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1 Introduction

These are class notes for Stat 5601 (nonparametrics) taught at the Uni-
versity of Minnesota, Spring 2006. This not a theory course, so the bit of
theory we do here is very simple, but very important, since without it we
cannot understand the duality of tests and confidence intervals for the two
Wilcoxon tests (signed rank and rank sum).

2 Wilcoxon Signed Rank Test

Why are the two alternative forms of the test statistic for the Wilcoxon
signed rank test

(a) the sum of the positive ranks

(b) the number of Walsh averages greater than the hypothesized µ

equal?
First we need to say that they aren’t necessarily when there are ties,

hence thoughout these notes (for both Wilcoxon tests) we assume

• the distribution of the data is continuous

This implies, in particular, for the signed rank test

• no ties occur among the Walsh averages (with probability one)

This fact follows directly from the sum of continuous random variables being
continuous, which we will not try to prove (it follows directly from the
convolution formula for the density of a sum of random variables, which
should be taught in any theory of statistics course).
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So what this section will prove is that, assuming no ties among the Walsh
averages, the two forms (a) and (b) are equal.

The way proofs like this go is by mathematical induction. First we show
they are equal for some simple case. Then we show that any change to the
data keeps them equal. Hence we conclude they are equal no matter what
the data are (as long as there are no ties).

2.1 Base of the Induction

The simple case we start with is when the hypothesized value of the
parameter of interest (population center of symmetry µ) is greater than all
data points, hence greater than all Walsh averages.

Then if Zi are the data, all of the Zi − µ are negative hence all of the
ranks are negative and the sum of the positive ranks is zero.

Similarly all of the Walsh averages

Zi + Zj

2
, i ≤ j (1)

are less than µ, hence (b) is zero too.
That finishes the start of the induction. We know (a) and (b) are equal

for this case (all of the data points below the hypothesized µ).

2.2 Induction Steps

Now we consider moving µ keeping the data fixed from past the upper
end of the data (where we now know the values of the alternative forms
of the test statistic) to past the lower end of the data, where symmetry
considerations tell us both forms take on their maximal value n(n + 1)/2.

Clearly, (b) changes value when and only when µ moves past a Walsh
average.

Changes of value of (a) are more complicated. It changes value when

• the ranks of some of the |Zi − µ| change, or

• the signs attached to some of the ranks change.

Latter first. Clearly the sign of Zi − µ changes when µ moves past Zi,
which is a Walsh average, the case i = j in (1).

The rank of |Zi − µ| cannot change by itself. Some other rank, say that
of |Zj − µ| must change too. If we are looking at a very small change in
µ causing the change, as these move past each other, they must be equal.
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Furthermore they cannot have the same sign, because decreasing µ cannot
change the order of Zi − µ and Zj − µ. Thus when they are equal we must
have

(Zi − µ) = −(Zj − µ) (2)

which implies µ = (Zi + Zj)/2. Hence in this case too, (a) changes when µ
moves past a Walsh average.

To summarize this section, we have proved: (a) and (b) change only
when µ moves past a Walsh average (of one kind or the other).

2.2.1 Induction Step at a Data Point

When i = j in (1), then the Walsh average is just Zi. In this section we
consider what happens when µ moves past Zi (going from right to left on
the number line)

Clearly, (b) is increased by one. There is exactly one Walsh average
equal to Zi and when µ moves past that, there is one more Walsh average
greater than µ.

Clearly, (a) is also increased by one. Exactly one signed rank changes,
that associated with Zi, when µ moves past Zi. When µ is very near Zi, in
which case |Zi − µ| is the smallest of all the |Zj − µ|, hence the i-th rank is
one, and the sign is negative when µ > Zi and positive when µ < Zi.

2.2.2 Induction Step at other Walsh Averages

The word “other” in the heading means those not yet considered. Sup-
pose i 6= j and consider what happens when µ moves past the Walsh average
w = (Zi + Zj)/2 (going from right to left on the number line). As µ moves
past w, at some point it is equal to w, and µ = w implies (2).

Since Zi and Zj are not tied, we must have one greater and one less than
w, say (without loss of generality) Zi < w < Zj .

