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Statistical Model Hierarchy

• linear models (multiple regression and ANOVA)

– responses are independent from normal distribution

– means are linear function of regression coefficients

• generalized linear models (logistic and Poisson regression)

– responses are independent from same distribution

– means are monotone function of regression coefficients

• aster models (life history analysis)

– responses are dependent from different distributions

– means are monotone function of regression coefficients
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Graphical Model

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4 survivalyPoi

yPoi

yPoi

yPoi

y5 y6 y7 y8 number offspring

yj are components of response for one individual

Arrows indicate conditional distributions (Ber = Bernoulli and

Poi = Poisson)
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Another Graphical Model

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4 survivalyBer

yBer

yBer

yBer

y5 y6 y7 y8 any offspringy0-Poi

y0-Poi

y0-Poi

y0-Poi

y9 y10 y11 y12 number offspring

0-Poi = zero-truncated Poisson

5



Yet Another Graphical Model

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4 survivalyBer

yBer

yBer

yBer

y5 y6 y7 y8 any flowersy0-Poi

y0-Poi

y0-Poi

y0-Poi

y9 y10 y11 y12 number flowersyPoi

yPoi

yPoi

yPoi

y13 y14 y15 y16 number seedsyBer

yBer

yBer

yBer

y17 y18 y19 y20 number germinate
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Predecessor is Sample Size

yp(j) −→ yj

predecessor successor

yp(j) is sample size for yj. Only form of dependence allowed.

y4
Ber−−→ y8

0-Poi−−−−→ y12
Poi−−→ y16

Ber−−→ y20

y8 is successor of y4 and predecessor of y12

y12 is successor of y8 and predecessor of y16

etc.

7



Means, Conditional and Unconditional

“Predecessor is sample size” is the only form of dependence

allowed in aster models. It has following important consequence.

Define

µj = E(yj)

ξj = E(yj | yp(j) = 1)

(ξj is the mean of one of the yp(j) independent and identically

distributed random variables of which yj is the sum). Then

E(yj | yp(j)) = ξjyp(j)

E(yj) = ξjµp(j)

= ξjξp(j)µp(p(j))

= ξjξp(j)ξp(p(j))µp(p(p(j)))

and so forth.
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Means, Conditional and Unconditional (cont.)

If we go back to a root node, say yp(p(p(p(p(j))))) = 1, then

µj = ξjξp(j)ξp(p(j))ξp(p(p(j)))ξp(p(p(p(j))))

So unconditional means are products of (a certain set of) con-

ditional means.

Very special property of the aster model structure, consequence

of predecessor is sample size. Not true of general dependent

data.
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Means, Conditional and Unconditional (cont.)

µ15 = ξ15ξ11ξ7ξ3ξ2ξ1

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4 survivalyBer

yBer

yBer

yBer

y5 y6 y7 y8 any flowersy0-Poi

y0-Poi

y0-Poi

y0-Poi

y9 y10 y11 y12 number flowersyPoi

yPoi

yPoi

yPoi

y13 y14 y15 y16 number seedsyBer

yBer

yBer

yBer

y17 y18 y19 y20 number germinate
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Log Likelihood

Also require each conditional distribution for each arrow in the

graph is one-parameter exponential family. Then log likelihood

has very simple form

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
where θ the parameter vector, θj its components, J set of non-

root nodes of the graph where the variables are random, and cj(θ)

different but known function for each different one-parameter

exponential family distribution.
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Cumulant Functions

The function cj is called cumulant function for the j-th one-

parameter exponential family. It satisfies

Eθj
(yj | yp(j)) = yp(j)c

′
j(θj)

= yp(j)ξj

varθj
(yj | yp(j)) = yp(j)c

′′
j (θj)

where primes indicate derivatives.

Since variances are positive c′′j (θj) > 0 and this means the map

ξj = c′(θj) is strictly increasing, hence one-to-one.

Thus ξj is just as good a parameter as θj. To distinguish them

we call ξj the conditional mean value parameter and θj the con-

ditional canonical parameter.
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Change of Parameter

Put log likelihood in multiparameter exponential family form

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

=
∑
j∈J

yj

θj −
∑
i∈J

p(i)=j

ci(θi)

 − ∑
i∈J

p(i)/∈J

yp(i)ci(θi)

=
∑
j∈J

yjϕj − c(ϕ)

= 〈y, ϕ〉 − c(ϕ)
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Change of Parameter (cont.)

