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1 Introduction

These are class notes for Stat 5601 (nonparametrics) taught at the Uni-
versity of Minnesota, Spring 2006. This not a theory course, so the bit of
theory we do here is very simple, but very important in multivariate analysis,
which is not really the subject of this course. It is necessary to fully under-
stand the principle components example (our first really messy bootstrap
example).

2 Random Vectors

2.1 Definitions

A random vector is just a vector whose components are random variables.
Its mean is the vector whose components are the means of the components.
If X = (X1, . . . , Xn) is a random vector, and µ = (µ1, . . . , µn) is its mean
vector, then

µi = E(Xi), i = 1, . . . , n,

but we usually write this as a vector equation µ = E(X).
The analogy for variances is not obvious. We define var(X) to be a

matrix whose i, j element is cov(Xi, Xj). Different people have different
names for this matrix. Some call it the variance matrix, some call it the
covariance matrix, some call it the variance-covariance matrix — because
the diagonal elements are variances, cov(Xi, Xi) = var(Xi) — and some call
it the dispersion matrix. Whatever you call it, there isn’t any other matrix
that plays any analogous role in the theory (there’s just one theoretically
useful matrix, but people can’t agree what to call it).

A variance matrix is always symmetric, because the covariance operator
is a symmetric function of its arguments: cov(Xi, Xj) = cov(Xj , Xi).
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2.2 Linear Transformations

If X and Y are random variables and Y is a linear function of X, that
is, Y = aX + b for some constants a and b, then

E(Y ) = aE(X) + b (1a)

var(Y ) = a2 var(X) (1b)
sd(Y ) = |a| sd(X) (1c)

If X and Y are random vectors, then we say Y is a linear function of X
when Y = AX+b for some constant matrix A and some constant vector b
(in real math, say in a linear algebra course, this would be called an “affine”
function, which would be called “linear” only if b = 0, but most people call
these functions “linear”), then

E(Y) = AE(X) + b (2a)

var(Y) = A var(X)AT (2b)

are formulas for vector-to-vector linear transformations analogous to (1a)
and (1b).

2.3 Positive Semi-Definiteness

Consider the case where Y = AX is scalar, so A is a matrix with just one
row (a row vector). Since it is a convention to consider vectors as matrices
with just one column (column vectors), we write A = aT where a is a column
vector. Then (2b) becomes

0 ≤ var(Y ) = aT var(X)a

the inequality coming from the fact that the variance of a random variable
is always nonnegative.

This property has a name. An arbitrary symmetric matrix V (not nec-
essarily a variance matrix) is said to be positive semi-definite if

aTVa ≥ 0, for all vectors a.

Thus we now have two properties that all variance matrices must satisfy:
they are symmetric and positive semi-definite.
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2.4 Spectral Decomposition

Any symmetric matrix A can has a spectral decomposition

A = ODOT (3)

where D is diagonal and O is orthogonal, which means O−1 = OT .
The reason an orthogonal matrix is called orthogonal is because its

columns are orthogonal vectors (vectors whose scalar product is zero). Let
wi denote the i-th column of O. Then wT

i wj is the i, j-th element of
OTO = O−1O = I, where I denotes the identity matrix. This says each
column of O has length one and is perpendicular (orthogonal) to every other
column.

Thinking of O as a change of coordinate systems, we see that it corre-
sponds to a rigid rotation from one frame of reference with perpendicular
coordinate axes to another frame of reference with perpendicular coordinate
axes.

The spectral decomposition can be used to determine whether a matrix
is positive semi-definite. A diagonal matrix is positive semidefinite if and
only if all its elements are nonnegative, because

aTDa =
∑

i

a2
i dii.

A general symmetric matrix is positive semi-definite if and only if the diag-
onal matrix in its spectral decomposition is positive semi-definite, because

aTAa = aTODOTa = bTDb

where b = OTa and a = Ob.

2.5 Eigenvalues and Eigenvectors

Multiplying (3) on the right by O gives

AO = ODOTO = OD

If we interpret this by looking at what it does to the columns wi of O, we
get

Awi = λiwi,

where λi is the i, i-th element of D.
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This property also has a name. If A is any matrix and if

Aw = λw

holds for some nonzero vector w and scalar λ, then we say w is an eigenvector
of A corresponding to the eigenvalue λ. Thus in the spectral decomposition,
the columns of O are eigenvectors of A and the corresponding elements of
the diagonal of D are the corresponding eigenvalues.

