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Why Aster Models?

Complex data require it.

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4 survivalyPoi

yPoi

yPoi

yPoi

y5 y6 y7 y8 number offspring

yj are components of data for one individual

Arrows indicate conditional distributions (Ber = Bernoulli and

Poi = Poisson)

Each Bernoulli (zero-or-one-valued variable) is survival in one

year. Each Poisson is number of offspring in that year.
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What Else Could You Do?

Could analyze each component separately, but

• software doesn’t support combining the results of separate

analyses and

• difficult or impossible to address questions that involve all

the data.
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What Else Could You Do? (Cont.)

Could analyze a numerical function of the data (e. g., fitness),

but

• such functions don’t have simple distribution analyzable by

known methodology so

• must proceed without a statistical model, and

• statistical inference weak or invalid.
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What do Aster Models Do?

Aster models fit a statistical model for the joint distribution

of dependent data like that shown in the graph we saw before

repeated here

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4 survivalyPoi

yPoi

yPoi

yPoi

y5 y6 y7 y8 number offspring

Valid statistical inference possible and easy.
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Why are Aster Models Hard to Understand?

Like simpler forms of statistical inference in some ways but dif-

ferent in others.

We don’t teach the general ideas of statistical inference well or

at all in lower level courses.
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Statistical Model Hierarchy

• linear models (multiple regression and ANOVA)

– responses are independent from normal distribution

– means are linear function of regression coefficients

• generalized linear models (logistic and Poisson regression)

– responses are independent from same distribution

– means are monotone function of regression coefficients

• aster models (life history analysis)

– responses are dependent from different distributions

– means are monotone function of regression coefficients
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Regression

In regression models we divide the data into two parts the re-

sponse vector y and the predictor data x, which usually comprises

one or more vectors.

The response y is considered random, the predictor x is con-

sidered non-random. If it is actually random, we say we are

conditioning on it.

The objective: model the conditional distribution of y given x.

Note: no assumptions whatsoever yet. Regression includes gen-

eralized linear models and aster models. Why do they call it

logistic regression? Because it is a form of regression modeling!
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Linear Models

In linear models the response y is a vector. Its components
are stochastically independent. They are assumed normally dis-
tributed with the same variance σ2. They have different means,
which are components of a vector µ.

The linear part is that we assume µ is a linear function of another
parameter β of smaller dimension

µ = Mβ

where M is a non-random matrix, called the model matrix. Usu-
ally, M depends on the predictor data x, the form of this depen-
dence is arbitrary.

It’s called linear regression because µ is a linear function of β,
not because µ is a linear function of x (it may be an arbitrary
function of x).
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Linear Models (Cont.)

Some people like to write

y = Mβ + e

where e “error” is a vector of independent and identically dis-

tributed mean zero normal random variables.

But this does not generalize even to generalized linear models,

much less aster models. Forget it. The important equation is

µ = Mβ.
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Data Structure

The structure of y we have already discussed. The structure of x

is in principle arbitrary but in practice is one or more numerical or

categorical vectors of the same dimension as y. The lm function

in R which fits linear models requires this.

The R terminology for a categorical variable is factor.
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Simple Linear Regression

Here we have only one column of predictor data. Say yi are the

components of y and xi the components of x and

µi = β1 + xiβ2

How does that fit into linear models framework?

M =


1 x1
1 x2
... ...
1 xn


A linear model has an “intercept” (here β1) when the model

matrix has a column that is all ones.
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Simple Linear Regression in R

Supposing we already have R objects x and y which are numerical
vectors of the same length

out <- lm(y ~ x)

summary(out)

does the regression and reports regression coefficients, standard
errors, and P -values;

plot(x, y)

abline(out)

draws the scatterplot with regression line;

plot(out)

does four diagnostic plots.
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Linear Regression in R: Intercept

R automatically includes an intercept. If you don’t want an

intercept you have to indicate that in the formula provided to

the lm function.

