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1 Discrete Uniform Distribution

Abbreviation DiscUnif(n).

Type Discrete.

Rationale Equally likely outcomes.

Sample Space The interval 1, 2, ..., n of the integers.

Probability Mass Function

1
= — =1,2
f(x> n? ‘1' ) ) 7n
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2 General Discrete Uniform Distribution

Type Discrete.

Sample Space Any finite set S.



Probability Mass Function

fz) =

1
-, T €S,
n

where n is the number of elements of S.

3 Uniform Distribution

Abbreviation Unif(a,b).

Type Continuous.

Rationale Continuous analog of the discrete uniform distribution.
Parameters Real numbers a and b with a < b.

Sample Space The interval (a,b) of the real numbers.

Probability Density Function

f(x):bia, a<z<b
Moments
B(X) = a—2|—b
var(X) = (b I;)z

Relation to Other Distributions Beta(1, 1) = Unif(0,1).

4 General Uniform Distribution

Type Continuous.

Sample Space Any open set .S in R™.



Probability Density Function
f($) = res

where ¢ is the measure (length in one dimension, area in two, volume in
three, etc.) of the set S.

5 Bernoulli Distribution
Abbreviation Ber(p).

Type Discrete.

Rationale Any zero-or-one-valued random variable.
Parameter Real number 0 < p < 1.

Sample Space The two-element set {0, 1}.

Probability Mass Function

1—p, z=0
Moments
E(X)=p
var(X) = p(1 - p)
Addition Rule If X, ..., X are IID Ber(p) random variables, then

X1+ -+ X is a Bin(k, p) random variable.

Relation to Other Distributions Ber(p) = Bin(1, p).

6 Binomial Distribution

Abbreviation Bin(n,p).



Type Discrete.

Rationale Sum of IID Bernoulli random variables.
Parameters Real number 0 < p < 1. Integer n > 1.
Sample Space The interval 0, 1, ..., n of the integers.

Probability Mass Function

n

)= (

)px(l—p)"x, x=0,1,...,n
x

Moments
E(X)=np
var(X) = np(1 —p)

Addition Rule If Xy, ..., X} are independent random variables, X; being
Bin(n;, p) distributed, then X; 4 -+ + X} is a Bin(ny + - - - + ng, p) random
variable.

Normal Approximation If np and n(1 — p) are both large, then
Bin(n, p) = N (np,np(1 - p))
Poisson Approximation If n is large but np is small, then

Bin(n, p) ~ Poi(np)

Theorem The fact that the probability mass function sums to one is
equivalent to the binomial theorem: for any real numbers a and b

n

3 (Z) bk = (a + b)".

k=0

Degeneracy If p = 0 the distribution is concentrated at 0. If p = 1 the
distribution is concentrated at n.

Relation to Other Distributions Ber(p) = Bin(1, p).



7 Hypergeometric Distribution

Abbreviation Hypergeometric(A, B, n).
Type Discrete.

Rationale Sample of size n without replacement from finite population of
B zeros and A ones.

Sample Space The interval max(0,n — B), ..., min(n, A) of the integers.

Probability Mass Function

_O65)

fz) = W, r =max(0,n — B),...,min(n, A)
Moments
E(X)=np
N —
var(X) = np(1 = p) - T

where

— 1
P=ATB (7.1)

N=A+1B

Binomial Approximation If n is small compared to either A or B, then
Hypergeometric(n, A, B) ~ Bin(n, p)

where p is given by (7.1).

Normal Approximation If n is large, but small compared to either A
or B, then
Hypergeometric(n, A, B) &~ N (np, np(1 — p))

where p is given by (7.1).



Theorem The fact that the probability mass function sums to one is

equivalent to
min(A,n)

> 6Z)- ()

z=max(0,n—B)

8 Poisson Distribution

Abbreviation Poi(u)

Type Discrete.

Rationale Counts in a Poisson process.
Parameter Real number p > 0.

Sample Space The non-negative integers 0, 1, ....

Probability Mass Function

f(l‘) = 56_“, = 07 1>
Moments
E(X)=n
var(X) = p

Addition Rule If Xy, ..., X} are independent random variables, X; being
Poi(u;) distributed, then X+ - -+ X} is a Poi(ui +- - -+ %) random variable.

