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1. Introduction. Missing data (Little and Rubin, 2002) either arise

naturally—data that might have been observed are missing—or are intentionally

chosen—a model includes random variables that are not observable (called latent

variables or random effects). A mixture of normals or a generalized linear mixed

model (GLMM) is an example of the latter. In either case, a model is specified for

the complete data (x, y), where x is missing and y is observed, by their joint den-

sity fθ(x, y), also called the complete data likelihood (when considered as a function

of θ). The maximum likelihood estimator (MLE) maximizes the marginal density

fθ(y), also called the observed data likelihood (when considered as a function of

θ). This marginal density is only implicitly specified by the complete data model,

fθ(y) =
∫
fθ(x, y) dx, and is often not available in closed form. This is what makes

likelihood inference for missing data difficult.

Many Monte Carlo schemes for approximating the observed data likelihood in

a missing data model have been proposed. We simulate missing data, indepen-

dent of the observed data, using ordinary (independent sample) Monte Carlo. Oth-

ers simulate missing data, dependent on the observed data, using either ordinary

Monte Carlo (Ott, 1979; Kong, Liu, and Wong, 1994) or Markov chain Monte Carlo

(MCMC) (Lange and Sobel, 1991; Thompson and Guo, 1991; Gelfand and Carlin,

1993; Geyer, 1994b; Thompson, 2003). There are also many Monte Carlo schemes for

maximum likelihood without approximating the observed data likelihood: stochastic

approximation (Younes, 1988; Moyeed and Baddeley, 1991), Monte Carlo EM (Wei

and Tanner, 1990; Guo and Thompson, 1992), and Monte Carlo Newton-Raphson

(Penttinen, 1984). There are also non–Monte Carlo schemes for maximum likelihood

without approximating the observed data likelihood: EM (Dempster, Laird, and Ru-

bin, 1977) and analytic approximation (Breslow and Clayton, 1993). There are so

many methods because each has its strength and weakness. In theory, MCMC works

for any problem, but in practice for complicated problems MCMC needs much trial

and error and one can never be sure it has worked. Ordinary Monte Carlo with im-

portance sampling is much simpler. It may not work for very complicated problems,

but one always knows whether or not it worked and how well. Non–Monte Carlo
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schemes are relatively easy to implement, but only approximate the desired answer

and do not have error estimates so one cannot know how bad the approximation is.

All of these are useful for some, but not all, problems.

Here, we provide rigorous asymptotic theory where both data and Monte Carlo

sample sizes go to infinity. This is different from Geyer (1994b) where only the

Monte Carlo sample size goes to infinity. When both sample sizes go to infinity, two

sources of variability need to be considered: one from sampling of the observed data

and the other from Monte Carlo sampling of the missing data. How to combine

these two sources of variability is complicated even for ordinary Monte Carlo, as

described below.

Let the observed data Y1,. . . , Yn be independent and identically distributed

(i. i. d.) from a density g, which is not assumed to be some fθ. That is, we do not

assume the model is correctly specified, since an increase of generality makes the

theory no more difficult. The MLE θ̂n is a maximizer of the log-likelihood

ln(θ) =
n∑

j=1

log fθ(Yj). (1)

In our method, we generate an i. i. d. Monte Carlo sample X1, . . . , Xm, independent

of Y1, . . . , Yn, from an importance sampling density h(x) and approximate fθ(y) by

fθ,m(y) =
1

m

m∑

i=1

fθ(Xi, y)

h(Xi)
. (2)

This makes heuristic sense because

fθ,m(y)
as−→m Eh

{
fθ(X, y)

h(X)

}
= fθ(y) for each y

by the strong law of large numbers. (The subscript m on the arrow means as m

goes to infinity. Similarly, a subscript m,n means as both m and n go to infinity.)

Our estimate of θ̂n is the maximizer θ̂m,n of

lm,n(θ) =
n∑

j=1

log fθ,m(Yj), (3)
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an approximation to ln(θ) with fθ,m replacing fθ. We call θ̂m,n the Monte Carlo

MLE (MCMLE). Note that the summands in (3) are dependent, since the same

Monte Carlo sample X1, . . . , Xm is used for each log fθ,m(Yj).

Under the conditions of Theorem 2.3,

θ̂m,n ≈ N
(
θ∗,

J−1V J−1

n
+
J−1WJ−1

m

)
, (4)

for sufficiently large m and n, where θ∗ is the minimizer of the Kullback-Leibler

information

K(θ) = Eg log
g(Y )

fθ(Y )
, (5)

J is minus the expectation of the second derivative of the log-likelihood, V is the

variance of the first derivative of the log-likelihood (score), and W is the variance of

the deviation of the score from its Monte Carlo approximation (given by (7) below).

Under certain regularity conditions (Huber, 1967; White, 1982),

θ̂n ≈ N
(
θ∗,

J−1V J−1

n

)
. (6)

We see that, in our method, θ̂m,n has nearly the same distribution when the Monte

Carlo sample size m is very large. If the model is correctly specified, that is, g = fθ0 ,

then θ∗ = θ0 and J = V , either of which is called Fisher information, and (6)

becomes

θ̂n ≈ N
(
θ∗,

J−1

n

)

the familiar formula due to Fisher and Cramér. This replacement of J−1 by the

so-called “sandwich” J−1V J−1 is the only complication arising from model misspec-

ification.

The asymptotic variance of the MCMLE θ̂m,n in (4) consists of two terms: the

first term (which is also the asymptotic variance of θ̂n) reflects sampling variability

of the observed data (Y ’s) and the second term reflects the variability of the Monte

Carlo sample (X’s). Increasing the Monte Carlo sample size m can make the second

term as small we please so that the MCMLE θ̂m,n is almost as good as the MLE
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θ̂n. In (4), W is the only term related to the importance sampling density h that

generates the Monte Carlo sample. Choosing an h that makes W smaller makes

θ̂m,n more accurate.

The asymptotic distribution of θ̂m,n in (4) is a convolution of two independent

normal distributions. The proof of this is not simple, however, for three reasons.

First, the finite sample terms from which these arise (the two terms in the right

hand side of (9)) are dependent. Second, one of these is itself a sum of dependent

terms, because of the reuse of the X’s. Third, our two sample sizes m and n tend to

infinity simultaneously, and we must show that the result does not depend on the

way in which m and n go to infinity.

2. Asymptotics of θ̂m,n. In this section, we state theorems about strong

consistency and asymptotic normality of the MCMLE θ̂m,n. Proofs are in the ap-

pendix. Epi-convergence is described in Section 2.1. Epi-convergence of Km,n to

K is in Section 2.2. This implies consistency of θ̂m,n. Asymptotic normality of

θ̂m,n is in Section 2.3. Plug-in estimates of the asymptotic variance for constructing

confidence regions for θ∗ are in Section 2.4.

