Stat 5101 (Geyer) Fall 2008
 Homework Assignment 4
 Due Wednesday, October 1, 2008

Solve each problem. Explain your reasoning. No credit for answers with no explanation. If the problem is a proof, then you need words as well as formulas. Explain why your formulas follow one from another.

4-1. If U, V, X, and Y are any random variables, show that

$$
\operatorname{cov}(U+V, X+Y)=\operatorname{cov}(U, X)+\operatorname{cov}(V, X)+\operatorname{cov}(U, Y)+\operatorname{cov}(V, Y)
$$

4-2. Suppose X_{1}, X_{2}, X_{3} are IID with mean μ and variance σ^{2}. Calculate the mean vector and variance matrix of the random vector

$$
\mathbf{Y}=\left(\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right)=\left(\begin{array}{l}
X_{1}-X_{2} \\
X_{2}-X_{3} \\
X_{3}-X_{1}
\end{array}\right)
$$

4-3. Suppose X and Y are independent random variables, with means μ_{X} and μ_{Y}, respectively, and variances σ_{X}^{2} and σ_{Y}^{2}, respectively. Calculate

$$
E\left(X^{2} Y^{2}\right)
$$

in terms of $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}$, and σ_{Y}^{2}.
4-4. Suppose 6 balls that are indistinguishable except for color are placed in an urn and suppose 3 balls are red and 3 are white. Suppose 2 balls are drawn. What is the probability the one is red and the other white under each of the following conditions?
(a) The 2 balls constitute a random sample with replacement from the urn.
(b) The 2 balls constitute a random sample without replacement from the urn.
What is the probability the both balls are red under each of the following conditions?
(c) The 2 balls constitute a random sample with replacement from the urn.
(d) The 2 balls constitute a random sample without replacement from the urn.
4-5. If X_{1}, \ldots, X_{n} are exchangeable random variables, show that

$$
\operatorname{cov}\left(X_{1}, X_{2}\right) \geq-\frac{\operatorname{var}\left(X_{1}\right)}{n-1}
$$

Hint: consider the variance of $X_{1}+\cdots+X_{n}$.

4-6. Suppose X_{1}, X_{2}, \ldots are IID random variables having mean μ and variance τ^{2}. For each $i \geq 1$ define

$$
Y_{i}=\sum_{j=1}^{5} X_{i+j}
$$

Then Y_{1}, Y_{2}, \ldots is called a moving average of order 5 time series, MA(5) for short. It is a weakly stationary time series.
(a) Calculate $E\left(Y_{i}\right)$.
(b) Calculate $\operatorname{var}\left(Y_{i}\right)$.
(c) Calculate $\operatorname{cov}\left(Y_{i}, Y_{i+k}\right)$, for $k=1,2, \ldots$.

4-7. Suppose X_{1} and X_{2} are IID random variables that are uniformly distributed on the set $\{1,2,3,4,5\}$.
(a) Find the PMF of the random vector $\mathbf{Y}=\left(X_{1}, X_{1}+X_{2}\right)$.
(b) Are the components of \mathbf{Y} independent?
(c) Are the components of \mathbf{Y} uncorrelated?

4-8. Suppose X_{1}, \ldots, X_{k} are independent binomial random variables with different sample sizes but the same success probability, say X_{i} has the $\operatorname{Bin}\left(n_{i}, p\right)$ distribution. Show that $Y=X_{1}+\ldots+X_{k}$ has the $\operatorname{Bin}\left(n_{1}+\right.$ $\left.\ldots+n_{k}, p\right)$ distribution. Hint: no calculation necessary. This follows from something we already know.

