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1 Discrete Uniform Distribution

Abbreviation DiscUnif(n).

Type Discrete.

Rationale Equally likely outcomes.

Sample Space The interval 1, 2, . . ., n of the integers.

Probability Mass Function

f(x) =
1
n

, x = 1, 2, . . . , n

Moments

E(X) =
n + 1

2

var(X) =
n2 − 1

12

2 General Discrete Uniform Distribution

Type Discrete.

Sample Space Any finite set S.
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Probability Mass Function

f(x) =
1
n

, x ∈ S,

where n is the number of elements of S.

3 Uniform Distribution

Abbreviation Unif(a, b).

Type Continuous.

Rationale Continuous analog of the discrete uniform distribution.

Parameters Real numbers a and b with a < b.

Sample Space The interval (a, b) of the real numbers.

Probability Density Function

f(x) =
1

b− a
, a < x < b

Moments

E(X) =
a + b

2

var(X) =
(b− a)2

12

Relation to Other Distributions Beta(1, 1) = Unif(0, 1).

4 General Uniform Distribution

Type Continuous.

Sample Space Any open set S in Rn.
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Probability Density Function

f(x) =
1
c
, x ∈ S

where c is the measure (length in one dimension, area in two, volume in
three, etc.) of the set S.

5 Bernoulli Distribution

Abbreviation Ber(p).

Type Discrete.

Rationale Any zero-or-one-valued random variable.

Parameter Real number 0 ≤ p ≤ 1.

Sample Space The two-element set {0, 1}.

Probability Mass Function

f(x) =

{
p, x = 1
1− p, x = 0

Moments

E(X) = p

var(X) = p(1− p)

Addition Rule If X1, . . ., Xk are IID Ber(p) random variables, then
X1 + · · ·+ Xk is a Bin(k, p) random variable.

Relation to Other Distributions Ber(p) = Bin(1, p).

6 Binomial Distribution

Abbreviation Bin(n, p).
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Type Discrete.

Rationale Sum of IID Bernoulli random variables.

Parameters Real number 0 ≤ p ≤ 1. Integer n ≥ 1.

Sample Space The interval 0, 1, . . ., n of the integers.

Probability Mass Function

f(x) =
(

n

x

)
px(1− p)n−x, x = 0, 1, . . . , n

Moments

E(X) = np

var(X) = np(1− p)

Addition Rule If X1, . . ., Xk are independent random variables, Xi being
Bin(ni, p) distributed, then X1 + · · ·+ Xk is a Bin(n1 + · · ·+ nk, p) random
variable.

Normal Approximation If np and n(1− p) are both large, then

Bin(n, p) ≈ N
(
np, np(1− p)

)
Poisson Approximation If n is large but np is small, then

Bin(n, p) ≈ Poi(np)

Theorem The fact that the probability mass function sums to one is
equivalent to the binomial theorem: for any real numbers a and b

n∑
k=0

(
n

k

)
akbn−k = (a + b)n.

Degeneracy If p = 0 the distribution is concentrated at 0. If p = 1 the
distribution is concentrated at n.

Relation to Other Distributions Ber(p) = Bin(1, p).
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7 Hypergeometric Distribution

Abbreviation Hypergeometric(A, B, n).

Type Discrete.

Rationale Sample of size n without replacement from finite population of
B zeros and A ones.

Sample Space The interval max(0, n−B), . . ., min(n, A) of the integers.

Probability Mass Function

f(x) =

(
A
x

)(
B

n−x

)(
A+B

n

) , x = max(0, n−B), . . . ,min(n, A)

Moments

E(X) = np

var(X) = np(1− p) · N − n

N − 1

where

p =
A

A + B
(7.1)

N = A + B

Binomial Approximation If n is small compared to either A or B, then

Hypergeometric(n, A,B) ≈ Bin(n, p)

where p is given by (7.1).