We use empirical process notation throughout. We let P denote the probability

measure induced by the importance sampling density h and Pm denote the empirical

measure induced by X1, . . . , Xm (that are i. i. d. from P ). Similarly, we let Q denote

the probability measure induced by the true density g and Qn denote the empirical

measure induced by Y1, . . . , Yn (that are i. i. d. from Q). Given a measurable

function f : X 7→ R, we write Pmf(X) for the expectation of f under Pm and

Pf(X) for the expectation under P . Similarly we use Qnf(Y ) and Qf(Y ). Note

that Pmf(X) = 1
n

∑n
i=1 f(Xi) is just another notation for a particular sample mean.

The Kullback-Leibler information in (5) can be written as

K(θ) = Q log
g(Y )

fθ(Y )
,
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its empirical version as

Kn(θ) = Qn log
g(Y )

fθ(Y )
,

and our approximation to Kn(θ) as

Km,n(θ) = Qn log
g(Y )

fθ,m(Y )
,

with

fθ,m(y) = Pm
fθ(X, y)

h(X)
.

Then

Kn(θ) = Qn log g(Y ) − 1

n
ln(θ),

and

Km,n(θ) = Qn log g(Y ) − 1

n
lm,n(θ).

Thus the MLE θ̂n, the maximizer of ln, is also the minimizer of Kn and the MCMLE

θ̂m,n, the maximizer of lm,n, is also the minimizer of Km,n. By Jensen’s inequality

K(θ) ≥ 0. This allows K(θ) = ∞ for some θ, but we assume K(θ∗) is finite. (This

excludes only the uninteresting case of the function θ 7→ K(θ) being identically ∞.)

2.1. Epi-convergence. To get the convergence of θ̂m,n to θ∗ we use epi-

convergence of the functionKm,n to the functionK. Epi-convergence is a “one-sided”

uniform convergence that was first introduced by Wijsman (1964, 1966), developed

in optimization theory (Attouch, 1984; Aubin and Frankowska, 1990; Rockafellar

and Wets, 1998), and used in statistics (Geyer, 1994b,a). It is weaker than uniform

convergence yet insures the convergence of minimizers as the following proposition

due to Attouch (1984, Theorem 1.10) describes.

Proposition 2.1. Let X be a general topological space, {fn} a sequence of

functions from X to R that epi-converges to f , and {xn} a sequence of points in X

satisfying fn(xn) ≤ inf fn + εn with εn ↓ 0. Then for every converging subsequence

xnk
→ x0

f(x0) = inf f = lim
k
fnk

(xnk
).
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The conditions that Wald (1949) imposed to get consistency of the MLE imply

epi-convergence of Kn to K (when there are no missing data and no Monte Carlo).

If f has a unique minimizer x, then x is the only cluster point of the sequence

{xn}. Otherwise, there may be many cluster points, but all must minimize f . There

may not be any convergent subsequence. If the sequence {xn} is in a compact set

and X is sequentially compact, however, there is always a convergent subsequence.

2.2. Epi-convergence of Km,n. Now we state our theorem about epi-convergence

of Km,n.

Theorem 2.2. Let
{
fθ(x, y) : θ ∈ Θ

}
, where Θ ⊂ Rd, be a family of densities

with respect to a σ-finite measure µ × ν on X × Y, let X1, X2, . . . be i. i. d. from

a probability distribution P that has a density h with respect to µ, and let Y1, Y2,

. . . be i. i. d. from a probability distribution Q that has a density g with respect to

ν. Suppose

(1) Θ is a second countable topological space,

(2) for each (x, y), the function θ 7→ fθ(x, y) is upper semicontinuous on Θ,

(3) for each θ, there exists a neighborhood Bθ of θ such that

Q log

{
P sup

φ∈Bθ

fφ(X,Y )

h(X)g(Y )

}
<∞,

(4) for each θ, there exists a neighborhood Cθ of θ such that for any subset B of

Cθ, the family of functions

{
sup
φ∈B

fφ( · , y)
h( · )g(y) : y ∈ Y

}

is P -Glivenko-Cantelli,

(5) for each θ, the family of functions
{
fθ( · |y)/h( · ) : y ∈ Y

}
is P -Glivenko-

Cantelli.
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Then Km,n epi-converges to K with probability one.

P -Glivenko-Cantelli, a set of measurable functions on which the uniform strong

law of large numbers holds (van der Vaart and Wellner, 1996, page 81), is required

in condition (4) and (5). Other conditions are similar to those of Theorem 1 in

Geyer (1994b).

2.3. Asymptotic Normality of θ̂m,n. We now state our theorem about asymptotic

normality of θ̂m,n. If the minimizer θ∗ of K is an interior point of Θ, then

∇K(θ∗) = 0

assuming K is differentiable. Here ∇ is used to mean differentiation with respect

to θ. Define the matrix norm

‖A‖∞ = max
i,j

|aij|

for a matrix A with components aij.

Theorem 2.3. Let
{
fθ(x, y) : θ ∈ Θ

}
, where Θ ⊂ Rd, be a family of densities

with respect to a σ-finite measure µ × ν on X × Y, let X1, X2, . . . be i. i. d. from

a probability distribution P that has a density h with respect to µ, and let Y1, Y2,

. . . be i. i. d. from a probability distribution Q that has a density g with respect to

ν. Suppose

(1) second partial derivatives of fθ(y) with respect to θ exist and are continuous

on the interior of Θ for all y,

(2) there is an interior point θ∗ of Θ such that Q∇ log fθ∗(Y ) = 0, V =

varQ∇ log fθ∗(Y ) is finite and J = −Q∇2 log fθ∗(Y ) is finite and nonsingular,

(3) there exists a ρ > 0 such that Sρ =
{
θ : |θ − θ∗| ≤ ρ

}
is contained in Θ and

F1 =
{
∇2fθ( · ) : θ ∈ Sρ

}
is Q-Glivenko-Cantelli,

(4) second partial derivatives of fθ(x|y) with respect to θ exist for all x and y,
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(5) Y is a separable metric space,

(6) F2 =
{
fθ∗( · |y)/h( · ) : y ∈ Y

}
is P -Glivenko-Cantelli,

(7) F3 =
{
∇fθ∗( · |y)/h( · ) : y ∈ Y

}
is P -Donsker,

(8) the envelope function F of F3 has a finite second moment,

(9) P∇fθ∗(X|y)/h(X) = 0 for each y,

(10) y 7→ ∇fθ∗(x|y) is continuous on Y for each x,

(11) F4 =
{
∇2fθ( · |y)/h( · ) : y ∈ Y , θ ∈ Sρ

}
is P -Glivenko-Cantelli

(12) P∇2fθ(X|y)/h(X) = 0 for each y and θ ∈ Sρ,

(13) there is a sequence θ̂m,n which converges to θ∗ in probability such that

√
min(m,n) ∇Km,n(θ̂m,n)

P−→m,n 0.

Then

W = varP Q
∇fθ∗(X|Y )

h(X)
(7)

is finite and (
V

n
+
W

m

)−1/2

J
(
θ̂m,n − θ∗

)
L−→m,n N (0, I). (8)

Donsker, a set of measurable functions on which the “uniform” central limit

theorem holds (van der Vaart and Wellner, 1996, page 81), is required for F3 and

Glivenko-Cantelli for F1, F2, and F4. Conditions (1) through (3) and (13) are similar

to the usual regularity conditions for asymptotic normality of the MLE, which can

be found, for example, in Ferguson (1996, Chapter 18).

