilities.

Now we see what these are.
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Axioms for Probabilities (cont.)

What does

E(X + Y ) = E(X) + E(Y )

say about probabilities?

To answer that we need to examine when is IA + IB an indicator

function.
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Union and Intersection

For any sets A and B

A ∪B = {x : x ∈ Aor x ∈ B }
A ∩B = {x : x ∈ A andx ∈ B }

A ∪B is called the union of A and B.

A ∩B is called the intersection of A and B.

In the definition of union “or” means “one or the other or both”

which is the standard meaning in mathematical logic. So

A ∩B ⊂ A ∪B
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Union and Intersection (cont.)

If A is any nonempty family of sets, then we write⋃
A = {x : x ∈ A for some A ∈ A}⋂
A = {x : x ∈ A for all A ∈ A}

If A = {Ai : i ∈ I }, then ⋃
A =

⋃
i∈I

Ai⋂
A =

⋂
i∈I

Ai
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Axioms for Probabilities (cont.)

IA(x) + IB(x) =


0, x /∈ A ∪B

1, x ∈ (A ∪B) \ (A ∩B)

2, x ∈ A ∩B

Hence IA + IB is not an indicator function unless A ∩B = ∅.

So this leads to a definition. Sets A and B are disjoint (also
called mutually exclusive) if A ∩B = ∅.

When A and B are mutually exclusive, we have

IA∪B = IA + IB

Pr(A ∪B) = Pr(A) + Pr(B)

135



Axioms for Probabilities (cont.)

Unfortunately, this simple “addition rule for probabilities” is not

very useful, because the required condition — disjoint events —

does not arise often.

In general we can write

IA + IB = IA∪B + IA∩B

Pr(A) + Pr(B) = Pr(A ∪B) + Pr(A ∩B)
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Subadditivity of Probability

We can rewrite the last equation as

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

and infer from it

Pr(A ∪B) ≤ Pr(A) + Pr(B)

and then by mathematical induction

Pr

 n⋃
i=1

Ai

 ≤
n∑

i=1

Pr(Ai)

This is called subadditivity of probability. Unlike the “addition

rule” it holds whether or not events are disjoint. We use this

often.
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The Inclusion-Exclusion Rule

We can apply mathematical induction to

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

obtaining

Pr(A ∪B ∪ C) = Pr(A) + Pr(B ∪ C)− Pr(A ∩ (B ∪ C))

= Pr(A) + Pr(B ∪ C)− Pr((A ∩B) ∪ (A ∩ C))

= Pr(A) + Pr(B) + Pr(C)− Pr(B ∩ C)

− Pr(A ∩B)− Pr(A ∩ C) + Pr(A ∩B ∩ C)

and increasingly messier formulas for more events.
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Axioms for Probabilities (cont.)

The axiom X ≥ 0 implies E(X) ≥ 0 says the following about
probabilities: since any indicator function is nonnegative, we have
Pr(A) ≥ 0 for any event A.

Of course, we knew that already, but if we want axioms for
probability, that is one of them.

The axiom E(aX) = aE(X) doesn’t say anything about proba-
bilities, because multiplying an indicator function by a constant
doesn’t give an indicator function.

The axiom E(1) = 1, says Pr(Ω) = 1, where Ω is the sample
space, because the indicator function of the whole sample space
is equal to one everywhere.
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Summary of Axioms for Probabilities

Pr(A ∪B) = Pr(A) + Pr(B), if A and B are disjoint events

Pr(A) ≥ 0, for any event A

Pr(Ω) = 1, where Ω is the sample space
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Complementary Events and the Complement Rule

Definition:

Ac = Ω \A

is called the complement of the event A. Note that A and Ac

are disjoint events so

Pr(A) + Pr(Ac) = Pr(A ∪Ac) = Pr(Ω) = 1

hence

Pr(Ac) = 1− Pr(A)

which is called the complement rule.
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Complementary Events and the Complement Rule (cont.)

In particular, the complement rule implies Pr(A) ≤ 1 so

0 ≤ Pr(A) ≤ 1, for any event A

follows from the axioms (we already knew it follows from the

definition of probabilities of events in terms of PMF).
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Independence and Probabilities

Random variables X1, . . ., Xn are independent if

E


n∏

i=1

hi(Xi)

 =
n∏

i=1

E{hi(Xi)}

for any functions h1, . . ., hn (this just repeats what was said on

slide 75). What does this say about probabilities?
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Independence and Probabilities (cont.)

The case hi = IAi
of

E


n∏

i=1

hi(Xi)

 =
n∏

i=1

E{hi(Xi)}

can be rewritten

Pr(X1 ∈ A1 and · · · andXn ∈ An) =
n∏

i=1

Pr(Xi ∈ Ai)

This holds for any events A1, . . ., An but only when X1, . . ., Xn

are independent random variables.
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Independence and Probabilities (cont.)

Definition: the events A1, . . ., An are independent if the random

variables IA1
, . . ., IAn are independent.

The case Xi = IAi
and each hi is the identity function of

E


n∏

i=1

hi(Xi)

 =
n∏

i=1

E{hi(Xi)}

can be rewritten

Pr

 n⋂
i=1

Ai

 =
n∏

i=1

Pr(Ai)

This holds for independent events A1, . . ., An.
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Monotonicity of Probability

As a generalization of the complement rule, if A and B are events

and A ⊂ B, then A and B \ A are mutually exclusive events and

B = A ∪ (B \A), hence

Pr(B) = Pr(A) + Pr(B \A)

(the complement rule is the case B = Ω). From this we conclude

Pr(A) ≤ Pr(B), whenever A ⊂ B

which is called monotonicity of probability.
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