Normal Approximation If n is large, but small compared to either A
or B, then

Hypergeometric(n, A,B) ≈ N
(
np, np(1− p)

)
where p is given by (7.1).
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Theorem The fact that the probability mass function sums to one is
equivalent to

min(A,n)∑
x=max(0,n−B)

(
A

x

)(
B

n− x

)
=
(

A + B

n

)

8 Poisson Distribution

Abbreviation Poi(µ)

Type Discrete.

Rationale Counts in a Poisson process.

Parameter Real number µ > 0.

Sample Space The non-negative integers 0, 1, . . . .

Probability Mass Function

f(x) =
µx

x!
e−µ, x = 0, 1, . . .

Moments

E(X) = µ

var(X) = µ

Addition Rule If X1, . . ., Xk are independent random variables, Xi being
Poi(µi) distributed, then X1+· · ·+Xk is a Poi(µ1+· · ·+µk) random variable.

Normal Approximation If µ is large, then

Poi(µ) ≈ N (µ, µ)

Theorem The fact that the probability mass function sums to one is
equivalent to the Maclaurin series for the exponential function: for any
real number x

∞∑
k=0

xk

k!
= ex.
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9 Geometric Distribution

Abbreviation Geo(p).

Type Discrete.

Rationales

• Discrete lifetime of object that does not age.

• Waiting time or interarrival time in sequence of IID Bernoulli trials.

• Inverse sampling.

• Discrete analog of the exponential distribution.

Parameter Real number 0 < p < 1.

Sample Space The non-negative integers 0, 1, . . . .

Probability Mass Function

f(x) = p(1− p)x x = 0, 1, . . .

Moments

E(X) =
1− p

p

var(X) =
1− p

p2

Addition Rule If X1, . . ., Xk are IID Geo(p) random variables, then
X1 + · · ·+ Xk is a NegBin(k, p) random variable.

Theorem The fact that the probability mass function sums to one is
equivalent to the geometric series: for any real number s such that −1 <
s < 1

∞∑
k=0

sk =
1

1− s
.
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10 Negative Binomial Distribution

Abbreviation NegBin(r, p).

Type Discrete.

Rationale

• Sum of IID geometric random variables.

• Inverse sampling.

• Gamma mixture of Poisson distributions.

Parameters Real number 0 ≤ p ≤ 1. Integer r ≥ 1.

Sample Space The non-negative integers 0, 1, . . . .

Probability Mass Function

f(x) =
(

r + x− 1
x

)
pr(1− p)x, x = 0, 1, . . .

Moments

E(X) =
r(1− p)

p

var(X) =
r(1− p)

p2

Addition Rule If X1, . . ., Xk are independent random variables, Xi being
NegBin(ri, p) distributed, then X1 + · · · + Xk is a NegBin(r1 + · · · + rk, p)
random variable.

Normal Approximation If r(1− p) is large, then

NegBin(r, p) ≈ N
(

r(1− p)
p

,
r(1− p)

p2

)
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Extended Definition The definition makes sense for noninteger r if bi-
nomial coefficients are defined by(

r

k

)
=

r · (r − 1) · · · (r − k + 1)
k!

which for integer r agrees with the standard definition.
Also (

r + x− 1
x

)
= (−1)x

(
−r

x

)
(10.1)

which explains the name “negative binomial.”

Theorem The fact that the probability mass function sums to one is
equivalent to the generalized binomial theorem: for any real number
s such that −1 < s < 1 and any real number m

∞∑
k=0

(
m

k

)
sk = (1 + s)m. (10.2)

If m is a nonnegative integer, then
(
m
k

)
is zero for k > m, and we get the

ordinary binomial theorem.
Changing variables from m to −m and from s to −s and using (10.1)

turns (10.2) into

∞∑
k=0

(
m + k − 1

k

)
sk =

∞∑
k=0

(
−m

k

)
(−s)k = (1− s)−m

which has a more obvious relationship to the negative binomial density sum-
ming to one.

11 Normal Distribution

Abbreviation N (µ, σ2).

Type Continuous.

Rationale

• Limiting distribution in the central limit theorem.

• Error distribution that turns the method of least squares into maxi-
mum likelihood estimation.

9



Parameters Real numbers µ and σ2 > 0.

Sample Space The real numbers.