Note F3 is a family of vector-valued functions and F1 and F4 are families of

matrix-valued functions. A class of vector-valued functions f : X 7→ Rd is defined

to be Glivenko-Cantelli or Donsker if each of the classes of components fi : X 7→ R
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with f = (f1, . . . , fd) ranging over F is Glivenko-Cantelli or Donsker (van der Vaart,

1998, page 270).

Under smoothness conditions imposed in this theorem, the asymptotics of θ̂m,n

arises from the asymptotics of

∇Km,n(θ
∗) = −Qn∇ log fθ∗(Y ) − Qn∇ log Pmfθ∗(X|Y )/h(X). (9)

Note the two terms on the right hand side are dependent and the summands in the

second term are dependent, which indicates the complexity of this problem and why

the usual asymptotic arguments (requiring only the usual regularity conditions) do

not work here.

The asymptotics for the first term on the right in (9) follows from the central

limit theorem. The following diagram outlines the proof of the asymptotics for the

second term (Lemma B.3).

√
mQn∇ log Pmfθ∗(X|Y )/h(X) QnGP∇fθ∗(X|Y )/h(X)

QGP∇fθ∗(X|Y )/h(X)

-m

HHHHHHHHHHHHHHj

m,n

?

n (10)

The empirical process
√
m(Pm − P ) converges in distribution to a tight Gaussian

process GP . Applying the almost sure representation theorem to this convergence

in distribution, for each ω in the almost sure representation, the upper left term

in (10) goes to a constant, as first m → ∞ then n → ∞, and this makes the

term asymptotically independent of the first term on the right in (9). The same

representation also shows the asymptotic distribution for the term is the lower right

term in (10).

2.4. Plug-in Estimates for J , V , and W . We can construct a confidence region

for θ∗ using (8) (or equivalently (4)). If we can evaluate the integrals defining J ,
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V , and W , then we may use those integrals with θ̂m,n plugged in for θ∗ to estimate

them, assuming enough continuity. Often we cannot evaluate the integrals or do

not know g. Then we use their sample versions: sample variance instead of variance

and sample mean instead of expectation

Ĵm,n = − 1

n

n∑

j=1

∇2 log fθ̂m,n
(Yj)

V̂m,n =
1

n

n∑

j=1

{
∇ log fθ̂m,n

(Yj)
}{

∇ log fθ̂m,n
(Yj)

}T

Ŵm,n =
1

m

m∑

i=1

ŜiŜ
T
i

(11)

where

Ŝi =
1

n

n∑

j=1

∇fθ̂m,n
(Xi|Yj)

h(Xi)
. (12)

The resulting variance estimate Ĵ−1
m,n(V̂m,n/n + Ŵm,n/m)Ĵ−1

m,n is in a form often re-

ferred to as the “sandwich estimator” (Liang and Zeger, 1986).

Recall, however, we started this paper with the case where fθ(y) is not available

in closed form. Then the marginal in (11) and conditional in (12) would not be

closed form. So we use fθ,m(y) given by (2) instead of the unknown marginal fθ(y),

and using

fθ,m(x|y) =
fθ(x, y)

fθ,m(y)
,

we use

∇fθ,m(x|y) =
∇fθ(x, y)
fθ,m(y)

− fθ(x, y)∇fθ,m(y)

fθ,m(y)2
.

3. Logit-Normal GLMM Examples. In a Logit-Normal GLMM, the ob-

served data is a vector y whose components are conditionally independent given the

missing data (also called random effects) vector b with

yi|b ∼ Bernoulli(logit−1(ηi)), (13)
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where

η = Xβ + Zb, (14)

and b is unconditionally jointly mean-zero multivariate normal. In (14) X and Z

are known matrices (the design matrices for fixed and random effects, respectively)

and β is an unknown fixed effects parameter vector.

The unknown parameters to be estimated are β and parameters determining the

variance matrix of b. Usually this variance matrix has simple structure and involves

only a few parameters. We have written an R package bernor that implements the

methods of this paper for a class of Logit-Normal GLMM. The package and more

detailed descriptions of its application to the examples in this paper are on the

webpage www.stat.umn.edu/geyer/bernor. Our package restricts to a case where

the variance matrix of b is diagonal, so the random effects are (unconditionally)

independent.

3.1. Data from McCulloch’s Model. We use a data set given by Booth and

Hobert (1999, Table 2) that was simulated using a model from McCulloch (1997).

This model corresponds to a Logit-Normal GLMM with one-dimensional β and b in

(14), and its log likelihood can be calculated exactly by numerical integration. The

observed data consist of 10 i. i. d. pieces, each with length 15. The parameters that

generated the data are β = 5 and σ =
√

1/2.

We generated a Monte Carlo sample of size 104, using a standard normal distri-

bution as h, obtained the MCMLE and plug-in estimates given by (11), and con-

structed a nominal 95% confidence ellipse (shown in Figure 1). This ellipse contains

the simulation truth. Figure 1 also shows the dotted ellipse where the asymptotic

variance is calculated exactly using the theoretical expected Fisher information and

W , instead of plug-in estimates. Our estimate (β̂m,n = 6.15, σ̂m,n = 1.31) is close

to the MLE (β̂n = 6.13, σ̂n = 1.33). But neither is close to the truth, and the solid

and dotted ellipses are different, indicating that plug-in estimates are not close to

their expected values. This merely indicates that sample size n = 10 is too small to
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apply asymptotics.

To demonstrate our asymptotic theory, we did a simulation study using the

same model with sample sizes n = 500 and m = 100. (We have chosen these sample

sizes so that sampling and Monte Carlo variability, the two terms that make up

the variance in (4), are roughly the same size.) Figure 2 gives the scatter plot of

100 MCMLE’s. The solid ellipse is an asymptotic 95% coverage ellipse using the

theoretical expected Fisher information andW . The dashed ellipse is what we would

have if we had very large Monte Carlo sample size m, leaving n the same. The solid

ellipse contains 92 out of 100 points, thus the asymptotics appear to work well at

these sample sizes. However, as the dashed curve shows, even if we were to use a

Monte Carlo sample size m so large that the Monte Carlo error is negligible, the

(non–Monte Carlo) sampling variability of the estimator would still be large, even

at n = 500. The estimator of the fixed effect µ is fairly precise (about one and a half

significant figure accuracy), but the estimator of the random effect scale parameter

σ has zero significant figure accuracy. It appears that very large (data) sample sizes

would be necessary for scientifically useful inference about this model.

3.2. The Salamander Data. We use the data in McCullagh and Nelder (1989,

Section 14.5) that were obtained from a salamander mating experiment and have

been analyzed many times (see Booth and Hobert, 1999, for one analysis and ci-

tations of others). We use “Model A” of Karim and Zeger (1992). According to

this model, the data have only 3 i. i. d. pieces. Thus we assume J = V (no model

misspecification), since n = 3 is too small to obtain non-singular estimates of V .