Normal Approximation If y is large, then

Poi(p) ~ N (u, 1)

Theorem The fact that the probability mass function sums to one is
equivalent to the Maclaurin series for the exponential function: for any

real number z
© &
x xT
E — =e".
k!
k=0



9 Geometric Distribution

Abbreviation Geo(p).
Type Discrete.

Rationales
e Discrete lifetime of object that does not age.
e Waiting time or interarrival time in sequence of IID Bernoulli trials.
e Inverse sampling.

e Discrete analog of the exponential distribution.
Parameter Real number 0 < p < 1.
Sample Space The non-negative integers 0, 1, ....

Probability Mass Function

flx)=pl—-p)* x=0,1,...

Moments
B(X)= "7
p
var(X) = 1p—2p
Addition Rule If Xj, ..., X} are IID Geo(p) random variables, then

X1 + -+ X} is a NegBin(k, p) random variable.

Theorem The fact that the probability mass function sums to one is
equivalent to the geometric series: for any real number s such that —1 <

s<1
o0
O e
1—s
k=0




10 Negative Binomial Distribution

Abbreviation NegBin(r,p).
Type Discrete.

Rationale
e Sum of IID geometric random variables.
e Inverse sampling.

e Gamma mixture of Poisson distributions.
Parameters Real number 0 < p < 1. Integer r > 1.
Sample Space The non-negative integers 0, 1, .. ..

Probability Mass Function

o= (" raeen =
Moments
r(1—p)
E(X) = 5
var(X) = r(lpg p)

Addition Rule If Xy, ..., X} are independent random variables, X; being
NegBin(r;, p) distributed, then X; + --- 4+ X} is a NegBin(ry + - -+ + 7, p)
random variable.

Normal Approximation If r(1 — p) is large, then

NegBin(r, p) ~ N(T(lp_ P T(lp; p)>




Extended Definition The definition makes sense for noninteger r if bi-
nomial coefficients are defined by

(7’) re(r—1)-(r—k+1)

k)~ k!

which for integer r agrees with the standard definition.

Also
(TJ“;_ 1> = (-1)* <;T> (10.1)

which explains the name “negative binomial.”

Theorem The fact that the probability mass function sums to one is
equivalent to the generalized binomial theorem: for any real number
s such that —1 < s < 1 and any real number m

; <TZ> sk = (14 s)™ (10.2)

If m is a nonnegative integer, then (T;j) is zero for k£ > m, and we get the
ordinary binomial theorem.

Changing variables from m to —m and from s to —s and using (10.1)
turns (10.2) into

S (M (et =

k=0 k=0

which has a more obvious relationship to the negative binomial density sum-
ming to one.

11 Normal Distribution

Abbreviation N (u,d?).
Type Continuous.

Rationale
e Limiting distribution in the central limit theorem.

e Error distribution that turns the method of least squares into maxi-
mum likelihood estimation.



Parameters Real numbers p and o2 > 0.
Sample Space The real numbers.

Probability Density Function

f(z) = \/21?0'6_(36_”)2/202, —00 <z < 00
Moments
E(X)=n
var(X) = o*
E{(X - p)’}=0
B{(X — '} = 30

Linear Transformations If X is A(u,0?) distributed, then aX + b is

N (ap + b, a?0?) distributed.

Addition Rule If Xy, ..., X} are independent random variables, X; being
N (p;, 0?) distributed, then X1+ -+ Xg is a N (g +- -+ g, 03+ -+ 03)

random variable.

Theorem The fact that the probability density function integrates to one

is equivalent to the integral

/ e #1124y = Vo

Relation to Other Distributions If Z is N'(0,1) distributed, then Z>

is Gam(3, 1) distributed.

12 Exponential Distribution

Abbreviation Exp(\).

Type Continuous.

10



Rationales

e Lifetime of object that does not age.
o Waiting time or interarrival time in Poisson process.

e Continuous analog of the geometric distribution.
Parameter Real number A > 0.
Sample Space The interval (0,00) of the real numbers.