Instead of y ~ x which implies an intercept, either of

out <- lm(y ~ x + 0)

out <- lm(y ~ x - 1)

indicates the intercept should be omitted so the model is

µi = xiβ1
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Multiple Linear Regression in R

If we have R objects y, x1, x2, and x3, all of which are numerical
vectors of the same dimension, then

out <- lm(y ~ x1 + x2 + x3)

summary(out)

fits the model

µi = β1 + xi1β2 + xi2β3 + xi3β4

where xik are the components of xk. Model matrix is

M =


1 x11 x12 x13
1 x21 x22 x23
... ... ... ...
1 xn1 xn2 xn3


coefficients of betas are columns of M.
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Multiple Linear Regression in R: Polynomials

out <- lm(y ~ x + I(x^2) + I(x^3))

fits the model

µi = β1 + xiβ2 + x2i β3 + x3i β4

with model matrix

M =


1 x1 x21 x31

1 x2 x22 x32
... ... ... ...

1 xn x2n x3n


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Multiple Linear Regression in R: Polynomials (Cont.)

out <- lm(y ~ x1 + x2 + I(x1^2) + I(x1 * x2) + I(x2^2))

fits the model

µi = β1 + xi1β2 + x2i2β3 + x2i1β4 + xi1xi2β5 + x2i2β6

with model matrix

M =


1 x11 x12 x211 x11x12 x212

1 x21 x22 x221 x21x22 x222
... ... ... ... ... ...

1 xn1 xn2 x2n1 xn1xn2 x2n2


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Multiple Linear Regression in R: Polynomials (Cont.)

out <- lm(y ~ x1 + x2 + I(x1^2) + I(x1 * x2) + I(x2^2))

out <- lm(y ~ poly(x1, x2, degree = 2, raw = TRUE))

fit the same model in the same parameterization.

out <- lm(y ~ poly(x1, x2, degree = 2))

fits the same model in a different parameterization.
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Dummy Variables

A “dummy variable” is a predictor variable that is zero-or-one-
valued. Each categorical predictor is replaced by a set of dummy
variables, one for each category. The dummy variable is one
when the case is in that category and zero otherwise.

Because 

1
...
1
0
...
0
0
...
0


+



0
...
0
1
...
1
0
...
0


+



0
...
0
0
...
0
1
...
1


=



1
...
1
1
...
1
1
...
1


must drop one dummy variable from set if there is intercept.
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Dummy Variables (Cont.)

Must drop one dummy variable from each set (for each categor-

ical predictor) if there is intercept in model.

Must drop one dummy variable from each set (for each categor-

ical predictor) except for one of them if there is no intercept in

model.
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Dummy Variables (Cont.)

R is smart enough to do the right thing. If fred is a categorical

predictor variable, then

out <- lm(y ~ fred)

out <- lm(y ~ fred + 0)

fit the same model in different parameterizations

µi = β1 + di1β2 + di2β3

µi = di1β1 + di2β2 + di3β3

where dik is the dummy variable for the k-th category (assuming

3 categories).
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Tests of Statistical Hypotheses

Hypothesis tests involve two nested models, called the big model
and the little model or the submodel and the supermodel. It is
important that you know the models are nested — the little
model is obtained by fixing the values of some parameter(s) in
the big model — because R does not check nestedness.

If you have two result objects, say

out.little <- lm(y ~ x1 + x2)

out.big <- lm(y ~ x1 + x2 + I(x1^2) + I(x1 * x2) + I(x2^2))

then

anova(out.little, out.big)

will do the test reporting the value of the F statistic and the
P -value.
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Tests of Statistical Hypotheses (Cont.)

Can do tests about single regression coefficients using P -values
reported by the summary function. Not recommended unless you
interpret only one P -value per model fit. It can happen that

• none of the P -values for single regression coefficients appear
significant although the correct model comparison test (done
by the anova function) says they are jointly significant, or

• some of the P -values for single regression coefficients appear
significant although the correct model comparison test (done
by the anova function) says they are not jointly significant.

In either case the model comparison test is right and doing mul-
tiple single tests without correction for multiple testing is wrong
and foolish.
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Prediction

Often the estimated mean value vector µ̂ = Mβ̂ is called the

vector of “predicted values” and many textbooks denote it ŷ

rather than µ̂ even though it is an estimate of a parameter vector.

Moreover, the R function that produces it is called predict.

These things really shouldn’t be called “predictions” because

they are just parameter estimates, but we won’t introduce a new

name. We will however understand that they are just parameter

estimates. Like any parameter estimates they have standard

errors and the predict function produces them too, if asked

predict(out, interval = "confidence")
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A Digression on Data Frames

In R a matrix must have all values of the same type (all numeric,

all logical, or all character)

But R also has an object class called data.frame which looks

like a matrix but different columns are allowed to have different

types, in particular, some can be numeric and some factor.
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Data Frames (Cont.)