For µ just a little above w we have the i-th rank greater than the j-th
and for for µ just a little below w we have the i-th rank less than the j-th.
Moreover the i-th is a negative rank (because Zi − µ is negative) and the
j-th is a positive rank (because Zj − µ is positive). Finally the i-th and
j-th absolute ranks are consecutive integers because as |Zi −µ| and |Zj −µ|
change places in the rank order there is no room between them for other
Zm − µ. Thus as µ passes w going from right to left the j-th rank (which
is positive) increases by one, the i-th rank decreases by one (but is negative
and does not count), and none of the other ranks or signs change. Hence
the form (a) increases by one.
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And that finishes the proof. In all cases, no matter where µ is, (a) and
(b) change in sync and hence are equal no matter where µ is.

3 Wilcoxon Rank Sum Test

The situation for the rank sum test is similar. There are two alternative
test statistics, which, although not identical differ only by a constant. If the
data are X1, . . ., Xm and Y1, . . ., Yn and the hypothesized value of the shift
is µ, meaning that under the null hypothesis we assume that the Xi and the
Yj − µ have the same distribution, then the test statistics are

(a) the sum of the y ranks

(b) the number of Yj −Xi differences greater than the hypothesized µ.

The former (a) we call the Wilcoxon statistic W . The latter (b) we call the
Mann-Whitney statistic U . To be more precise, to calculate W we assign
ranks to the m + n numbers of the form Xi and Yj −µ and W is the sum of
the ranks of the Yj − µ.

In this section we prove two things.

• W and U differ by a constant, which we identify.

• The distributions W and U are symmetric about the midpoints of their
ranges, which we also identify.

As with the theory for the signed rank test, the proof of the first proceeds
by induction. Throughout we assume no ties in the data.

3.1 Base of the Induction

The proof by induction moves the hypothesized value µ from right to left
along the number line (this is just like the proof for the signed rank test).
As µ decreases, all of the Yj − µ values increase in synchrony, moving from
below all the Xi values (when µ is very large and positive) to above all the
Xi values (when µ is very large and negative).

When µ is very large and positive, so all of the Yj − µ are to the left of
all the Xi, U is zero (all of the Yj −Xi are less than µ) and the Y ranks are
the numbers from 1 to n, so W = n(n + 1)/2 and

W = U +
n(n + 1)

2
. (3)
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3.1.1 Induction Step

We now need to show that as µ moves from left to right along the number
line U and W change in synchrony. Clearly W changes whenever some Yj−µ
is equal to some Xj . Clearly U changes whenever some Yj − Xi is equal to
µ. Clearly both of these are the same event. Write

Zij = Yj −Xi.

As µ moves from just above to just below Zij the ranks assigned to Xi and
Yj − µ swap. The one for Xj decreasing by one and the one for Yj − µ
increasing by one, so W increases by one. As µ moves from just above to
just below Zij the number of Zij greater than µ increases by one, so U
increases by one.

And that concludes the proof; (3) always holds.

3.2 Symmetry

Symmetry is easier to see for the Mann-Whitney test statistic. The way
to make it easy is to envisage the X’s to be sampled before the Y ’s and to
envisage the Y ’s arriving one at a time. So consider m X’s and one Y (take
the null hypothesis to be zero, so Yj − µ is just Yj).

Under the null hypothesis, these m + 1 variables are IID, hence the Y is
equally probable to be any place in the sorted order; from 1 to m + 1. Thus
the number of Yj −Xi pairs that exceed µ = 0 ranges from 0 to m and each
of these m + 1 numbers is equally probable. In short the contribution to U
from all the X’s and one Y has the discrete uniform distribution on the set
{0, . . . ,m}. Since the contributions of the Y ’s are IID (the Y ’s being IID
and independent of the X’s), we see that U is the sum of n IID discrete
uniform {0, . . . ,m} random variables.

We take as a fact from theory (not difficult to prove) that the IID sum of
symmetric random variables is symmetric. The discrete uniform distribution
is symmetric, thus the distribution of U is symmetric. This discrete uniform
distribution has center of symmetry m/2, which is also the mean. The mean
of the sum of n IID random variable is n times the mean of one of them,
thus

E(U) =
mn

2
and this is also the center of symmetry and the median of the distribution
of U . The range of U is from 0 to mn, which also makes it obvious the the
center of symmetry, which must be the midpoint of the range, is mn/2.
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From (3) we know that

E(W ) = E(U) +
n(n + 1)

2
=

n(m + n + 1)
2

and this is also the center of symmetry and the median of the distribution
of W . The range of W is found by adding n(n + 1)/2 to the range of U ,
giving lower end

n(n + 1)
2

and upper end

mn +
n(n + 1)

2
=

n(2m + n + 1)
2
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