Probability Density Function

f(z) = Ae™ 0<z<oo

Cumulative Distribution Function

F(z)=1—e "2, 0<z<oo
Moments
1
E(X)=—
(x)=1
1
var(X) = 2
Addition Rule If Xj, ..., X} are IID Exp(\) random variables, then

X1+ -+ X is a Gam(k, \) random variable.

Relation to Other Distributions Exp(\) = Gam(1,\).

13 Gamma Distribution

Abbreviation Gam(a, \).
Type Continuous.

Rationales

e Sum of IID exponential random variables.

e Conjugate prior for exponential, Poisson, or normal precision family.

11



Parameter Real numbers o > 0 and A > 0.
Sample Space The interval (0,00) of the real numbers.
Probability Density Function

)\OC
fz) = g leme 0<z<oo

where I'(«) is defined by (13.1) below.

Moments

Addition Rule If Xy, ..., X} are independent random variables, X; being
Gam(a;, A) distributed, then X7 +- - -4+ X}, is a Gam(ag +- - -+ ay, A) random
variable.

Normal Approximation If « is large, then

a «
Gam(a, \) =~ N()\’ )\2>

Theorem The fact that the probability density function integrates to one
is equivalent to the integral

/ xaflef)\w de = F(Oé)
0 A%

the case A = 1 is the definition of the gamma function

INa) = /000 e dx (13.1)

12



Relation to Other Distributions
e Exp(A\) = Gam(1, \).
e chi’*(v) = Gam(%, 3).

e If X and Y are independent, X is I'(c, A) distributed and Y is T'(ag, A)
distributed, then X /(X +Y) is Beta(ai, a2) distributed.

e If Z is N(0,1) distributed, then Z? is Gam(3}, 1) distributed.

Facts About Gamma Functions Integration by parts in (13.1) estab-
lishes the gamma function recursion formula

MNa+1) =al(w), a>0 (13.2)
The relationship between the Exp(A) and Gam(1, \) distributions gives
ra=1
and the relationship between the A/(0,1) and Gam(3, 3) distributions gives
r() = V7
Together with the recursion (13.2) these give for any positive integer n
Fn+1)=mn!
and
O R O RN

14 Beta Distribution

Abbreviation Beta(ag,as).
Type Continuous.

Rationales
e Ratio of gamma random variables.

e Conjugate prior for binomial or negative binomial family.

13



Parameter Real numbers o; > 0 and asy > 0.
Sample Space The interval (0,1) of the real numbers.

Probability Density Function

['(a1 + ag) o1

az—1 T
7I‘(041)F(042) (1—2x) O<z<l1

fz) =
where I'(«) is defined by (13.1) above.

Moments

a1

B(X) =

a1 + Qo
102

var(X) = (a1 + a2)2(a1 + as + 1)

Theorem The fact that the probability density function integrates to one
is equivalent to the integral

['(a)I(a2)

1
e (1 — ) ldy = =2
/0 ( ) [(a1 + asg)

Relation to Other Distributions

e If X and Y are independent, X is I'(aq, \) distributed and Y is I'(a2, A)
distributed, then X/(X +Y') is Beta(a1, az) distributed.

e Beta(1,1) = Unif(0,1).

15 Multinomial Distribution
Abbreviation Multi(n,p).

Type Discrete.

Rationale Multivariate analog of the binomial distribution.

14



Parameters Real vector p in the parameter space
k
{pGRk:ngi,izl,...,k, and Zpi:1} (15.1)
i=1
Sample Space The set of vectors with integer coordinates
k
S:{XEZ’“:()gxi,izl,...,k, and szzn} (15.2)
i=1

Probability Mass Function

k
Jx) = @ 1w, xes
i=1

n\ n!
x)  T1F . g
[T =it

is called a multinomial coefficient.

where

Moments

where
M = diag(p) — pp’

is the matrix with elements m;; = cov(X;, X;)/n.

Addition Rule If X;, ..., X} are independent random vectors, X; being
Multi(n;, p) distributed, then X; + --- + Xy is a Multi(ny + -+ + ng, p)
random variable.

15



Normal Approximation If n is large and p is not near the boundary of
the parameter space (15.1), then

Multi(n, p) ~ N (np,nM)

Theorem The fact that the probability mass function sums to one is
equivalent to the multinomial theorem: for any vector a of real num-

bers
Z [<Z> lelaf] = (a1 + - +ap)"

xeSs

Degeneracy If there exists a vector a such that Ma = 0, then var(a’X) =
0.