You can read in a data frame from a file which must be a plain

text file (not produced by a “word processor”) having variable

names as column headings

fred <- read.table("fred.txt", header = TRUE)

The file name must be quoted so R doesn’t think it is an R

variable name.
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Data Frames (Cont.)

If the file had three variables y, x1, and x2, then we could do a

regression two ways

out <- lm(y ~ x1 + x2, data = fred)

and the variables will be found in the data frame specified by the

optional argument data = fred. We can also do

attach(fred)

out <- lm(y ~ x1 + x2)

but this is not recommended and doesn’t generalize to aster

models.
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Data Frames (Cont.)

If the file fred.txt also contained a variable sex coded M and

F, then the read.table function would automatically make sex a

factor because it cannot be numeric and only numeric and factor

variables make sense in a regression context. So

fred <- read.table("fred.txt", header = TRUE)

out <- lm(y ~ x1 + x2 + sex)

will do the right thing.
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Data Frames (Cont.)

If, however, sex was coded 1 and 2, then the read.table function

could not know that sex was supposed to be a factor (the com-

puter can’t read your mind) and an additional step is necessary

fred <- read.table("fred.txt", header = TRUE)

fred$sex <- as.factor(fred$sex)

out <- lm(y ~ x1 + x2 + sex)

To check what the types of the variables in a data frame are do

sapply(fred, class)
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Data Frames (Cont.)

If one has used Microsoft Excel as a data entry tool, then one

should

• write out the file in CSV (comma separated values) format,

• remove all but the header line and the data lines,

• and read into R using the read.csv function

fred <- read.csv("fred.csv")
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Prediction (Cont.)

Remember prediction? We often want to “predict” at data val-

ues different from the ones in the observed data.

This is equivalent to using a different model matrix. We are

estimating µ̂new = Mnewβ̂ rather than µ̂ = Mβ̂.

Of course, when we are using the R formula mini-language, we

don’t specify model matrices explicitly, just formulas and data.

So we use the same formula with new data, which we specify

as a data.frame having all the predictor variables involved in the

formula (the response is not necessary).

31



Prediction (Cont.)

out <- lm(y ~ x1 + x2 + I(x1^2) + I(x1 * x2) + I(x2^2)

predict(out, newdata = data.frame(x1 = 4.3, x2 = 6.2),

interval = "confidence")

does the prediction with standard error for an individual with
predictor values x1 = 4.3 and x2 = 6.2.

Can also do

predict(out, newdata = data.frame(x1 = x1new, x2 = x2new),

interval = "confidence")

where x1new and x2new are vectors of the same length, say k,
in which case the prediction is done for k individuals with these
values.
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Generalized Linear Models

Generalized linear models (GLM) are a very large class of statis-

tical models and non-models. Here we are only concerned with

the subset that are also aster models. So we won’t tell you

everything about GLM.

In a GLM like in a LM (linear model), the response y is a numeric

vector having independent components. The distributions of

the components are all in the same “family” — all binomial, all

Poisson, all negative binomial with the same shape parameter,

and so forth.
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Generalized Linear Models (Cont.)

Given the “family” the distribution of the components of the

response is specified by a single parameter, the mean. For ex-

ample, we may have

yi ∼ Ber(µi)

yi ∼ Bin(ni, µi)

yi ∼ Poi(µi)

where the wiggle ∼ means “distributed as” and “Ber” is short

for Bernoulli (binomial with sample size one), “Bin” is short for

binomial, and “Poi” is short for Poisson.
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A Digression on Bernoulli Random Variables

A random variable is Bernoulli if it is zero-or-one-valued (only

possible values are 0 and 1).

Any dichotomous (two-valued) random variable can be recoded

to be Bernoulli.

For a Bernoulli random variable y

E(y) = Pr(y = 1)

Probability is a special case of expectation. Probability is expec-

tation of Bernoulli random variables.
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Generalized Linear Models (Cont.)

In GLM writing

y = µ + e

is part of the problem not part of the solution because µ is not

a location parameter, hence the distribution of e depends on µ.