Probability Density Function

f(x) =
1√
2πσ

e−(x−µ)2/2σ2
, −∞ < x < ∞

Moments

E(X) = µ

var(X) = σ2

E{(X − µ)3} = 0

E{(X − µ)4} = 3σ4

Linear Transformations If X is N (µ, σ2) distributed, then aX + b is
N (aµ + b, a2σ2) distributed.

Addition Rule If X1, . . ., Xk are independent random variables, Xi being
N (µi, σ

2
i ) distributed, then X1 + · · ·+Xk is a N (µ1 + · · ·+µk, σ

2
1 + · · ·+σ2

k)
random variable.

Theorem The fact that the probability density function integrates to one
is equivalent to the integral∫ ∞

−∞
e−z2/2 dz =

√
2π

Relation to Other Distributions If Z is N (0, 1) distributed, then Z2

is Gam(1
2 , 1

2) distributed.

12 Exponential Distribution

Abbreviation Exp(λ).

Type Continuous.
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Rationales

• Lifetime of object that does not age.

• Waiting time or interarrival time in Poisson process.

• Continuous analog of the geometric distribution.

Parameter Real number λ > 0.

Sample Space The interval (0,∞) of the real numbers.

Probability Density Function

f(x) = λe−λx, 0 < x < ∞

Cumulative Distribution Function

F (x) = 1− e−λx, 0 < x < ∞

Moments

E(X) =
1
λ

var(X) =
1
λ2

Addition Rule If X1, . . ., Xk are IID Exp(λ) random variables, then
X1 + · · ·+ Xk is a Gam(k, λ) random variable.

Relation to Other Distributions Exp(λ) = Gam(1, λ).

13 Gamma Distribution

Abbreviation Gam(α, λ).

Type Continuous.

Rationales

• Sum of IID exponential random variables.

• Conjugate prior for exponential, Poisson, or normal precision family.
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Parameter Real numbers α > 0 and λ > 0.

Sample Space The interval (0,∞) of the real numbers.

Probability Density Function

f(x) =
λα

Γ(α)
xα−1e−λx, 0 < x < ∞

where Γ(α) is defined by (13.1) below.

Moments

E(X) =
α

λ

var(X) =
α

λ2

Addition Rule If X1, . . ., Xk are independent random variables, Xi being
Gam(αi, λ) distributed, then X1+· · ·+Xk is a Gam(α1+· · ·+αk, λ) random
variable.

Normal Approximation If α is large, then

Gam(α, λ) ≈ N
(

α

λ
,

α

λ2

)
Theorem The fact that the probability density function integrates to one
is equivalent to the integral∫ ∞

0
xα−1e−λx dx =

Γ(α)
λα

the case λ = 1 is the definition of the gamma function

Γ(α) =
∫ ∞

0
xα−1e−x dx (13.1)
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Relation to Other Distributions

• Exp(λ) = Gam(1, λ).

• chi2(ν) = Gam(ν
2 , 1

2).

• If X and Y are independent, X is Γ(α1, λ) distributed and Y is Γ(α2, λ)
distributed, then X/(X + Y ) is Beta(α1, α2) distributed.

• If Z is N (0, 1) distributed, then Z2 is Gam(1
2 , 1

2) distributed.

Facts About Gamma Functions Integration by parts in (13.1) estab-
lishes the gamma function recursion formula

Γ(α + 1) = αΓ(α), α > 0 (13.2)

The relationship between the Exp(λ) and Gam(1, λ) distributions gives

Γ(1) = 1

and the relationship between the N (0, 1) and Gam(1
2 , 1

2) distributions gives

Γ(1
2) =

√
π

Together with the recursion (13.2) these give for any positive integer n

Γ(n + 1) = n!

and
Γ(n + 1

2) =
(
n− 1

2

) (
n− 3

2

)
· · · 3

2 ·
1
2

√
π

14 Beta Distribution

Abbreviation Beta(α1, α2).

Type Continuous.

Rationales

• Ratio of gamma random variables.