Eigenvectors are not uniquely determined by eigenvalues. The system
of linear equations (A − λI)w always has multiple solutions. Any nonzero
scalar multiple of an eigenvector is an eigenvector. Any linear combination
of eigenvectors corresponding to the same eigenvalue is an eigenvector.

Since the eigenvectors produced by a spectral decomposition are orthog-
onal, they are linearly independent and form a basis for n-dimensional space.
Any other eigenvectors are linear combinations of those given by the spectral
decomposition.

2.6 Matrix Square Roots

A symmetric positive semi-definite matrix A has a natural matrix square
root calculated using the spectral decomposition (3)

A1/2 = OD1/2OT ,

where D1/2 is the diagonal matrix whose diagonal elements are the square
roots of the diagonal elements of D (which are nonnegative because D is
positive semi-definite).

It is easily seen that D1/2D1/2 = D, and this implies A1/2A1/2 = A,
because of OT = O−1.

We can use this notion to define “standard deviations” of random vectors,
but they are nowhere near as useful as standard deviations of scalar random
variables. The analog of (1c) would be

var(Y)1/2 =
(
A var(X)AT

)1/2
. (4)

3 Principal Components

3.1 Definition

If X is any random vector having finite variance, let

var(X) = ODOT (5)
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be the spectral decomposition of its variance matrix.
Consider the random vector Y = OTX. (We are using a linear transfor-

mation that is derived from the spectral decomposition, O being the same
matrix in both places.) Then

var(Y) = OT var(X)O

= OTODOTO

= D

where the first equality is (2b), the second is (5), and the third is the defining
property of orthogonal matrices (OT = O−1).

Thus Y has a diagonal variance matrix. Hence, since the off-diagonal
elements of the variance matrix (a. k. a., covariance, variance-covariance, or
dispersion matrix) are covariances, the components of Y are uncorrelated.
And, since the diagonal elements of the variance matrix are variances and
the diagonal elements of D are the eigenvalues of var(X), the variances of
the components of Y are the eigenvalues of the variance matrix of X.

The components of Y are called the principal components of X. Since
an orthogonal matrix is invertible, we also have X = OY. This expresses an
arbitrary random vector X as a linear combination of uncorrelated random
variables (its principal components).

The process of doing the spectral decomposition (a. k. a., finding eigen-
values and eigenvectors) of the variance matrix of X is called principal com-
ponents analysis (PCA).

3.2 Dimension Reduction

PCA is often used as a method of dimension reduction. If we only keep
a few of the principal components, then we get a “simple” explanation of
the structure of X involving a few random variables. Order the components
of Y putting the components with larger variance (larger eigenvalues) first.
As in Sections 2.4 and 2.5, let wi denote the columns of O, which are
eigenvectors of var(X), and let λi denote the diagonal elements of D, which
are the eigenvalues of var(X). Then

X =
n∑

i=1

Yiwi,

where Y = (Y1, . . . , Yn). A sum of fewer terms

X̃ =
k∑

i=1

Yiwi
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may explain most of the variance in the following sense.

3.3 Fraction of Variance Explained

Let ‖ · ‖ denote the Euclidean norm of a vector, so

‖Y‖2 = YTY =
∑

i

Y 2
i .

Then because the components of Y are independent we have

E
{
‖Y − ν‖2

}
=

n∑
i=1

λi,

where ν = E(Y). This is the most natural scalar measure of the variablility
of Y (of course, the complete measure is its entire variance matrix D).

Because an orthogonal transformation is a rotation, it does not affect
lengths. So if µ = E(X), we have

E
{
‖X− µ‖2

}
= E

{
(X− µ)T (X− µ)

}
= E

{
(Y − ν)TOTO(Y − ν)

}
= E

{
(Y − ν)T (Y − ν)

}
= E

{
‖Y − ν‖2

}
.

Because Y = OTX implies X = OY and µ = Oν, because (AB)T = BTAT

for any matrices A and B, and because OTO = I.
Similarly, if µ̃ = E(X̃), then

E
{
‖X̃− µ̃‖2

}
=

k∑
i=1

λi.

Thus the fraction of the variance of X explained by the first k principal
components is

∑k
i=1 λi/

∑n
i=1 λi.
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