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Abstract
This technical report explores some issues left open in Technical Reports 669 and 670

(Geyer and Shaw, 2008a,b): for fitness landscapes fit using an aster models, we propose
hypothesis tests of whether the landscape has a maximum and confidence regions for
the location of the maximum.

All analyses are done in R (R Development Core Team, 2008) using the aster
contributed package described by Geyer, Wagenius and Shaw (2007) and Shaw, Geyer,
Wagenius, Hangelbroek, and Etterson (2008). Furthermore, all analyses are done using
the Sweave function in R, so this entire technical report and all of the analyses reported
in it are exactly reproducible by anyone who has R with the aster package installed
and the R noweb file specifying the document.

1 R Package Aster

We use R statistical computing environment (R Development Core Team, 2008) in our
analysis. It is free software and can be obtained from http://cran.r-project.org. Pre-
compiled binaries are available for Windows, Macintosh, and popular Linux distributions.
We use the contributed package aster. If R has been installed, but this package has not
yet been installed, do

install.packages("aster")

from the R command line (or do the equivalent using the GUI menus if on Apple Macintosh
or Microsoft Windows). This may require root or administrator privileges.

Assuming the aster package has been installed, we load it

> library(aster)

The version of the package used to make this document is 0.7-7 (which is available on
CRAN). The version of R used to make this document is 2.8.1.

This entire document and all of the calculations shown were made using the R command
Sweave and hence are exactly reproducible by anyone who has R and the R noweb (RNW)
file from which it was created. Both the RNW file and and the PDF document produced
from it are available at http://www.stat.umn.edu/geyer/aster. For further details on
the use of Sweave and R see Chapter 1 of the technical report by Shaw, et al. (2007) available
at the same web site.

Not only can one exactly reproduce the results in the printable document, one can also
modify the parameters of the simulation and get different results.

Finally, we set the seeds of the random number generator so that we obtain the same
results every time. To get different results, obtain the RNW file, change this statement,
and reprocess using Sweave and LATEX.

> set.seed(42)

2 Data Structure

We use the data simulated in Technical Report 669 (Geyer and Shaw, 2008a, herein after
TR 669), because this simulated data has features not present in any currently available
real data yet shows the full possibilities of aster modeling.



Temporarily, we load the data from a file. We intend that these data will be incorporated
in a future version of the aster package.

> load("sim.rda")

> ls()

[1] "beta.true" "fam" "ladata" "mu.true"
[5] "phi.true" "pred" "redata" "theta.true"
[9] "vars"

For a full description of the graphical structure of these data see Section 2.1 of TR 669.
For a full description of the variables and their conditional distributions see Section 2.2 of
TR 669. For a full description of the sum of fitness components that is deemed the best
surrogate of fitness for these data see Section 2.3 of TR 669.

3 Hypothesis Tests about Maxima

3.1 Asymptotic

First, we consider asymptotic (large sample, approximate) tests based on the well known
likelihood ratio test, which has asymptotic chi-square distribution.

We fit the same model fit in TR 669 in which the unconditional canonical parameter
corresponding to best surrogate of fitness is a quadratic function of phenotype data. In
short, fitness is quadratic on the canonical parameter scale.

> out6 <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2) +

+ I(z1 * z2) + I(z2^2), pred, fam, varb, id, root,

+ data = redata)

We also fit the model in which fitness is linear on the canonical parameter scale.

> out5 <- aster(resp ~ varb + 0 + z1 + z2, pred, fam,

+ varb, id, root, data = redata)

Then we compare these two models using the conventional likelihood ratio test.

> anova(out5, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + 0 + z1 + z2
Model 2: resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1 * z2) + I(z2^2)
Model Df Model Dev Df Deviance P(>|Chi|)

1 22 -84959
2 25 -84975 3 16 0.000957

The P -value calculated here is highly statistically significantly (P = 9.6 × 10−4). It is a
correct asymptotic approximation to the P -value for comparing the linear and quadratic
models. It says the quadratic model clearly fits better.
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A linear model cannot have a stationary point. A quadratic model does have a stationary
point. Hence this is also a test of whether the fitness landscape has a stationary point, which
may be a maximum, a minimum, or a saddle point.