We obtained the MCMLE and standard errors, using m = 104 and also using

m = 107 (shown in Table 1). The MLE given by Booth and Hobert (1999) is

also shown in Table 1 (we have independently verified using MCMC that their

MLE appears to be correct up to three significant figures). Our MCMLE’s agree

qualitatively but not quantatitively with the MLE. Increasing m would improve the

agreement.
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Figure 1: Nominal 95% confidence ellipse for our analysis of the Booth and Hobert

data using m = 104. The solid dot is the “simulation truth” parameter value. The

solid ellipse uses plug-in estimates of J , V , and W , whereas the dotted ellipse uses

the Fisher information and W .

14



4.6 4.8 5.0 5.2 5.4 5.6

0.
5

0.
6

0.
7

0.
8

0.
9

µ

σ

Figure 2: Simulated MLE with asymptotic 95% coverage ellipse (solid curve). The

solid dot is the “simulation truth” parameter value (see text). Hollow dots are the

MCMLE’s for 100 simulated data sets, using sample sizes n = 500 and m = 100.

The dashed curve is what the 95% coverage ellipse would be if we set m to infinity.
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Table 1: The MCMLE’s and Standard Errors for the Salamander Data Set, using

Sample Size m = 104 and m = 107. The MLE from Booth and Hobert (1999) is

provided for comparison.

βR/R βR/W βW/R βW/W σf σm

MCMLE (m = 104) est 0.98 0.19 −1.90 0.49 0.84 0.86

SE 0.29 0.32 0.33 0.28 0.15 0.18

MCMLE (m = 107) est 1.00 0.53 −1.78 1.27 1.10 1.17

SE 0.35 0.33 0.36 0.53 0.20 0.28

MLE est 1.03 0.32 −1.95 0.99 1.18 1.12

We included this example, even though our method does not perform well, be-

cause it is important for users to know that there is a level of complexity that our

method does not handle as well as MCMC. That having been said, we want to

point out virtues of our method. It is ordinary (independent sample) Monte Carlo,

thus simpler to implement and easier to understand than MCMC. Also, it always

provides accurate standard errors, unlike MCMC where convergence proofs are very

difficult and rarely done in practice. Furthermore, this example has been considered

difficult to analyze because its likelihood involves a 20-dimensional integral. For

many less complicated data sets, our method would work.

4. Discussion. We have described a Monte Carlo method to approximate the

MLE, when there are missing data and the observed data likelihood is not available

in closed form. The MLE converges to the minimizer θ∗ of the Kullback-Leibler in-

formation, which is the true parameter value when the model is correctly specified.

We have proved that our estimate MCMLE is a consistent and asymptotically nor-

mal estimate of θ∗ as both Monte Carlo and observed data sample sizes go to infinity

simultaneously. Plug-in estimates of the asymptotic variance are provided in (11)

for constructing confidence regions for θ∗. We applied our method to Logit-Normal
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GLMM examples.

In practice, a statistical model fθ is often chosen only for mathematical con-

venience and may contain simplistic and unrealistic assumptions. However, it is

usually possible to simulate i. i. d. data Y ’s from a more realistic model g. We have

presented the theory so that it can be used for the study of model misspecification in

missing data models. The theory applies whether the Y ’s are a Monte Carlo sample

or real data. In either case we can estimate θ∗ using θ̂m,n and know what accuracy

we have. By comparing fθ̂m,n
(an estimate of fθ∗ , the “best” approximation to g in

the model) with g, we can assess model validity as whether the particular model is

reasonable for approximating the truth or how its simplifying assumptions influence

scientific conclusions.

In our scheme, when the observed data are i. i. d., a whole Monte Carlo sample

X’s of missing data is used n times—for each fθ,m(yj), 1 ≤ j ≤ n. Instead suppose

the Monte Carlo sample X is used only once, split into n groups, each group used

for approximating one fθ(yj) (making the asymptotics simpler). Then the resulting

estimate has the same form of asymptotic variance as in (8) (or equivalently (4)),

with W replaced by

W̃ = Q varh

{∇fθ∗(X|Y )

h(X)

}
.

By Jensen’s inequality, W̃ ≥ W . Thus using the X’s n times makes θ̂m,n more

accurate.

The Monte Carlo method we analyzed in this paper can be extended in two ways.

First, the importance sampling density h can be allowed to depend on the observed

data. Second, the simulated missing data can be allowed to be a Markov chain. In

practice, both of these extensions are commonly used together. For example, the

conditional density fθ0(x|y) of X given the observed data y is used as an importance

sampling, from which simulating i. i. d. sample is often impossible and MCMC is

necessary (Lange and Sobel, 1991; Thompson and Guo, 1991; Thompson, 2003).

Providing theory for either of these extensions is an important open question.
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APPENDIX

A. Proof of Theorem 2.2. We first prove the following lemmas, then prove

Theorem 2.2.

Lemma A.1. Under condition (5) of Theorem 2.2, as m→ ∞ and n→ ∞

Km,n(θ) → K(θ)

with probability one for each θ.

Proof. Since

fθ,m(y)

fθ(y)
− 1 = (Pm − P )

fθ(·, y)
h(·)fθ(y)

= (Pm − P )
fθ(·|y)
h(·) ,

by condition (5) ∥∥∥∥
fθ,m(·)
fθ(·)

− 1

∥∥∥∥
Y

au−→m 0

by Lemma 1.9.2 in van der Vaart and Wellner (1996). That is, for every ε > 0, there

exists a measurable set A such that Pr(A) ≥ 1 − ε and

∥∥∥∥
fθ,m(·)
fθ(·)

− 1

∥∥∥∥
Y

−→m 0

uniformly on A. So for every ε1 > 0 there exists M ∈ N such that

1 − ε1 ≤
fθ,m(y)

fθ(y)
≤ 1 + ε1, for m ≥M and all y ∈ Y

uniformly on A. Thus

log(1 − ε1) ≤ log
fθ,m(y)

fθ(y)
≤ log(1 + ε1)

for m ≥M and all y ∈ Y uniformly on A. So

∥∥∥∥log
fθ,m(·)
fθ(·)

∥∥∥∥
Y

−→m 0
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uniformly on A. That is, for any ε2 > 0 there exists M1 ∈ N such that

sup
y∈Y

∣∣∣∣log
fθ,m(y)

fθ(y)

∣∣∣∣ ≤ ε2, ω ∈ A,m ≥M1

and hence

|Km,n(θ) −Kn(θ)| =

∣∣∣∣∣
1

n

n∑

j=1

log
fθ(Yj)

fθ,m(Yj)

∣∣∣∣∣ ≤ ε2,

for ω ∈ A, m ≥M1, and all n ∈ N. Hence

sup
n∈N

|Km,n(θ) −Kn(θ)| au−→m 0. (15)

Since

Kn(θ)
as−→n K(θ) (16)

by the strong law of large numbers, the result follows from applying the triangle

inequality to (15) and (16).