In particular, the vector u = (1,1,...,1) always satisfies Mu = 0, so
var(w'X) = 0. This is obvious, since WX = Y% X; = n by definition of
the multinomial distribution, and the variance of a constant is zero. This
means a multinomial random vector of dimension k is “really” of dimension
no more than k — 1 because it is concentrated on a hyperplane containing
the sample space (15.2).

Marginal Distributions Every univariate marginal is binomial

Not, strictly speaking marginals, but random vectors formed by col-

lapsing categories are multinomial. If Ay, ..., A,, is a partition of the set
{1,...,k} and
V;=> X; j=1...m
iEAj
QJ:pr j:]-)"'am
iEAj

then the random vector Y has a Multi(n, q) distribution.

Conditional Distributions If {i;,... 4} and {im41,...,0} partition
the set {1,...,k}, then the conditional distribution of X;,, ..., given

im

Xippirs - Xiy is Multi(n — X5, — — Xi,,d), where the parameter
vector q has components
bi; .
g = ————f, j=1,...,m
Piy + 0+ Pin,

16



Relation to Other Distributions
e Each marginal of a multinomial is binomial.

e If X is Bin(n,p), then the vector (X,n — X) is Multi(n, (p, 1 —p)).
16 Bivariate Normal Distribution
Abbreviation See multivariate normal below.
Type Continuous.
Rationales See multivariate normal below.

Parameters Real vector p of dimension 2, real symmetric positive semi-
definite matrix M of dimension 2 x 2 having the form

2
g pPO102
M= (s ")

pPO1092 lop

where g1 > 0, 09 > 0 and —1 < p < +1.
Sample Space The Euclidean space R?.

Probability Density Function

2m\/1 — p2o109 2(1—p?) o1

2
_2p<x1 m)(mz H2>+<$2 m)])a e w
01 02 02

Moments

)
var(X;) = o2, i=1,2
COV(Xl,XQ) = pPo0102
cor(Xy,X2) =p



Moments (Vector Form)

E(X)=p
var(X) =M

Linear Transformations See multivariate normal below.

Addition Rule See multivariate normal below.

Marginal Distributions X; is A/ (Mi,U?) distributed, i = 1, 2.
Conditional Distributions The conditional distribution of X5 given X3

is
g
N (24 07 a1 = ). (1= )3

17 Multivariate Normal Distribution
Abbreviation N (u, M)
Type Continuous.

Rationales
e Multivariate analog of the univariate normal distribution.

e Limiting distribution in the multivariate central limit theorem.

Parameters Real vector p of dimension k, real symmetric positive semi-
definite matrix M of dimension k X k.

Sample Space The Euclidean space R¥.

Probability Density Function If M is (strictly) positive definite,
F(x) = (2m) /2 det(M) 2 exp (~L(x — )M (x — p)),  x € R:

Otherwise there is no density (X is concentrated on a hyperplane).

18



Moments (Vector Form)
E(X)=p
var(X) =M

Linear Transformations If X is A (u, M) distributed, then AX + b,
where A is a constant matrix and b is a constant vector of dimensions

such that the matrix multiplication and vector addition make sense, has the
N(Ap + b, AMA’) distribution.

Addition Rule If X;, ..., X} are independent random vectors, X; being
N (p;, M) distributed, then Xy +- - -+Xy is a N (pg +- - -+ gy, My +- - -+My,)
random variable.

Degeneracy If there exists a vector a such that Ma = 0, then var(a’X) =
0.

Partitioned Vectors and Matrices The random vector and parameters
are written in partitioned form

X = @;) (17.1a)
p= <Z;) (17.1b)
M = <ﬁi 1}&;) (17.1c)

when X; consists of the first r elements of X and Xs of the other & — r
elements and similarly for p; and p,.

Marginal Distributions FEvery marginal of a multivariate normal is nor-
mal (univariate or multivariate as the case may be). In partitioned form,
the (marginal) distribution of Xy is N (pq, My1).