If we wish to turn this into a test for the presence of a maximum, we should make the
alternative be that the model is quadratic and the the quadratic surface has a maximum.
Since this requires the coefficients of both I(z1^2) and I(z2^2) to be negative, this restricts
the alternative to 1/4 of the parameter space. Hence the appropriate P -value for this test
is 1/4 of the P -value for the general quadratic alternative, that is, (P = 2.4× 10−4).

This test, although seemingly liberal, dividing the P -value of the conventional test by
4, or, more generally, by 2p where p is the number of phenotypic variables, is in fact
(asymptotically) conservative. Our claim that the alternative is only 1/4 of the parameter
space, or 2−p of the parameter space for general p, is conservative, since it only takes account
of the diagonal terms of the Hessian matrix of the quadratic function.

3.2 Parametric Bootstrap

Second, we consider tests based on the distribution under the null hypothesis determined
by simulation. These are still large sample approximate in a weak sense in that we should
simulate the distribution for the true unknown parameter vector β but cannot and must
use our best approximation, which is the distribution for the parameter vector β̂ that is
the MLE for the null hypothesis. Since this only makes sense when β̂ is close to β, this
procedure is only approximate. To remind everyone of this fact, we call the procedure
a parametric bootstrap rather than a simulation test. However, this procedure is much
less approximate than the procedure of the preceding section, because it does not use the
chi-square approximation for the distribution of the test statistic but instead calculates its
exact sampling distribution when β̂ is the true parameter value.

The test in the preceding section also does not fully account for the restriction that the
Hessian matrix be negative definite. Thus an even more correct P -value can be obtained
using a parametric bootstrap that goes like this.

> nsim <- 249

> theta.boot <- predict(out5, parm.type = "canonical",

+ model.type = "conditional")

> nind <- length(unique(redata$id))

> theta.boot <- matrix(theta.boot, nrow = nind)

> phi.boot <- out6$coef * 0

> phi.boot[1:length(out5$coef)] <- out5$coef

> pvalsim <- double(nsim)

> eigmaxsim <- double(nsim)

> save.time <- proc.time()

> for (i in 1:nsim) {

+ ystar <- raster(theta.boot, pred, fam, root = theta.boot^0)

+ redatastar <- redata

+ redatastar$resp <- as.vector(ystar)

+ out6star <- aster(resp ~ varb + 0 + z1 + z2 +

+ I(z1^2) + I(z1 * z2) + I(z2^2), pred, fam,
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+ varb, id, root, parm = phi.boot, data = redatastar)

+ out5star <- aster(resp ~ varb + 0 + z1 + z2,

+ pred, fam, varb, id, root, parm = out5$coef,

+ data = redatastar)

+ Afoo <- matrix(NA, 2, 2)

+ Afoo[1, 1] <- out6star$coef["I(z1^2)"]

+ Afoo[2, 2] <- out6star$coef["I(z2^2)"]

+ Afoo[1, 2] <- out6star$coef["I(z1 * z2)"]/2

+ Afoo[2, 1] <- out6star$coef["I(z1 * z2)"]/2

+ pvalsim[i] <- anova(out5star, out6star)[2, 5]

+ eigmaxsim[i] <- max(eigen(Afoo, symmetric = TRUE,

+ only.values = TRUE)$values)

+ }

> elapsed.time <- proc.time() - save.time

> pval.obs <- anova(out5, out6)[2, 5]

> pvalsim.corr <- pvalsim

> pvalsim.corr[eigmaxsim > 0] <- 1

> mean(c(pvalsim.corr, pval.obs) <= pval.obs)

[1] 0.004

The parametric bootstrap P -value, here P = 0.004, cannot be lower than 1/(n + 1), where
n is the number of simulations, here nsim = 249. We have gotten the lowest bootstrap
P -value we could have with this number of simulations, which took 24 minutes and 52.1
seconds.