• Conjugate prior for binomial or negative binomial family.
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Parameter Real numbers α1 > 0 and α2 > 0.

Sample Space The interval (0, 1) of the real numbers.

Probability Density Function

f(x) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

xα1−1(1− x)α2−1 0 < x < 1

where Γ(α) is defined by (13.1) above.

Moments

E(X) =
α1

α1 + α2

var(X) =
α1α2

(α1 + α2)2(α1 + α2 + 1)

Theorem The fact that the probability density function integrates to one
is equivalent to the integral∫ 1

0
xα1−1(1− x)α2−1 dx =

Γ(α1)Γ(α2)
Γ(α1 + α2)

Relation to Other Distributions

• If X and Y are independent, X is Γ(α1, λ) distributed and Y is Γ(α2, λ)
distributed, then X/(X + Y ) is Beta(α1, α2) distributed.

• Beta(1, 1) = Unif(0, 1).

15 Multinomial Distribution

Abbreviation Multi(n,p).

Type Discrete.

Rationale Multivariate analog of the binomial distribution.
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Parameters Real vector p in the parameter space{
p ∈ Rk : 0 ≤ pi, i = 1, . . . , k, and

k∑
i=1

pi = 1

}
(15.1)

Sample Space The set of vectors with integer coordinates

S =

{
x ∈ Zk : 0 ≤ xi, i = 1, . . . , k, and

k∑
i=1

xi = n

}
(15.2)

Probability Mass Function

f(x) =
(

n

x

) k∏
i=1

pxi
i , x ∈ S

where (
n

x

)
=

n!∏k
i=1 xi!

is called a multinomial coefficient.

Moments

E(Xi) = npi

var(Xi) = npi(1− pi)
cov(Xi, Xj) = −npipj , i 6= j

Moments (Vector Form)

E(X) = np

var(X) = nM

where

M = diag(p)− pp′

is the matrix with elements mij = cov(Xi, Xj)/n.

Addition Rule If X1, . . ., Xk are independent random vectors, Xi being
Multi(ni,p) distributed, then X1 + · · · + Xk is a Multi(n1 + · · · + nk,p)
random variable.
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Normal Approximation If n is large and p is not near the boundary of
the parameter space (15.1), then

Multi(n,p) ≈ N (np, nM)

Theorem The fact that the probability mass function sums to one is
equivalent to the multinomial theorem: for any vector a of real num-
bers ∑

x∈S

[(
n

x

) k∏
i=1

axi
i

]
= (a1 + · · ·+ ak)n

Degeneracy If there exists a vector a such that Ma = 0, then var(a′X) =
0.

In particular, the vector u = (1, 1, . . . , 1) always satisfies Mu = 0, so
var(u′X) = 0. This is obvious, since u′X =

∑k
i=1 Xi = n by definition of

the multinomial distribution, and the variance of a constant is zero. This
means a multinomial random vector of dimension k is “really” of dimension
no more than k − 1 because it is concentrated on a hyperplane containing
the sample space (15.2).

Marginal Distributions Every univariate marginal is binomial

Xi ∼ Bin(n, pi)

Not, strictly speaking marginals, but random vectors formed by col-
lapsing categories are multinomial. If A1, . . ., Am is a partition of the set
{1, . . . , k} and

Yj =
∑
i∈Aj

Xi, j = 1, . . . ,m

qj =
∑
i∈Aj

pi, j = 1, . . . ,m

then the random vector Y has a Multi(n,q) distribution.

Conditional Distributions If {i1, . . . , im} and {im+1, . . . , ik} partition
the set {1, . . . , k}, then the conditional distribution of Xi1 , . . ., Xim given
Xim+1 , . . ., Xik is Multi(n − Xim+1 − · · · − Xik ,q), where the parameter
vector q has components

qj =
pij

pi1 + · · ·+ pim

, j = 1, . . . ,m
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Relation to Other Distributions

• Each marginal of a multinomial is binomial.

• If X is Bin(n, p), then the vector (X, n−X) is Multi
(
n, (p, 1− p)

)
.

16 Bivariate Normal Distribution

Abbreviation See multivariate normal below.