New parameters

ϕj = θj −
∑
i∈J

p(i)=j

ci(θi)

are one-to-one function of old parameters θj. Can solve these

for θj in terms of ϕj by using one equation at a time in any order

that does successors before predecessors.

Thus ϕ is just as good a parameter as θ. To distinguish them

we call ϕ the unconditional canonical parameter vector and θ

the conditional canonical parameter vector.
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Multiparameter Cumulant Function

Cumulant function for the multivariate, multiparameter, joint,

unconditional exponential family for all the variables

c(ϕ) =
∑
i∈J

p(i)/∈J

yp(i)ci(θi)

satisfies

Eϕ(y) = ∇c(ϕ)

= µ

varϕ(y) = ∇2c(ϕ)

where Eϕ(y) and varϕ(y) denote the mean vector and variance-

covariance matrix of the random vector y and ∇c(ϕ) and ∇2c(ϕ)

denote the vector of first partial derivatives and the matrix of

second partial derivatives of the cumulant function.
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Multiparameter Cumulant Function (cont.)

Since variance-covariance matrices varϕ(y) = ∇2c(ϕ) are posi-

tive definite, the function c(ϕ) is strictly convex. This means

the map µ = ∇c(ϕ), which can be solved for ϕ by maximizing

〈µ, ϕ〉 − c(ϕ),

is one-to-one (because strictly concave functions have unique

maximizers).

Thus µ is just as good a parameter as ϕ. To distinguish them

we call µ the unconditional mean value parameter vector and ϕ

the conditional canonical parameter vector.
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A Plethora of Parameters

Too many parameterizations?

conditional unconditional
canonical θ ϕ
mean value ξ µ

In generalized linear models have only two, because ϕ = θ and

µ = ξ when all components of response vector are independent.

In linear models have only one, because µ = ϕ when all compo-

nents of response vector are normally distributed.

Not too many! Unavoidable consequence of generality of aster

models.
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Multivariate Monotonicity

Since map ϕ 7→ µ is given by

µ = ∇c(ϕ)

and c(ϕ) is a strictly convex function, this map is multivariate

monotone: if ϕ 6= ϕ∗ and

µ = ∇c(ϕ)

µ∗ = ∇c(ϕ∗)

then

(µ − µ∗)T (ϕ − ϕ∗) > 0

Not as easy to visualize as univariate monotonicity, but just as

useful.
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Canonical Affine Submodels

Model discussed so far has too many parameters (now meaning

dimension of parameter vector), one per response variable (ϕ, θ,

µ, ξ all same dimension as y).

Both log likelihoods

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
l(ϕ) = 〈y, ϕ〉 − c(ϕ)

are strictly convex functions so maximizer is unique if it exists.
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Canonical Affine Submodels (cont.)

To preserve strict convexity, use affine submodels,

θ = a + Mβ (1)

or

ϕ = a + Mβ (2)

where a is known vector and M is known matrix, called offset

and model matrix.

Choose either (1) or (2). Never use both. That’s why can use

same notation on right-hand side. Never a conflict.

If (1) have conditional aster model. If (2) have unconditional

aster model.
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Canonical Affine Submodels (cont.)

So which one do you want?

Tempting, but wrong answer: use conditional or unconditional

aster model to specify conditional or unconditional distributions,

respectively.

No, because ϕ, θ, µ, and ξ are all one-to-one functions of each

other. Specify one, specify all. Each determines all conditional

and unconditional distributions and conditional and unconditional

means, variances, and covariances.

Right answer: use conditional or unconditional aster model to

establish a monone relationship to conditional or unconditional

means, respectively.
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Forget Conditional Aster Models

In most applications unconditional means are more interpretable

than conditional means. Hence most applications need uncondi-

tional aster model.

Conditional aster models may be of some use in rare applications,

so they are provided, but vast majority use unconditional.
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Forget Conditional Aster Models (cont.)

Everything else in these slides about unconditional aster models

with

ϕ = a + Mβ

Still also have parameters µ, ξ, and θ, since they are one-to-one

functions of ϕ.
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Prediction

A referee for the Biometrika paper pointed out that “prediction”

is the wrong word here. What we are talking about is parameter

estimates of

• any of the parameters β, ϕ, θ, µ, ξ,

• or any differentiable functions of those parameter vectors

g(β), g(ϕ), g(θ), g(µ), g(ξ).

And we are talking about point estimates and standard errors.
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Prediction (Cont.)