Conditional Distributions Every conditional of a multivariate normal
is normal (univariate or multivariate as the case may be). In partitioned
form, the conditional distribution of X given X5 is

N (py + MisMg,y[Xo — po], Mir — MiaM5p Moy )

where the notation M, denotes the inverse of the matrix M, if the matrix
is invertible and otherwise any generalized inverse.

19



18 Chi-Square Distribution

Abbreviation chi?(v) or x2(v).
Type Continuous.

Rationales

e Sum of squares of IID standard normal random variables.

e Sampling distribution of sample variance when data are IID normal.
Parameter Real number v > 0 called “degrees of freedom.”
Sample Space The interval (0,00) of the real numbers.

Probability Density Function

f((lf) _ (%)V/2$l//2—le—x/2 0< < oo
I'(5) ’
Moments
EX)=v
var(X) = 2v

Addition Rule If Xy, ..., X} are independent random variables, X; being
chi2(1/i) distributed, then X;+---+X, is a Chi2(V1+' - +4vy) random variable.

Normal Approximation If v is large, then

chi?(v) = N (v, 2v)

Relation to Other Distributions
e chi’*(v) = Gam(%, ).
e If X is NV(0,1) distributed, then X? is chi®(1) distributed.
e If Z and Y are independent, X is AV'(0,1) distributed and Y is chi?(v)
distributed, then X/+/Y/v is t(v) distributed.

e If X and Y are independent and are chi?(u) and chi?(v) distributed,
respectively, then (X/u)/(Y/v) is F(u,v) distributed.

20



19 Student’s ¢t Distribution

Abbreviation t(v).
Type Continuous.

Rationales

e Sampling distribution of pivotal quantity /n(X, — u)/S, when data
are IID normal.

e Marginal for p in conjugate prior family for two-parameter normal
data.

Parameter Real number v > 0 called “degrees of freedom.”
Sample Space The real numbers.

Probability Density Function
N 1

f(:v):\/ﬁ. O T —00 < & < +00
(1 + 7)
Moments If v > 1, then
E(X)=0.
Otherwise the mean does not exist. If v > 2, then
v
X)= .
var(X) 5

Otherwise the variance does not exist.

Normal Approximation If v is large, then

t(v) ~ N(0,1)

Relation to Other Distributions

e If X and Y are independent, X is AV(0,1) distributed and Y is chi?(v)
distributed, then X/\/Y/v is t(v) distributed.

e If X is t(v) distributed, then X? is F(1,v) distributed.
e #(1) = Cauchy(0,1).
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20 Snedecor’s F' Distribution

Abbreviation F(u,v).
Type Continuous.

Rationale

e Ratio of sums of squares for normal data (test statistics in regression
and analysis of variance).

Parameters Real numbers y > 0 and v > 0 called “numerator degrees of
freedom” and “denominator degrees of freedom,” respectively.

Sample Space The interval (0,00) of the real numbers.

Probability Density Function

. , 0<zx<
TE(Z)  (ux + o)z v e

fz) =

Moments If v > 2, then

Otherwise the mean does not exist.

Relation to Other Distributions

e If X and Y are independent and are chi?(u) and chi?(v) distributed,
respectively, then (X/u)/(Y/v) is F(u,v) distributed.

e If X is t(v) distributed, then X? is F(1,v) distributed.

21 Cauchy Distribution

Abbreviation Cauchy(u,0).

Type Continuous.
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Rationales
e Very heavy tailed distribution.

e Counterexample to law of large numbers.

Parameters Real numbers p and o > 0, called the “location” and “scale”
parameter, respectively.

Sample Space The real numbers.
Probability Density Function

1 1
f(z) = — —00 <z < 400

oL ()
Moments No moments exist.

Addition Rule If Xy, ..., X are IID Cauchy(u,o) random variables,
then X,, = (X1 + -+ + Xj)/n is also Cauchy(u, o).

Relation to Other Distributions
e t(1) = Cauchy(0,1).

22 Laplace Distribution

Abbreviation Laplace(u, o).

Type Continuous.

Rationales Median is maximum likelihood estimate of location parame-
ter.

Parameters Real numbers ¢ and ¢ > 0, called the mean and standard
deviation, respectively.

Sample Space The real numbers.
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Probability Density Function

)= Yoo (V2|

Moments
E(X) =
var(X) =

24