Hence there is little point in using the parametric bootstrap here where the asymptotic
P -value (P = 2.4× 10−4) is so small. If the asymptotic P -value were equivocal, somewhere
in the vicinity of 0.05, then there would be much more reason to calculate a parametric
bootstrap P -value, and the code above shows how to do it right.

We can see that the correction of dividing the conventional P -value by 2p is conservative
here. The fraction of the sample in which the matrix A is negative definite is 0.145, a good
deal less than 2−p = 0.25.

4 Confidence Regions about Maxima

Now we consider the MLE of the location of the maximum, which is calculated in TR 669
as follows

> Afoo <- matrix(NA, 2, 2)

> Afoo[1, 1] <- out6$coef["I(z1^2)"]

> Afoo[2, 2] <- out6$coef["I(z2^2)"]

> Afoo[1, 2] <- out6$coef["I(z1 * z2)"]/2

> Afoo[2, 1] <- out6$coef["I(z1 * z2)"]/2

> bfoo <- rep(NA, 2)

> bfoo[1] <- out6$coef["z1"]

> bfoo[2] <- out6$coef["z2"]
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> cfoo <- solve(-2 * Afoo, bfoo)

> cfoo

[1] 3.335738 1.626314

The explanation for this is that the estimated regression function, mapped to the natural
parameter scale, is

g(z) = c + bT z + zTAz

where c is an arbitrary constant, b is the R vector bfoo above and A is the R matrix Afoo
above. The first derivative vector is

∇g(z) = bT + 2zTA

and setting this equal to zero and solving for z gives

z = −1
2A

−1b

For future reference, we also compute the maximum of the simulation truth fitness
landscape.

> Abar <- matrix(NA, 2, 2)

> Abar[1, 1] <- beta.true["I(z1^2)"]

> Abar[2, 2] <- beta.true["I(z2^2)"]

> Abar[1, 2] <- beta.true["I(z1 * z2)"]/2

> Abar[2, 1] <- beta.true["I(z1 * z2)"]/2

> bbar <- rep(NA, 2)

> bbar[1] <- beta.true["z1"]

> bbar[2] <- beta.true["z2"]

> cbar <- solve(-2 * Abar, bbar)

In order to apply the multivariable delta method, we need to differentiate the function
of the parameter β that gives the maximum,

h(β) = −1
2A(β)−1b(β),

where we have now written the matrix A and the vector b as functions of the regression
coefficient vector β, which they are, each component of A and each component of b being
a component of β. The partial derivatives are

∂h(β)
∂βi

= 1
2A(β)−1 ∂A(β)−1

∂βi
A(β)−1b(β)− 1

2A(β)−1 ∂b(β)
∂βi

The asymptotic variance of the components of β is the submatrix of the inverse Fisher
information matrix corresponding to the components of β that enter into A(β) and b(β)

> beta.sub.names <- c("I(z1^2)", "I(z2^2)", "I(z1 * z2)",

+ "z1", "z2")

> beta.sub.idx <- match(beta.sub.names, names(out6$coef))

> asymp.var <- solve(out6$fisher)

> asymp.var <- asymp.var[beta.sub.idx, ]

> asymp.var <- asymp.var[, beta.sub.idx]
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The derivative matrix is set up as follows

> jack <- matrix(NA, 2, 5)

> jack[, 1] <- (1/2) * solve(Afoo) %*% matrix(c(1,

+ 0, 0, 0), 2, 2) %*% solve(Afoo) %*% cbind(bfoo)

> jack[, 2] <- (1/2) * solve(Afoo) %*% matrix(c(0,

+ 0, 0, 1), 2, 2) %*% solve(Afoo) %*% cbind(bfoo)

