Joint analysis of survival and reproduction over 10 years in *Echinacea angustifolia* plants originating from 21 remnant prairies

> Stuart Wagenius¹, Ruth G. Shaw², Charles Geyer² Evolution 2008, 2:45 PM Anderson 270

> ¹Chicago Botanic Garden, ²University of Minnesota

SEE INC.

Echinacea: Model prairie species

- Asteraceae
- Herbaceous
- Long-lived
- Reproduces by seed

Common Garden Experiment

1301 plugs planted in 1999.

Randomized positions on 1/3 m x 2/3 m grid.

Old field with competition.

Biennial spring burns.

Annual measurements & harvests.

Survival, 1999 - 2006 Ο Living plants 08 0001 0001 O \mathbf{O} 2002 2003

Year

1 2 3 4 5 6 ×+×+×+×+×+×

Problems measuring fitness

1. Each fitness component for a given individual is conditional on the individual's state for an earlier component of fitness.

Heads on flowering *Echinacea* plants

Histogram of fruit counts

Fruits per plant in 2006

Problems measuring fitness

- 1. Each fitness component for a given individual is conditional on the individual's state for an earlier component of fitness.
- 2. No single probability distribution is suitable for modeling all components of fitness.

Year 1 2 3 4 5 6

YES \rightarrow YES \rightarrow YES \rightarrow YES \rightarrow YES \rightarrow NO Survive to year? Binomial

Year	1	2	3	4	5	6

Year 1	2	3	4	5	6
Head count Poisson	t, 0	1 †	0	2 1	0
Flower? Binomial	NO 1	YES 1	NO 1	YES 1	NO 1
YES -	→ YES —	► YES —	► YES -	► YES —	► NO
Survive					
to year?					
Binomial					

Year 1	2	3	4	5	6		
Fruit count, Poisson	0	106 1	0	249 1	0		
Head count, Poisson	0	1 1	0	2 1	0		
Flower? Binomial	NO 1	YES 1	NO 1	YES 1	NO 1		
$YES \rightarrow YES \rightarrow YES \rightarrow YES \rightarrow YES \rightarrow NO$							
Survive							
to year?							
Binomial							

problem solution

Measuring

Echinacea project echinacea.umn.edu

Modeling

aster life history analysis www.stat.umn.edu/geyer/aster/ Geyer 4:30 Anderson 230

Implementing

R statistical software www.r-project.org

Echinacea Common Garden, Summer 2007

Model Comparisons

Analysis of Deviance Table

Model 1: resp ~ varb + level:finalLoc Model 2: resp ~ varb + level:finalLoc + achct * pop - pop Model 3: resp ~ varb + level:finalLoc + achct * pop

Model	Model	Model	Test	Test	Test	
No.	d.f.	Deviance	d.f.	Deviance	<i>p</i> -value	
1	24	686849				
2	42	686899	18	51	0.00006	
3	60	686929	18	29	0.04	

Total fruit count per seedling planted vs. Population of origin, n = 19, p = 0.00006

Total fruit count per seedling planted vs. Isolation of maternal plant , p = 0.03

Maternal isolation (log distance to nearest neighbor)

Conclusions

Population differences in total fruit count (fitness) are not related to population size.

Total fruit count (fitness) increases with isolation of maternal parent.

The "aster" statistical model jointly models composite sequential responses with predictors in a single analysis.

Acknowledgements

Gretel Kiefer

Field assistants

Volunteers

NSF: DMS-0083468 & DEB-0545072