Writing things this way brings only confusion. Forget this “mean

plus error” stuff!
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Generalized Linear Models (Cont.)

In GLM it makes no sense to model the mean µ as a linear

function of other parameters

µ = Mβ

because µ is constrained.

For binomial 0 < µi < 1. For Poisson µi < 0. This would lead to

very difficult constraints on the β vector.
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Generalized Linear Models (Cont.)

Instead model

η = Mβ

where η is componentwise monotone function of µ and vice versa

ηi = g(µi)

where g is strictly increasing function called link function. A

strictly increasing function is always invertible, so both η and µ

are parameters (either specifies the probability distribution).

Choose link function so that η is unconstrained.
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Generalized Linear Models (Cont.)

In aster models we always use a special link function (more on

this below) called canonical. For Bernoulli or binomial we use

ηi = logit(µi) = log

(
µi

1− µi

)
For Poisson we use

ηi = log(µi)

These are the default link functions in R so don’t need to be

specified explicitly.
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Differences between LM and GLM

In GLM model linear predictor η linearly; In LM model mean µ

linearly.

GLM have two important parameters linear predictor η and mean

value parameter µ, which are componentwise monotone func-

tions of each other.

Tests and confidence intervals are no longer exact. Reference

distributions for GLM are normal and chi-square whereas those

for LM are t and F .
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Similarities between LM and GLM

Components of the response are independent.

R functions work similarly. Function glm fits GLM using formulas

like lm fits LM. Function anova does tests of model comparison.

Function predict does “predictions” of both kinds of parameters

(linear predictor and mean value).
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Generalized Linear Models (Cont.)

out <- glm(y ~ x, family = binomial)

does Bernoulli (more usually called “logistic”) regression.

out <- glm(y ~ x, family = poisson)

does Poisson regression.
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Generalized Linear Models (Cont.): Hypothesis Tests

If two nested models have been fit and stored in out.little and

out.big

anova(out.little, out.big, test = "Chisq")

does the “analysis of deviance” test also called likelihood ratio

test (the test statistic is twice the log likelihood ratio, which is

called deviance for short).
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Generalized Linear Models (Cont.): Predictions

If one model has been fit and stored in out

predict(out, type = "response")

produces “predictions” of the mean values for each case.

To predict a new data, supply a newdata argument just like for

LM.

If the argument type = "response" is omitted the “prediction” is

of the linear predictor.
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Aster Models (Finally!)

Aster models are a large class of statistical models that include

some GLM and LM as special cases.

Aster models are especially designed for life history analysis, but

are just statistical models, applicable to whatever data they fit.
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Differences between Aster Models and GLM

Not all GLM are aster models, even for those that are.

In GLM components of the response are independent, in aster

models can be dependent, hence both conditional and uncondi-

tional distributions are relevant.

In GLM components of the response all have same family, in

aster models can have different families.

In GLM components relation between linear predictor and mean

value parameter is componentwise monotone, in aster models

multivariate monotone.
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Similarities between Aster Models and GLM

R functions work similarly. Function aster fits aster models using

formulas like glm fits GLM. Function anova does tests of model

comparison. Function predict does “predictions” of four kinds

of parameters (linear predictor and mean value, conditional and

unconditional).
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Graphical Models

In aster models we represent dependence structure using graphs

(this is popular in statistics, there are many textbooks with

“graphical models” in the title).

Nodes of graph are associated with random variables. Arrows

between nodes indicate stochastic dependence.

For arrow x −→ y say x is predecessor and y is successor. Variable

can be both predecessor and successor. In

x −→ y −→ z

y is predecessor of z and successor of x.
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Graphical Models (Cont.)

Aster graphical models are very special case of statistical graph-

ical models.

Every node has at most one predecessor. Graphs are “forests”.

Nodes can have arbitrarily many successors.
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Graphical Models (Cont.)

In “simple” aster models, which are the only ones currently im-

plemented, successors of one node are conditionally independent

given that node.

This means joint probability distribution has simple factorization.

Let J denote the set of nodes that are successors and F those

that are not. Let yJ and yF denote the vectors of variables at

these nodes. We consider yJ the response vector and treat it as

random. We consider yF non-random (fixed constants). Then

f(yJ | yF ) =
∏
j∈J

f(yj | yp(j))

where p(j) denotes the predecessor of j (pedantically, the index

of the node that is the predecessor of the node with index j).
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Predecessor is Sample Size

yp(j) −→ yj

predecessor successor

yp(j) is sample size for yj. Only form of dependence allowed.