The reason it is called “prediction”

• In elementary statistics the mean value parameter estimates
µ̂ are called “predicted values” ŷ to keep the kiddies from
being confused (of course they are being confused by not
calling a parameter estimate a parameter estimate, but they
are unaware of their confusion).

• Consequently, the R function that does this job for linear and
generalized linear models is called predict.

• The predict function is generic, we want it to work the same
way for aster models as it does for LM and GLM, hence the
name must be used.
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Prediction (Cont.)

Function predict.aster doesn’t actually do arbitrary functions

g(µ) in one step. It does do arbitrary linear functions Aµ in one

step, where A is an arbitrary matrix.

But that is enough to do general functions by the delta method.

If have µ̂, then g(µ̂) is the MLE point estimate of g(µ) by in-

variance of maximum likelihood.

If A = ∇g(µ), then Aµ̂ and g(µ̂) have the same asymptotic

variance and hence same standard errors by the delta method.
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Multivariate Monotonicity (Cont.)

Details about consequences of

(µ − µ∗)T (ϕ − ϕ∗) > 0

Fitness is sum over subset G of nodes of graph; observed fitness∑
j∈G yj, and expected fitness

∑
j∈G µj.

Suppose want to estimate fitness landscape (fitness as a function

of phenotypic covariate(s) z. By tradition (Lande and Arnold,

1983) much literature is focused on quadratic function q(z) but

these don’t make sense for means (same reason it usually doesn’t

make sense to model means directly in GLM and aster models).
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Multivariate Monotonicity (Cont.)

So model unconditional canonical parameter ϕ quadratically. Let

x be all non-phenotypic covariates and

ϕj(x, z) =

aj(x) + q(z), j ∈ G

aj(x), otherwise

Now consider two individuals with same value x of non-phenotypic

covariates and values z and z∗ of phenotypic ones.

ϕj(x, z)− ϕj(x, z′) =

q(z)− q(z′), j ∈ G

0, otherwise

The aj(x) terms drop out.
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Multivariate Monotonicity (Cont.)

The multivariate monotonicity inequality written out in coordi-

nates is

0 <
∑
j∈J

(
µj(x, z)− µj(x, z∗)

)(
ϕj(x, z)− ϕj(x, z∗)

)
=

∑
j∈G

(
µj(x, z)− µj(x, z∗)

)(
q(z)− q(z∗)

)
=

(
q(z)− q(z∗)

) ∑
j∈G

(
µj(x, z)− µj(x, z∗)

)
Since a product is positive if and only if both terms are positive

q(z) < q(z∗) if and only if
∑
j∈G

µj(x, z) <
∑
j∈G

µj(x, z∗)

In short, there is monotone relationship between fitness on the

canonical parameter scale on on the mean value parameter scale.

29



Sufficiency

R. A. Fisher invented many statistical concepts including suf-
ficiency and exponential families. A statistic is sufficient if it
contains all the information in the data about the parameter.

In exponential families, the canonical statistic is minimal suffi-
cient.

In a canonical affine submodel, the canonical statistic is MTy

The likelihood equations are “observed equals expected”

MTy = MT µ̂

So maximum likelihood sets the observed value of the minimal
sufficient statistic to its expected value and doesn’t pay any
attention to anything else.
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Sufficiency (Cont.)

If the canonical statistics make scientific sense, then so does the

statistical model. And vice versa.

In our fitness landscape example, the aster models we use have

the same canonical statistics as the Lande-Arnold analysis. We

are doing what the scientistists have long identified as important,

the only difference is that we are now using a believable statistical

model.
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Entropy

A rather eccentric physicist Edwin Jaynes invented the notion of

“maximum entropy” modeling and estimation. Widely used in

several areas. Saw two posters using it in GIS models.

For our purposes exponential families are “maximum entropy”.

A canonical affine submodel with model matrix M can be char-

acterized as the family of distributions that maximizes entropy

with respect to any distribution in the full family subject to the

constraint

E(MTy) = µ

for various values of µ.
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Entropy (Cont.)

Thus an unconditional aster canonical affine submodel can be

justified by a maximal entropy argument. It is the model that

models the mean value of the sufficient statistic MTy and leaves

everything else as random as possible.
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Entropy (Cont.)

When the canonical statistic is fitness, this makes some scientific

sense. Only fitness is visible to selection (by definition). So

everything else just drifts and should maximize entropy.

Two caveats

• fitness isn’t really fitness (usually only surrogate) and

• statistical entropy isn’t real physico-chemical entropy be-

cause the statistical model doesn’t model everything.

So argument isn’t tight, but isn’t worthless either.
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