Lemma A.2. Under conditions (3) and (4) of Theorem 2.2,

lim inf
(m,n)→(∞,∞)

inf
φ∈B

Km,n(φ) ≥ −Q logP sup
φ∈B

fφ(X,Y )

h(X)g(Y )
(17)

with probability one for each subset B of Bθ ∩ Cθ.

Proof. By condition (3) the right hand side of (17) is not −∞.

inf
φ∈B

Km,n(φ) = inf
φ∈B

−Qn log Pm
fφ(X,Y )

h(X)g(Y )

= − sup
φ∈B

Qn log Pm
fφ(X,Y )

h(X)g(Y )

≥ −Qn log Pm sup
φ∈B

fφ(X,Y )

h(X)g(Y )
,

where the inequality follows from the logarithm function being increasing and the

supremum operation being superadditive. By condition (4)

∥∥∥∥(Pm − P ) sup
φ∈B

fφ(·, y)
h(·)g(y)

∥∥∥∥
Y

au−→m 0,

19



that is, for every ε1 > 0 and ε2 > 0, there exist a measurable set A and an M ∈ N

such that Pr(A) ≥ 1 − ε1 and

Pm sup
φ∈B

fφ(·, y)
h(·)g(y) ≤ P sup

φ∈B

fφ(·, y)
h(·)g(y) + ε2

for all m ≥M , y ∈ Y , and ω ∈ A. So

inf
φ∈B

Km,n(φ) ≥ −Qn log

{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}

for all m ≥M , n ∈ N, and ω ∈ A.

Now applying the strong law of large numbers to the right hand side, there exist

a measurable set A2 and an N ∈ N such that Pr(A2) ≥ 1 − ε3 and

−Qn log

{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}
≥ −Q log

{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}
− ε4

for all n ≥ N , and ω ∈ A2. Hence

inf
φ∈B

Km,n(φ) ≥ −Q log

{
P sup

φ∈B

fφ(X,Y )

h(X)g(Y )
+ ε2

}
− ε4

for all m ≥M , n ≥ N , and ω ∈ A ∩A2. Since ε’s were arbitrary, (17) holds almost

uniformly.

Lemma A.3. Under conditions (2) and (3) of Theorem 2.2, K is lower semi-

continuous.

Proof. Let θ be a point of Θ and {θk} a sequence in Θ converging to θ.

lim sup
k→∞

Q log
fθk

(·)
g(·) = lim

n→∞
sup
k≥n

Q logP
fθk

(X,Y )

h(X)g(Y )

≤ lim
n→∞

Q logP sup
k≥n

fθk
(X,Y )

h(X)g(Y )

= Q logP lim sup
k→∞

fθk
(X,Y )

h(X)g(Y )
,
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where the second equality follows from the monotone convergence theorem by con-

dition (3).

lim inf
k→∞

K(θk) = − lim sup
k→∞

Q log
fθk

(·)
g(·)

≥ −Q logP lim sup
k→∞

fθk
(X,Y )

h(X)g(Y )

≥ −Q logP
fθ(X,Y )

h(X)g(Y )
= K(θ),

where the last inequality follows from condition (2).

Proof of Theorem 2.2. Let (mk, nk) be a subsequence of (m,n). We need

to show

K ≤ e-lim infkKmk,nk
≤ e-lim supkKmk,nk

≤ K,

which is equivalent to

K(θ) ≤ sup
B∈N (θ)

lim inf
k→∞

inf
φ∈B

Kmk,nk
(φ), (18)

K(θ) ≥ sup
B∈N (θ)

lim sup
k→∞

inf
φ∈B

Kmk,nk
(φ), (19)

where N (θ) is the set of neighborhoods of the point θ.

By condition (1) there is a countable basis B = {B1, B2, . . . } for the topology

of Θ. Choose a particular countable dense subset Θc = {θ1, θ2, . . . } by choosing

θn ∈ Bn to satisfy

K(θn) ≤ inf
φ∈Bn

K(φ) + 1/n.

Let

Nc(θ) = {B ∈ B ∩N (θ) : B ⊂ Bθ ∩ Cθ}

where Bθ is given by condition (3) and Cθ is given by condition (4). The set Nc(θ)

is a countable neighborhood basis for each θ. So the suprema over the uncountable

set N (θ) in (18) and (19) can be replaced by suprema over the countable set Nc(θ).
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We shall need

lim sup
k→∞

Kmk,nk
(θ) ≤ K(θ), (20)

lim inf
k→∞

inf
φ∈B

Kmk,nk
(φ) ≥ −Q logP sup

φ∈B

fφ(X,Y )

h(X)g(Y )
(21)

to hold simultaneously for all θ ∈ Θc and all B ∈ ⋃
θ∈Θ Nc(θ) with probability

one. Inequality (20) holds at each point θ with probability one by Lemma A.1, and

inequality (21) holds at each subset B ∈ Nc(θ) with probability one by Lemma A.2.

Since Θc and
⋃
θ∈Θ Nc(θ) (which is a subset of B) are countable and since a countable

union of null sets (one exception set for each limit) is still a null set, we have (20)

and (21) simultaneously on Θc and
⋃
θ∈Θ Nc(θ), respectively, with probability one.

First we establish (19). If B ∈ B and θ ∈ B ∩ Θc, then by (20)

K(θ) ≥ lim sup
k

Kmk,nk
(θ) ≥ lim sup

k→∞
inf
φ∈B

Kmk,nk
(φ)

So

inf
φ∈B∩Θc

K(φ) ≥ lim sup
k→∞

inf
φ∈B

Kmk,nk
(φ)

and

sup
B∈Nc(θ)

inf
φ∈B∩Θc

K(φ) ≥ sup
B∈Nc(θ)

lim sup
k→∞

inf
φ∈B

Kmk,nk
(φ).

The left-hand side is equal to K(θ) by lower semicontinuity of K (Lemma A.3) and

by the construction of Θc.

Now

sup
B∈Nc(θ)

lim inf
k→∞

inf
φ∈B

Kmk,nk
(φ) ≥ sup

B∈Nc(θ)

−Q logP sup
φ∈B

fφ(X,Y )

h(X)g(Y )

= −Q logP inf
B∈Nc(θ)

sup
φ∈B

fφ(X,Y )

h(X)g(Y )

= −Q logP
fθ(X,Y )

h(X)g(Y )
= K(θ),

where the first inequality follows from (21), the first equality from the monotone

convergence theorem, and the second equality from condition (2). So we have (18).
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B. Proof of Theorem 2.3. We break up the proof into several lemmas. Using

Lemma B.3 and Lemma B.4 below, we shall find the asymptotics of the two terms

on the right hand side in (9) to be



√
n Qn∇ log fθ∗(Y )

√
m Qn∇ log Pmfθ∗(X|Y )/h(X)




L−→ N
(

0,

(
V 0

0 W

))
. (22)

The asymptotics for the first term follows from the central limit theorem

√
n Qn∇ log fθ∗(Y )

L−→ N (0, V ). (23)

The second term is asymptotically independent of the first by Lemma B.3 and

asymptotically normally distributed by Lemma B.4. Lemma B.3 and Lemma B.4

are original. The others use standard arguments.