This means yj is the sum of yp(j) independent and identically
distributed random variables having some distribution which does
not depend on any components of the response.

If this distribution is Ber(µj), then yj ∼ Bin(yp(j), µj).
If this distribution is Poi(µj), then yj ∼ Poi(yp(j)µj).
In other cases distribution of yj may not be “brand name”.

Random variables of which yj is the sum are not recorded.
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Means, Conditional and Unconditional

“Predecessor is sample size” is the only form of dependence

allowed in aster models. It has following important consequence.

Define

µj = E(yj)

ξj = E(yj | yp(j) = 1)

(ξj is the mean of one of the yp(j) independent and identically

distributed random variables of which yj is the sum). Then

E(yj | yp(j)) = ξjyp(j)
E(yj) = ξjµp(j)

= ξjξp(j)µp(p(j))
= ξjξp(j)ξp(p(j))µp(p(p(j)))

and so forth.
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Means, Conditional and Unconditional (Cont.)

If we go back to a root node, say yp(p(p(p(p(j))))) = 1, then

µj = ξjξp(j)ξp(p(j))ξp(p(p(j)))ξp(p(p(p(j))))

So unconditional means are products of (a certain set of) con-

ditional means.

Very special property of the aster model structure, consequence

of predecessor is sample size. Not true of general dependent

data.
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Means, Conditional and Unconditional (Cont.)

In aster models have two kinds of mean value parameter vectors:

conditional ξ and unconditional µ.

Simple but nonlinear relationship between them. Each deter-

mines the other, so either is parameter vector.

Key issue in aster modeling is relationship between β, ξ, and µ.
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A Digression on Exponential Families

A family of probability density functions (PDF) or probability

mass functions (PMF) is exponential if it has the following form

fψ(w) = g(ψ)h(w) exp

 k∑
i=1

ϕi(ψ)yi(w)


where g(ψ) is an arbitrary nonnegative function of the parameter,

where h(w) is an arbitrary nonnegative function of the data, and

the only term that contains both data and parameters has the

exponential form shown here.
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A Digression on Exponential Families (Cont.)

Regardless of the original parameter ψ, we can always take the

vector ϕ with components ϕi as the parameter because densities

must integrate to one (or sum to one if the data are discrete)

so

fϕ(w) =

h(w) exp

 k∑
i=1

ϕiyi(w)


∫
h(w) exp

 k∑
i=1

ϕiyi(w)

 dw

Since ϕ determines the densities, it is a parameter.

This parameterization is very special having many desirable prop-

erties; ϕ is called the natural or canonical parameter. All of our

aster papers and tech reports use canonical.
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A Digression on Exponential Families (Cont.)

The statistic y having components yi(w) that goes with the

canonical parameter in the exponential term is called the natural

or canonical statistic. All of our aster papers and tech reports

use canonical.

We introduce the notation

〈y,ϕ〉 =
k∑
i=1

ϕiyi

Those who like to write all vector operations as matrix multipli-

cation would write this as yTϕ or y′ϕ, but we prefer this more

mathematical and more elegant notation.
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A Digression on Exponential Families (Cont.)

With this notation we can simplify the PDF or PMF

fϕ(w) = e〈y,ϕ〉−c(ϕ)h(w)

Terms that do not contain the parameter may be dropped from

log likelihoods so we have

l(ϕ) = 〈y,ϕ〉 − c(ϕ)
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A Digression on Exponential Families (Cont.)

The function c(ϕ) determines all the properties of the distri-

bution of the canonical statistic y and is called the cumulant

function.

In particular,

Eϕ(y) = ∇c(ϕ) (1)

varϕ(y) = ∇2c(ϕ) (2)

(1) is a vector equation and (2) is a matrix equation.
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A Digression on Exponential Families (Cont.)

Applying (1) to the log likelihood gives

∇l(ϕ) = y −∇c(ϕ)

= y − Eϕ(y)

and the maximum likelihood estimate (MLE) of ϕ, if it exists

(more on this later) is the value of ϕ that makes this zero.

Thus maximum likelihood estimation sets the expected value of

the canonical statistic equal to its observed value. For short,

“observed equals expected”.
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A Digression on Exponential Families (Cont.)