Type Continuous.

Rationales See multivariate normal below.

Parameters Real vector µ of dimension 2, real symmetric positive semi-
definite matrix M of dimension 2× 2 having the form

M =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
where σ1 > 0, σ2 > 0 and −1 < ρ < +1.

Sample Space The Euclidean space R2.

Probability Density Function

f(x) =
1
2π

det(M)−1/2 exp
(
−1

2(x− µ)′M−1(x− µ)′
)

=
1

2π
√

1− ρ2σ1σ2

exp

(
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

−2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(

x2 − µ2

σ2

)2
])

, x ∈ R2

Moments

E(Xi) = µi, i = 1, 2

var(Xi) = σ2
i , i = 1, 2

cov(X1, X2) = ρσ1σ2

cor(X1, X2) = ρ
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Moments (Vector Form)

E(X) = µ

var(X) = M

Linear Transformations See multivariate normal below.

Addition Rule See multivariate normal below.

Marginal Distributions Xi is N (µi, σ
2
i ) distributed, i = 1, 2.

Conditional Distributions The conditional distribution of X2 given X1

is
N
(
µ2 + ρ

σ2

σ1
(x1 − µ1), (1− ρ2)σ2

2

)
17 Multivariate Normal Distribution

Abbreviation N (µ,M)

Type Continuous.

Rationales

• Multivariate analog of the univariate normal distribution.

• Limiting distribution in the multivariate central limit theorem.

Parameters Real vector µ of dimension k, real symmetric positive semi-
definite matrix M of dimension k × k.

Sample Space The Euclidean space Rk.

Probability Density Function If M is (strictly) positive definite,

f(x) = (2π)−k/2 det(M)−1/2 exp
(
−1

2(x− µ)′M−1(x− µ)′
)
, x ∈ Rk

Otherwise there is no density (X is concentrated on a hyperplane).
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Moments (Vector Form)

E(X) = µ

var(X) = M

Linear Transformations If X is N (µ,M) distributed, then AX + b,
where A is a constant matrix and b is a constant vector of dimensions
such that the matrix multiplication and vector addition make sense, has the
N (Aµ + b,AMA′) distribution.

Addition Rule If X1, . . ., Xk are independent random vectors, Xi being
N (µi,Mi) distributed, then X1+· · ·+Xk is aN (µ1+· · ·+µk,M1+· · ·+Mk)
random variable.

Degeneracy If there exists a vector a such that Ma = 0, then var(a′X) =
0.

Partitioned Vectors and Matrices The random vector and parameters
are written in partitioned form

X =
(
X1

X2

)
(17.1a)

µ =
(

µ1

µ2

)
(17.1b)

M =
(
M11 M12

M21 M2

)
(17.1c)

when X1 consists of the first r elements of X and X2 of the other k − r
elements and similarly for µ1 and µ2.

Marginal Distributions Every marginal of a multivariate normal is nor-
mal (univariate or multivariate as the case may be). In partitioned form,
the (marginal) distribution of X1 is N (µ1,M11).

Conditional Distributions Every conditional of a multivariate normal
is normal (univariate or multivariate as the case may be). In partitioned
form, the conditional distribution of X1 given X2 is

N (µ1 + M12M−
22[X2 − µ2],M11 −M12M−

22M21)

where the notation M−
22 denotes the inverse of the matrix M−

22 if the matrix
is invertible and otherwise any generalized inverse.
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18 Chi-Square Distribution

Abbreviation chi2(ν) or χ2(ν).

Type Continuous.

Rationales

• Sum of squares of IID standard normal random variables.

• Sampling distribution of sample variance when data are IID normal.

Parameter Real number ν > 0 called “degrees of freedom.”

Sample Space The interval (0,∞) of the real numbers.

Probability Density Function

f(x) =
(1
2)ν/2

Γ(ν
2 )

xν/2−1e−x/2, 0 < x < ∞.

Moments

E(X) = ν

var(X) = 2ν

Addition Rule If X1, . . ., Xk are independent random variables, Xi being
chi2(νi) distributed, then X1+· · ·+Xk is a chi2(ν1+· · ·+νk) random variable.