Lemma B.1. Let Q denote a separable probability measure on a metric space

and Qn the empirical measure for an i. i. d. sample from Q. Then Qn
L−→ Q almost

surely.

Proof. Let B be a countable basis for the metric space, and let A be the set

of all finite intersections of elements of B. The latter is countable because Bn is

countable for each n, and hence
⋃∞
n=1 Bn is countable.

Now for each A ∈ A we have Qn(A) → Q(A) by the strong law of large numbers.

Hence, a countable union of null sets being a null set, this implies

Qn(A) → Q(A), A ∈ A (24)

almost surely (the null set not depending on A). By Theorem 2.2 in Billingsley

(1999), A is a convergence determining class, meaning (24) implies Qn
L−→ Q.

Hence Qn
L−→ Q almost surely.

Lemma B.2. Under conditions (8) through (10) of Theorem 2.3, the function

y 7→ k(ω, y) is bounded and continuous for almost all ω, where

k(ω, y) = GP (ω)

{∇fθ∗(X|y)
h(X)

}
(25)
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and GP is the tight Gaussian process in l∞(F3) with zero mean and covariance

function E(GPf · GPg) = Pfg − PfPg.

Proof. From GP being a random element in l∞(F3), for each ω

‖GP (ω)‖F3
=

∥∥∥∥GP (ω)
∇fθ∗(X|y)
h(X)

∥∥∥∥
Y

= ‖k(ω, y)‖Y <∞,

thus the function y 7→ k(ω, y) is bounded.

The function y 7→ k(ω, y) is continuous if and only if each y 7→ ki(ω, y) is

continuous, where ki(ω, y) is the i-th coordinate of k(ω, y). Let

F3i =
{
fi : f = (f1, . . . , fd) ∈ F3

}
.

From GP being a tight Gaussian process, for almost all ω the function sample path

f 7→ GP (ω)f is ρi-continuous on F3i (van der Vaart and Wellner, 1996, Section 1.5),

where

ρi(f, g) =
{
E(GPf − GPg)

2
}1/2

=
{
P (f − g)2

}1/2
, f, g ∈ F3i.

Let
[
∇fθ∗( · |y)/h( · )

]
i
denote the i-th coordinate of ∇fθ∗( · |y)/h( · ). If yn → y in

Y then

ρi
([
∇fθ∗( · |yn)/h( · )

]
i
,
[
∇fθ∗( · |y)/h( · )

]
i

)2

= P
([
∇fθ∗( · |yn)/h( · )

]
i
−
[
∇fθ∗( · |y)/h( · )

]
i

)2 ≤ 4P (F 2
i )

where Fi is the i-th coordinate of F in condition (8). So by the dominated conver-

gence theorem and conditions (8) and (10)

ρi
({

∇fθ∗( · |yn)/h( · )
}
i
,
{
∇fθ∗( · |y)/h( · )

}
i

)
→ 0,

and this shows the function y 7→
[
∇fθ∗( · |y)/h( · )

]
i
from Y to (F3i, ρi) is continuous.

Then as the composition of the two continuous functions, the function y 7→ ki(ω, y)

is continuous for almost all ω ∈ Ω.
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Lemma B.3. Under conditions (6), (7), and (9) of Theorem 2.3,

√
m Qn∇ log Pmfθ∗(X|Y )/h(X)

L−→m,n QGP∇fθ∗(X|Y )/h(X), (26)

and this limit is independent of the first term on the right hand side in (9), where

GP is a tight Gaussian process in l∞(F3) with zero mean and covariance function

E(GPf · GPg) = Pfg − PfPg.

Proof. Conditions (6) and (7) say

Pm
au−→ P in l∞(F2),

Gm
L∗

−→ GP in l∞(F3),

where Gm =
√
m(Pm−P ). By Slutsky’s theorem (van der Vaart and Wellner, 1996,

Example 1.4.7)

(Pm,Gm)
L∗

−→ (P,GP ) in D,

where

D = l∞(F2) × l∞(F3).

By the almost sure representation theorem (van der Vaart and Wellner, 1996,

Theorem 1.10.4 and Addendum 1.10.5), letting (Ω,A,Pr) denote the probability

space on which the Xn and hence the Pn are defined (Pr can be taken to be P∞),

there exist measurable and perfect functions φm on some probability space (Ω̃, Ã, P̃r)

such that the following diagram commutes

Ω D

Ω̃

-(Pm,Gm)

6
φm

¡
¡
¡¡µ

(ePm,eGm)

and Pr = P̃r ◦ φ−1
m and

(P̃m, G̃m)
au−→ (P̃∞, G̃∞) in D, (27)
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where

(P∞,G∞) = (P,GP ),

where on the right hand side P denotes a constant random element of l∞(F2). We

write also P̃ instead of P̃∞ and G̃P instead of G̃∞.

The almost uniform convergence in (27) implies almost sure convergence. There

exists Ã such that P̃r(Ã) = 1,

‖(P̃m, G̃m) − (P̃ , G̃P )‖D −→m 0

on Ã, and k̃(ω̃, · ) = k(φ∞(ω̃), · ) is bounded and continuous for ω̃ ∈ Ã (Lemma B.2),

where k is defined by (25). That is, on Ã,

‖(P̃m − P̃ )fθ∗(·|y)/h(·)‖Y −→m 0

‖(G̃m − G̃P )∇fθ∗(·|y)/h(·)‖Y −→m 0

Since the function (s, t) 7→ t/s is uniformly continuous on [s0,∞) × R with s0 > 0

and since P̃ fθ∗( · |y)/h( · ) = 1,
∥∥∥∥∥

G̃m∇fθ∗(·|y)/h(·)
P̃mfθ∗(·|y)/h(·)

− G̃P∇fθ∗(·|y)/h(·)
∥∥∥∥∥
Y

−→m 0

on Ã. Thus for every ω̃ ∈ Ã and every sequence {Y1, Y2, . . . }

Qn
G̃m(ω̃)∇fθ∗(X|Y )/h(X)

P̃m(ω̃)fθ∗(X|Y )/h(X)
−→m QnG̃P (ω̃)

{∇fθ∗(X|Y )

h(X)

}
(28)

uniformly in n.

Note that the right hand side of (28) is Qnk̃(ω̃, · ). Since k̃(ω̃, · ) is bounded and

continuous, if (H,B,Qr) is the probability space on which the Yn are defined (Qr

can be taken to be Q∞) by Lemma B.1, there exists a B such that Qr(B) = 1 and

Qn(η)G̃P (ω̃)

{∇fθ∗(X|Y )

h(X)

}
−→n Q G̃P (ω̃)

{∇fθ∗(X|Y )

h(X)

}
(29)

for all ω̃ ∈ Ã and all η ∈ B.
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Now combining (28) and (29)

Qn(η)
G̃m(ω̃)∇fθ∗(X|Y )/h(X)

P̃m(ω̃)fθ∗(X|Y )/h(X)
−→m,n Q G̃P (ω̃)

{∇fθ∗(X|Y )

h(X)

}
(30)

for all ω̃ ∈ Ã and all η ∈ B. Even though we first let m→ ∞ and then n→ ∞, the

limit would be the same no matter how m and n go to ∞ because of the uniformity

in (28) (this can be shown by a triangle inequality). Hence

Qn
G̃m∇fθ∗(X|Y )/h(X)

P̃mfθ∗(X|Y )/h(X)

as−→m,n Q G̃P

{∇fθ∗(X|Y )

h(X)

}

and this implies convergence in distribution

Qn
G̃m∇fθ∗(X|Y )/h(X)

P̃mfθ∗(X|Y )/h(X)

L−→m,n Q G̃P

{∇fθ∗(X|Y )

h(X)

}
.