Applying (2) to the log likelihood gives

∇2l(ϕ) = −∇2c(ϕ)

= − varϕ(y)

The latter, being the negative of a variance is a negative definite
matrix unless the distribution of y is degenerate (more on this
below) which implies that the log likelihood is a strictly concave
function and the MLE is unique if it exists.

The left hand side of this equation is minus Fisher information
(no difference between observed and expected Fisher information
because ∇2l(ϕ) is not a function of the data y). Thus Fisher
information is

I(ϕ) = varϕ(y)
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A Digression on Exponential Families (Cont.)

Thus likelihood inference in exponential families is very simple.

• The MLE is unique if it exists.

• Fisher information is calculated by two derivatives of the

cumulant function, no integrals or sums necessary.

• Any algorithm that always goes uphill on the log likelihood

cannot fail to find the MLE.
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A Digression on Exponential Families (Cont.)

We can not only do maximum likelihood with possible data val-

ues.

For any vector µ the function

〈µ,ϕ〉 − c(ϕ),

is strictly concave so the solution for ϕ of

µ = Eϕ(y)

is unique if it exists. Thus µ determines ϕ as well as vice versa.

Hence µ is a parameter called the mean value parameter. If

multiple parameterizations bother you, just call it the mean, but

remember that this is not any mean but the mean of the canon-

ical statistic.
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A Digression on Exponential Families (Cont.)

The relationship between the canonical parameter ϕ and the
mean value parameter µ is multivariate monotone. This means
that if ϕ1 and ϕ2 are distinct canonical parameter values and µ1
and µ2 are the corresponding mean value parameter values, that
is,

µi = Eθi(y),

then

〈µ1 − µ2,ϕ1 − ϕ2〉 > 0 (3)

In particular, increasing one component of ϕ leaving the rest
fixed increases the corresponding component of µ (the other
components of µ also change one way or the other). But (3)
is a much stronger statement than this. And (3) is the key
to reasoning about the connection between canonical and mean
value parameters.
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A Digression on Exponential Families (Cont.)

Independent and identically distributed (IID) sampling does not

take us out of exponential families. Suppose w1, . . ., xn are

IID data having an exponential family and y1, . . ., yn are the

corresponding canonical statistics. Then

fθ(w1, . . . , wn) =
n∏
i=1

e〈yi,ϕ〉−c(ϕ)h(wi)

= e〈y1+···+yn,ϕ〉−nc(ϕ)
n∏
i=1

h(wi)

so we again have an exponential family with canonical statistic

y1 + · · · + yn, canonical parameter ϕ, and cumulant function

nc(ϕ).
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Affine Functions

In real math what most people call linear functions x 7→ a +

bx are called affine functions. The function x 7→ bx (with no

“intercept”) is a linear function. This is the sense of “linear”

used in the subject linear algebra. More generally, a vector-to-

vector affine function has the form

g(β) = a + Mβ

where a is a vector and M is a matrix of the appropriate di-

mensions for this definition to make sense. And this is a linear

function if and only if a = 0.
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Affine Functions (Cont.)

So why the pedantry about affine and linear? The “linear” in
linear models really means linear in the pedantic sense.

How can that be when models have “intercepts”? Because the
“linear” in linear models refers to µ = Mβ being a linear function
of β — which it is in the pedantic sense —- and not being a
linear function of the predictor x — which it need not be, it
can be arbitrary. The “intercept” is an intercept considered as
a function of x not β.

An affine model would be

η = a + Mβ

where a is a known vector and M a known matrix (possibly
functions of the predictor but not functions of the response).
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Affine Functions (Cont.)

GLM (generalized linear models) are actually misnamed, because

affine models η = a + Mβ are actually allowed and occasionally

useful. M is still called the model matrix, and a is called the

offset in the documentation for the R function GLM.
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A Digression on Exponential Families (Cont.)

Cannonical affine submodels do not take us out of exponential

families. Suppose ϕ = a + Mβ. Then

fθ(w) = e〈y,a+Mβ〉−c(a+Mβ)h(w)

= e〈M
Ty,β〉−c(a+Mβ)h(w)e〈y,a〉

so we again have an exponential family with canonical statistic

MTy, canonical parameter β, and cumulant function c(a+Mβ).
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