Normal Approximation If ν is large, then

chi2(ν) ≈ N (ν, 2ν)

Relation to Other Distributions

• chi2(ν) = Gam(ν
2 , 1

2).

• If X is N (0, 1) distributed, then X2 is chi2(1) distributed.

• If Z and Y are independent, X is N (0, 1) distributed and Y is chi2(ν)
distributed, then X/

√
Y/ν is t(ν) distributed.

• If X and Y are independent and are chi2(µ) and chi2(ν) distributed,
respectively, then (X/µ)/(Y/ν) is F (µ, ν) distributed.
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19 Student’s t Distribution

Abbreviation t(ν).

Type Continuous.

Rationales

• Sampling distribution of pivotal quantity
√

n(Xn − µ)/Sn when data
are IID normal.

• Marginal for µ in conjugate prior family for two-parameter normal
data.

Parameter Real number ν > 0 called “degrees of freedom.”

Sample Space The real numbers.

Probability Density Function

f(x) =
1√
νπ

·
Γ(ν+1

2 )
Γ(ν

2 )
· 1(

1 + x2

ν

)(ν+1)/2
, −∞ < x < +∞

Moments If ν > 1, then
E(X) = 0.

Otherwise the mean does not exist. If ν > 2, then

var(X) =
ν

ν − 2
.

Otherwise the variance does not exist.

Normal Approximation If ν is large, then

t(ν) ≈ N (0, 1)

Relation to Other Distributions

• If X and Y are independent, X is N (0, 1) distributed and Y is chi2(ν)
distributed, then X/

√
Y/ν is t(ν) distributed.

• If X is t(ν) distributed, then X2 is F (1, ν) distributed.

• t(1) = Cauchy(0, 1).
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20 Snedecor’s F Distribution

Abbreviation F (µ, ν).

Type Continuous.

Rationale

• Ratio of sums of squares for normal data (test statistics in regression
and analysis of variance).

Parameters Real numbers µ > 0 and ν > 0 called “numerator degrees of
freedom” and “denominator degrees of freedom,” respectively.

Sample Space The interval (0,∞) of the real numbers.

Probability Density Function

f(x) =
Γ(µ+ν

2 )µµ/2νν/2

Γ(µ
2 )Γ(ν

2 )
· xµ/2+1

(µx + ν)(µ+ν)/2
, 0 < x < +∞

Moments If ν > 2, then

E(X) =
ν

ν − 2
.

Otherwise the mean does not exist.

Relation to Other Distributions

• If X and Y are independent and are chi2(µ) and chi2(ν) distributed,
respectively, then (X/µ)/(Y/ν) is F (µ, ν) distributed.

• If X is t(ν) distributed, then X2 is F (1, ν) distributed.

21 Cauchy Distribution

Abbreviation Cauchy(µ, σ).

Type Continuous.
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Rationales

• Very heavy tailed distribution.

• Counterexample to law of large numbers.

Parameters Real numbers µ and σ > 0, called the “location” and “scale”
parameter, respectively.

Sample Space The real numbers.

Probability Density Function

f(x) =
1

πσ
· 1

1 +
(x−µ

σ

)2 , −∞ < x < +∞

Moments No moments exist.

Addition Rule If X1, . . ., Xk are IID Cauchy(µ, σ) random variables,
then Xn = (X1 + · · ·+ Xk)/n is also Cauchy(µ, σ).

Relation to Other Distributions

• t(1) = Cauchy(0, 1).

22 Laplace Distribution

Abbreviation Laplace(µ, σ).

Type Continuous.

Rationales Median is maximum likelihood estimate of location parame-
ter.

Parameters Real numbers µ and σ > 0, called the mean and standard
deviation, respectively.

Sample Space The real numbers.
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Probability Density Function

f(x) =
√

2
2σ

exp
(
−
√

2
∣∣∣∣x− µ

σ

∣∣∣∣) , −∞ < x < ∞

Moments

E(X) = µ

var(X) = σ2
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