## Stat 5101 (Geyer) Fall 2008 <br> Homework Assignment 1 <br> Due Wednesday, September 10, 2008

Solve each problem. Explain your reasoning. No credit for answers with no explanation.

1-1. For each of the following functions $h$ either determine a constant $c$ such that $c \cdot h$ - that is, the function $x \mapsto c \cdot h(x)$ - is a PMF or determine that no such constant exists.
(a) the identity function on the set $\{0,1,2\}$.
(b) the identity function on the set $\{-2,-1,0,1,2\}$.
(c) the constant function $x \mapsto 1$ on the set $\{0,1,2\}$.
(d) the constant function $x \mapsto 1$ on the set $\{-2,-1,0,1,2\}$.
(e) the function $x \mapsto x^{2}$ on the set $\{0,1,2\}$.
(f) the function $x \mapsto x^{2}$ on the set $\{-2,-1,0,1,2\}$.
(g) the function $x \mapsto x^{3}$ on the set $\{0,1,2\}$.
(h) the function $x \mapsto x^{3}$ on the set $\{-2,-1,0,1,2\}$.

1-2. Suppose $X$ is a random variable having the discrete uniform distribution on the sample space $\{1,2,3,4,5,6\}$.
(a) Determine $\operatorname{Pr}(X<4)$.
(b) Determine $\operatorname{Pr}(X \leq 4)$.
(c) Determine $\operatorname{Pr}(6<X<10)$.

1-3. Suppose $X$ is a random variable having PMF

$$
f(x)=\frac{x}{21}, \quad x=1,2,3,4,5,6 .
$$

(a) Determine $E(X)$.
(b) Determine $E\left(X^{2}\right)$.
(c) Determine $E\left\{(X-3)^{2}\right\}$.

1-4. Suppose $X$ is a $\operatorname{Ber}(p)$ random variable.
(a) Show that $E\left(X^{k}\right)=p$ for all positive integers $k$.
(b) Determine $E\left\{(X-p)^{2}\right\}$.
(c) Determine $E\left\{(X-p)^{3}\right\}$.
$\mathbf{1 - 5}$. Determine the set of real numbers $\theta$ such that

$$
f_{\theta}(x)= \begin{cases}\theta, & x=x_{1} \\ \theta^{2}, & x=x_{2} \\ 1-\theta-\theta^{2}, & x=x_{3}\end{cases}
$$

is a PMF on the sample space $\left\{x_{1}, x_{2}, x_{3}\right\}$.