Now because Pr = P̃r ◦ φ−1
m

Qn
Gm∇fθ∗(X|Y )/h(X)

Pmfθ∗(X|Y )/h(X)

L−→m,n QGP

{∇fθ∗(X|Y )

h(X)

}

and this implies (26) because P
{
∇fθ∗(X|y)/h(X)

}
= 0 by condition (9).

Since the limit does not contain any randomness associated with Y ’s, it is inde-

pendent of the first term on the right in (9).

More precisely, there is an almost sure representation for (23) with commutative

diagram

H Rd

H̃

-Qn

6
ψm

¡
¡
¡¡µ

eQn

and Qr = Q̃r ◦ ψ−1
n and if we combine (30) with this we get




√
n Q̃n(η̃)∇ log fθ∗(Y )

Q̃n(η̃)
eGm(ω̃)∇fθ∗ (X|Y )/h(X)
ePm(eω)fθ∗ (X|Y )/h(X)


 =




√
n Q̃n(η̃)∇ log fθ∗(Y )

√
m Q̃n(η̃)∇ log P̃m(ω̃)

{
∇fθ∗ (X|Y )

h(X)

}



−→m,n


 Z(η̃)

Q G̃P (ω̃)
{

∇fθ∗ (X|Y )
h(X)

}
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holding for almost all η̃ and ω̃, where Z(η̃) is N (0, V ). In this representation, it

is clear that the two terms on the right hand side, being functions of independent

random variables, are independent. This almost sure convergence implies weak

convergence, and undoing the almost sure representation gives the result.

Lemma B.4. Under conditions (5) and (8) through (10) of Theorem 2.3, W is

finite and

QGP∇fθ∗(X|Y )/h(X) ∼ N (0,W ). (31)

Proof. Let T denote the left hand side of (31):

T (ω) =

∫
k(ω, y) dQ(y),

where k is defined by (25). By condition (5) there is a sequence {Qi} of probability

measures with finite support such that Qi
L−→ Q (Aliprantis and Border, 1999,

Theorem 14.10 and Theorem 14.12). Let Ti be defined by

Ti(ω) =

∫
k(ω, y) dQi(y)

(this integral is a finite sum by Qi having a finite support). Since the function y 7→
k(ω, y) is bounded and continuous for almost all ω ∈ Ω (Lemma B.2), Ti(ω) → T (ω)

for almost all ω ∈ Ω, that is, Ti
as−→ T .

From GP being a Gaussian process, Ti is normally distributed with mean

ETi = E

(∫
k(·, y) dQi(y)

)
=

∫
E {k(·, y)} dQi(y) = 0

and variance

varTi = E
(
TiT

T
i

)
=

∫∫
E
{
k(·, y)k(·, s)T

}
dQi(y) dQi(s).

Note

E
{
k(·, y)k(·, s)T

}
= P

{∇fθ∗(·|y)
h(·)

∇fθ∗(·|s)T
h(·)

}
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and for all y and s

P

∣∣∣∣
∇fθ∗(·|y)
h(·)

∇fθ∗(·|s)T
h(·)

∣∣∣∣
ij

≤
(
PFF T

)
ij
.

Since PFF T is finite by condition (8), the function (y, s) 7→ E{k(·, y)k(·, s)T} is

bounded and continuous by the dominated convergence theorem. So

varTi →
∫∫

E{k(·, y)k(·, s)T} dQ(y) dQ(s)

=

∫∫
P

{∇fθ∗(·|y)
h(·)

∇fθ∗(·|s)T
h(·)

}
dQ(y) dQ(s)

= P

{∫∫ ∇fθ∗(·|y)
h(·)

∇fθ∗(·|s)T
h(·) dQ(y) dQ(s)

}

= P

{∫ ∇fθ∗(·|y)
h(·) dQ(y)

}{∫ ∇fθ∗(·|s)
h(·) dQ(s)

}T

= varP Q
∇fθ∗(X|Y )

h(X)

= W,

where W is defined by (7). The second equality follows from Fubini. From
∣∣∣∣
∫∫

E{k(·, y)k(·, s)T} dQ(y) dQ(s)

∣∣∣∣
ij

≤
∫∫ (

PFF T
)
ij
dQ(y) dQ(s)

=
(
PFF T

)
ij
,

W is finite and the application of Fubini is justified.

Now for any t ∈ Rd

exp(−tT (varTi)t/2) → exp(−tTWt/2).

The left hand side is the characteristic function of Ti. By the equivalence between

the convergence in distribution and the convergence of characteristic functions

Ti
L−→ N (0,W ).

Since Ti
L−→ T from Ti

as−→ T , we have T ∼ N (0,W ).
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Lemma B.5. Under conditions (2) and (5) through (10) of Theorem 2.3,

(
V

n
+
W

m

)−1/2

∇Km,n(θ
∗)

L−→ N (0, I). (32)

Proof. We start by proving (32) under the additional condition

n

m+ n
→ α. (33)

Necessarily 0 ≤ α ≤ 1. First we do the case 0 < α < 1. Then

(m+ n)

(
V

n
+
W

m

)
−→ V

α
+

W

1 − α
. (34)

Also by the continuous mapping theorem, (9), and (22),

√
m+ n ∇Km,n(θ

∗) = −
√
m+ n

n

√
n Qn∇ log fθ∗(Y )

−
√
m+ n

m

√
m Qn∇ log Pmfθ∗(X|Y )/h(X)

L−→ V 1/2Z1√
α

+
W 1/2Z2√

1 − α
,

(35)

where Z1 and Z2 are independent normal random vectors with mean 0 and variance

I. The right hand side of (35) has variance which is the right hand side of (34), so

by Slutsky’s theorem we have (32).

Now consider the case α = 0. Then n = o(m) and we essentially have the first

term.

n

(
V

n
+
W

m

)
−→ V,

and
√
n ∇Km,n(θ

∗)
L−→ N (0, V ),

so again we have (32). The case α = 1 is similar.

Now the subsequence principle gives us (32) even without the assumption (33).

Since [0, 1] is compact, it is always possible to choose a subsequence such that (33)

holds. Since the limiting distribution does not depend on the subsequence chosen,

the whole sequence converges to the same distribution.
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Lemma B.6. Under conditions (3), (6), (7), and (11) of Theorem 2.3,

sup
θ∈Sρ

∥∥∇2Km,n(θ) − C(θ)
∥∥
∞

au−→ 0,

where

C(θ) = −Q
{
∇2 log fθ(Y )

}
,

and C is continuous on Sρ.