> jack[, 3] <- (1/2) * solve(Afoo) %*% matrix(c(0,

+ 1, 1, 0), 2, 2) %*% solve(Afoo) %*% cbind(bfoo)

> jack[, 4] <- (-(1/2) * solve(Afoo) %*% matrix(c(1,

+ 0), 2, 1))

> jack[, 5] <- (-(1/2) * solve(Afoo) %*% matrix(c(0,

+ 1), 2, 1))

Finally, we finish applying the delta method

> asymp.var <- jack %*% asymp.var %*% t(jack)

> asymp.var

[,1] [,2]
[1,] 2.739692 3.997176
[2,] 3.997176 7.401151

So now we plot a confidence region for the maximum based on the delta method calcu-
lation above. The following R statements make Figure 1 (page 8)

> par(mar = c(2, 2, 1, 1) + 0.1)

> plot(ladata$z1, ladata$z2, xlab = "", ylab = "",

+ pch = 20, axes = FALSE, xlim = range(ladata$z1,

+ cfoo[1]), ylim = range(ladata$z2, cfoo[2]))

> title(xlab = "z1", line = 1)

> title(ylab = "z2", line = 1)

> box()

> z1 <- cos(seq(0, 2 * pi, length = 101))

> z2 <- sin(seq(0, 2 * pi, length = 101))

> z <- rbind(z1, z2)

> points(cfoo[1], cfoo[2], col = "blue", pch = 19)

> fred <- eigen(asymp.var)

> sally <- fred$vectors %*% diag(sqrt(fred$values)) %*%

+ t(fred$vectors)

> points(cbar[1], cbar[2], col = "green3", pch = 19)

> jane <- qchisq(0.5, 2) * sally %*% z

> lines(cfoo[1] + jane[1, ], cfoo[2] + jane[2, ], col = "blue",

+ lwd = 2)

> jane <- qchisq(0.75, 2) * sally %*% z

> lines(cfoo[1] + jane[1, ], cfoo[2] + jane[2, ], col = "blue",

+ lwd = 2, lty = "dotted")
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> jane <- qchisq(0.9, 2) * sally %*% z

> lines(cfoo[1] + jane[1, ], cfoo[2] + jane[2, ], col = "blue",

+ lwd = 2, lty = "dashed")

The confidence regions are huge, the 90% confidence region containing most of the range of
the data. One would need much larger sample sizes than the 500 used here to get precise
confidence regions.

One might think we should have a section on how to calculate a confidence region based
on the parametric bootstrap rather than asymptotic normality, and this would be expected
for a confidence interval. However, it is an open research question how best to make a
confidence region in this situation. The elliptical (large sample, approximate, delta method)
confidence regions shown in Figure 1 get their shape from the asymptotic bivariate normal
distribution of the two-dimensional vector (location of the maximum) being estimated.
A bivariate normal distribution has elliptical contours of its probability density function,
hence elliptical confidence regions make sense. If we drop the“assumption”of normality (not
really an assumption but an asymptotic approximation), then there is no reason to make
elliptical confidence regions. In fact, the main point of parametric bootstrap confidence
intervals is to drop the “assumption” of normality and use intervals that are not centered
at the MLE and reflect the skewness of the simulation distribution of the estimates. So in
order to do a parametric bootstrap correctly in this situation, we should also use a non-
elliptical confidence region that reflects the non-normality of the simulation distribution of
the estimates. But how? That is the open research question. All of the bootstrap literature
known to us is about confidence intervals, not about confidence regions.
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Figure 1: Scatterplot of z1 versus z2 with location of MLE of maximum of the fitness
landscape (blue), boundary of asymptotic 50% confidence region for the maximum (solid
blue), boundary of the asymptotic 75% confidence region (dotted blue), and boundary of
the asymptotic 90% confidence region (dashed blue). Also shown is the simulation truth
maximum (green).
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