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Graphical Model

1 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
- - - - - - - - - -

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

? ? ? ? ? ? ? ? ? ?

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

? ? ? ? ? ? ? ? ? ?

Ui is conditionally Bernoulli given Ui−1.

U1 is unconditionally Bernoulli.

Vi is conditionally Bernoulli given Ui.

Wi is conditionally zero-truncated Poisson given Vi.

(Wi is conditionally zero-inflated Poisson given Ui.)

Ui model survival, Wi model reproduction (number of offspring).
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Aster Graphical Models

Simple graph structure. Each node has at most one parent.

Divide all nodes into root nodes F and non-root nodes J. Let

p(j) be parent of node j. Function p maps J → J ∪ F .

Graph indicates factorization of joint distribution as product of

conditionals

pr(XJ | XF ) =
∏
j∈J

pr(Xj | Xp(j))
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Aster Model Families

Distribution of Xj given Xp(j) is one-parameter exponential fam-
ily with Xp(j) as sample size.

Currently implemented families

• Bernoulli

• Poisson

• Negative binomial (known shape)

• Normal (known variance) — terminal nodes only

• k-truncated Poisson

• k-truncated negative binomial (known shape)
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Log Likelihood, Conditional Parameterization

Log likelihood is simple

l(θ) =
∑
j∈J

xjθj − xp(j)cj(θj)

where cj is cumulant function for one-parameter exponential

family for j-th node. Canonical parameter of one-parameter ex-

ponential family is θj.

Extension to multi-parameter exponential families possible. Given

in Geyer, Wagenius, and Shaw (2007), but not yet implemented.

6



Virtues of Aster Models

Joint analysis of all variables much better than separate analysis

of GLM bits.

Separate analyses have “missing data” where joint aster analysis

has only “structural zeros” (e. g., dead individual remains dead

and cannot reproduce) which is built into the model structure —

if Xp(j) is zero, then distribution of Xj is concentrated at zero.

Structural zeros are handled automatically. Maximum likelihood

just works.

Missing data present intractable problems.
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Log Likelihood, Unconditional Parameterization

l(θ) =
∑
j∈J

xjθj − xp(j)cj(θj)

Collect terms with same xj

∑
j∈J

xj

θj −
∑
i∈J

p(i)=j

ci(θi)

− ∑
j∈J

p(j)∈F

xp(j)cj(θj)
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Log Likelihood, Unconditional Parameterization (Cont.)

Recognize unconditional exponential family with new canonical

statistic vector same as old (components xj), new canonical

parameter vector with components

ϕj = θj −
∑
i∈J

p(i)=j

ci(θi) j ∈ J, (∗)

and new cumulant function

c(ϕ) =
∑
j∈J

p(j)∈F

xp(j)cj(θj)

Equations (∗) define invertible change of parameter.
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Canonical Affine Models and Dimension Reduction

Affine transformation

ϕ = a + Mβ,

where a is known vector, M is known matrix, and β is unknown

parameter vector, gives new exponential family with log likeli-

hood

l(β) = xTMβ − c(a + Mβ)

new canonical statistic vector MTx and new canonical parameter

vector β.

Canonical statistic (x for full family, MTx for new subfamily) is

minimal sufficient.
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Virtues of Unconditional Parameterization

If sufficient statistic vector y = MTx is scientifically interpretable

this leads to direct interpretation of regression coefficients

−
∂2l(β)

∂β2
k

=
∂Eβ{Yk}

∂βk
> 0.

Increasing one beta increases the unconditional expectation of

corresponding canonical statistic, other betas being held fixed.

Intuitions derived from LM and GLM still valid, but only for

unconditional parameterization.
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Aster Model Printout for Example

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.176176 0.079214 -2.224 0.026145 *

vtypev -1.422849 0.134546 -10.575 < 2e-16 ***

vtypew 1.349977 0.080444 16.782 < 2e-16 ***

uyear 0.041360 0.012163 3.400 0.000673 ***

z1 0.037439 0.007809 4.794 1.63e-06 ***

z2 0.021237 0.007101 2.990 0.002786 **

I(z1^2) -0.032559 0.005350 -6.085 1.16e-09 ***

I(z2^2) -0.026294 0.004815 -5.460 4.75e-08 ***

I(z1 * z2) 0.036837 0.008088 4.554 5.26e-06 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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More About Model for Example

Let u∗j be one if the j-th variable is a “U” and zero otherwise.

Similarly for v∗j and w∗
j .

Let t∗j be the “time” (1, . . ., 10) for the j-th variable.

ϕj = β1 + u∗j(β2 + β4t∗j) + β3v∗j
+ w∗

j(β5z1 + β6z2 + β7z2
1 + β8z2

2 + β9z1z2)

z1 and z2 are covariates.
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Monotone Transformation of Fitness Landscape
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Mean Value Parameters

As in any exponential family

Eϕ(X) = ∇c(ϕ)

varϕ(X) = ∇2c(ϕ)

Since variance matrices are positive definite the mapping

τ : ϕ 7→ Eϕ(X)

is an invertible invertible change of parameter.

τ is the mean value parameter of the full model.

MTτ is the mean value parameter of the affine submodel.
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Fitness Landscape
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Other Applications

Comparison of fitness among different groups

Estimation of population growth rate

Anything that fits aster model structure — very general
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The Name of the Game

Photo from http://en.wikipedia.org/wiki/

Sunflower

Aster models are named after the fam-

ily Asteraceae, (type genus Aster, com-

mon name aster), which is huge (20,000

species).

They also come with a neat motto: per

aspera cum astris, a take-off on the motto

of the sunflower state.
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