Proof. From

∇2Km,n(θ) = −Qn∇2 log fθ(Y ) − QnWm(θ, Y ), (36)

where

Wm(θ, y) =
Pm∇2fθ(·|y)/h(·)

Pmfθ(·|y)/h(·)

− {Pm∇fθ(·|y)/h(·)}{Pm∇fθ(·|y)/h(·)}T
{Pmfθ(·|y)/h(·)}2

,

we have

∥∥∇2Km,n(θ) − C(θ)
∥∥
∞

≤
∥∥−Qn∇2 log fθ(Y ) − C(θ)

∥∥
∞

+ ‖−QnWm(θ, Y )‖∞ .

Condition (3) says that if (∇2 log fθ)k,l are the components of ∇2 log fθ and Ck,l

those of C,

max
k,l

sup
θ∈Sρ

∣∣−Qn(∇2 log fθ(Y ))k,l − Ck,l(θ)
∣∣ au−→ 0.

The order of the max and sup can be interchanged (either way it is the max over

both) and this proves

sup
θ∈Sρ

∥∥−Qn∇2 log fθ(Y ) − C(θ)
∥∥
∞

au−→ 0.

The continuity of C is established in the proof of (Ferguson, 1996, Theorem 16(a)).

So we are done if we can show

sup
θ∈Sρ

‖−QnWm(θ, Y )‖∞
au−→ 0. (37)
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By condition (11)

sup
θ∈Sρ

sup
y∈Y

∥∥Pm∇2fθ(·|y)/h(·)
∥∥
∞

au−→ 0. (38)

From the fundamental theorem of calculus,

∇fθ(x|y) −∇fθ∗(x|y) =

∫ 1

0

∇2fθ∗+s(θ−θ∗)(x|y)(θ − θ∗) ds.

So

Pm∇fθ(·|y)/h(·) = Pm∇fθ∗(·|y)/h(·)

+

∫ 1

0

Pm∇2fθ∗+s(θ−θ∗)(·|y)/h(·)(θ − θ∗) ds,

and this implies, for any θ ∈ Sρ,

sup
y∈Y

‖Pm∇fθ(·|y)/h(·)‖∞ ≤ sup
y∈Y

‖Pm∇fθ∗(·|y)/h(·)‖∞

+ sup
θ∈Sρ

sup
y∈Y

∥∥Pm∇2fθ(·|y)/h(·)
∥∥
∞
ρ.

The second term on the right converges almost uniformly to zero by (38). The first

term on the right also converges almost uniformly to zero because F3 is P -Glivenko-

Cantelli from being P -Donsker (from condition (7)). Thus

sup
θ∈Sρ

sup
y∈Y

‖Pm∇fθ(·|y)/h(·)‖∞
au−→ 0. (39)

A similar argument with condition (6) and (39) implies

sup
θ∈Sρ

sup
y∈Y

|Pmfθ(·|y)/h(·) − 1| au−→ 0. (40)

Now (38), (39), and (40) imply

sup
θ∈Sρ

sup
y∈Y

‖Wm(θ, y)‖∞
au−→ 0,

and we have (37) because

sup
θ∈Sρ

‖QnWm(θ, Y )‖∞ ≤ sup
θ∈Sρ

sup
y∈Y

‖Wm(θ, y)‖∞ .
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Another application of the fundamental theorem of calculus with θ ∈ Sρ gives

∇Km,n(θ) −∇Km,n(θ
∗) =

∫ 1

0

∇2Km,n

(
θ∗ + s(θ − θ∗)

)
(θ − θ∗) ds. (41)

Defining

Dm,n(θ) =

∫ 1

0

∇2Km,n

(
θ∗ + s(θ − θ∗)

)
ds, (42)

(41) can be rewritten as

∇Km,n(θ) −∇Km,n(θ
∗) = Dm,n(θ) (θ − θ∗) . (43)

Lemma B.7. Under conditions (3), (6), (7), (11), and (13) of Theorem 2.3,

Dm,n(θ̂m,n)
P−→ J, (44)

where Dm,n(θ) is defined by (42) and J in condition (2) of Theorem 2.3.

Proof. Note that with C as defined in Lemma B.6, C(θ∗) = J in condition (2).

Hence

‖Dm,n(θ̂m,n) − J‖∞ =

∥∥∥∥
∫ 1

0

∇2Km,n

(
θ∗ + s(θ̂m,n − θ∗)

)
ds− C(θ∗)

∥∥∥∥
∞

≤
∫ 1

0

∥∥∥∇2Km,n

(
θ∗ + s(θ̂m,n − θ∗)

)
− C(θ∗)

∥∥∥
∞
ds

≤
∫ 1

0

∥∥∥∇2Km,n

(
θ∗ + s(θ̂m,n − θ∗)

)
− C

(
θ∗ + s(θ̂m,n − θ∗)

)∥∥∥
∞
ds

+ sup
0≤s≤1

∥∥∥C
(
θ∗ + s(θ̂m,n − θ∗)

)
− C(θ∗)

∥∥∥
∞

The term on the bottom line converges in probability to zero by the continuity of

C and the weak consistency of θ̂m,n. The term on the next to the bottom line also

converges in probability to zero because for any ε > 0

Pr

(∫ 1

0

∥∥∥∇2Km,n

(
θ∗ + s(θ̂m,n − θ∗)

)
− C

(
θ∗ + s(θ̂m,n − θ∗)

)∥∥∥
∞
ds > ε

)

≤ Pr
(
θ̂m,n /∈ Sρ

)
+ Pr

(
sup
θ∈Sρ

∥∥∇2Km,n(θ) − C(θ)
∥∥
∞
> ε

)
,

the first term on the right going to zero by the consistency of θ̂m,n and the second

term on the right going to zero by Lemma B.6. Hence we have proved (44).
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Proof of Theorem 2.3. Condition (13) of the theorem and (43) imply

Dm,n(θ̂m,n)
(
θ̂m,n − θ∗

)
= −∇Km,n(θ

∗) + min(m,n)−1/2op(1),

and this implies

θ̂m,n − θ∗ = −Dm,n(θ̂m,n)
−1∇Km,n(θ

∗) + min(m,n)−1/2op(1),

because Dm,n(θ̂m,n) is invertible with probability converging to one. Multiplying

both sides by the same matrix,

(
V

n
+
W

m

)−1/2

J
(
θ̂m,n − θ∗

)

= −
(
V

n
+
W

m

)−1/2

JDm,n(θ̂m,n)
−1∇Km,n(θ

∗)

+

{
min(m,n)

(
V

n
+
W

m

)}−1/2

J op(1).

Since

min(m,n)

(
V

n
+
W

m

)
= O(1)

and by Slutsky’s theorem and Lemma B.7

JDm,n(θ̂m,n)
−1 P−→ I,

we have (8) by Slutsky’s theorem and Lemma B.5.
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