
Unifying Life History Analyses for Inference of Fitness and

Population Growth2

Ruth G. Shaw

Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul,4

Minnesota 55108

rshaw@superb.ecology.umn.edu6

Charles J. Geyer

School of Statistics, University of Minnesota, Minneapolis, Minnesota 554558

charlie@stat.umn.edu

Stuart Wagenius10

Institute for Plant Conservation Biology, Chicago Botanic Garden, Glencoe, Illinois 60022

swagenius@chicagobotanic.org12

Helen H. Hangelbroek

Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul,14

Minnesota 55108

helen hangelbroek@hotmail.com16

and

Julie R. Etterson18

Biology Department, University of Minnesota-Duluth, Duluth, Minnesota 55812

jetterso@d.umn.edu20



– 2 –

Received ; accepted

Prepared with AASTEX— Type of submission: Article



– 3 –

ABSTRACT22

Lifetime fitness of individuals is the basis for population dynamics, and vari-

ation in fitness results in evolutionary change. Though the dual importance of

individual fitness is well understood, empirical datasets of fitness records gen-

erally violate the assumptions of standard statistical approaches. This problem

has plagued comprehensive study of fitness and impeded empirical unification of

numerical and genetic dynamics of populations. Recently developed aster mod-

els address this problem by explicitly modeling the dependence of later expressed

components of fitness (e.g. fecundity) on those expressed earlier (e.g. survival to

reproductive age). Moreover, aster models allow different sampling distributions

for different components of fitness, as appropriate (e.g. binomial for survival over

a given interval and Poisson for fecundity). The analysis is conducted by max-

imum likelihood, and the resulting compound distributions for lifetime fitness

closely approximate the observed data. To illustrate the breadth of aster’s util-

ity, we provide three examples: a comparison of mean fitness among genotypic

groups, a phenotypic selection analysis, and estimation of finite rates of increase.

Aster models offer a unified approach to addressing the wide range of questions

in evolution and ecology for which life history data are gathered.

Subject headings: Chamaecrista fasciculata, community genetics, demography,24

Echinacea angustifolia, fitness components, Uroleucon rudbeckiae
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The fitness of an individual is well understood as its contribution, in offspring,26

to the next generation. Fitness has both evolutionary significance, as an individual’s

contribution to a population’s subsequent genetic composition, and ecological importance,28

as an individual’s numerical contribution to a population’s growth. The simplicity of these

closely linked ideas belies serious complications that arise in empirical studies. Because30

lifetime fitness comprises multiple components of fitness expressed over one to many

seasons or stages, its distribution is typically multimodal and highly skewed in shape32

and thus corresponds to no known parametric distribution. This problem has long been

acknowledged (Mitchell-Olds and Shaw 1987; Stanton and Thiede 2005), yet to date there is34

no single rigorously justified approach for jointly analyzing components of fitness measured

sequentially throughout the lifetime of an individual. This limitation severely undermines36

efforts to link ecological and evolutionary inference.

Here we present applications of a new statistical approach, aster, for analyzing38

life-history data with the goal of making inferences about lifetime fitness or population

growth. Within a single analysis, aster permits different fitness components to be modeled40

with different statistical distributions, as appropriate. It also accounts for the dependence of

fitness components expressed later in the life-span on those expressed earlier, as is necessarily42

the case with sequential measurements of aspects of the life-history, e.g. reproduction

depending on survival to reproductive age. Geyer et al. (2007) present the statistical theory44

for aster models. Our goal here is twofold. First, we illustrate the problem by reviewing the

limitations of approaches that have previously been employed in empirical studies. Second,46

we describe how aster models resolve these problems, illustrating these points with three

empirical examples.48
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1. The problem and previous efforts to address it

Individual fitness realized over a lifespan typically does not conform to any well known50

distribution that is amenable to parametric statistical analysis. In contrast, components

of fitness over a given interval, such as survival to age x, reproduction at that age, and52

the number of young produced by a reproductive individual of that age, generally conform

much more closely to simple parametric distributions. For this reason, components of54

fitness are sometimes analyzed separately to circumvent the distributional problem of

lifetime fitness. For example, in a study of genetic variation within a population of Salvia56

lyrata in its response to conspecific density, Shaw (1986) provided separate analyses of

two components of fitness, survival over two time intervals and size of the survivors, as a58

proxy for future reproductive capacity in this perennial plant. This approach considers size,

or in other cases fecundity, conditional on survival. It has the appeal that the statistical60

assumptions underlying the analyses tend to be satisfied, but it offers no way to combine the

analyses to yield inferences about overall fitness. Separate analyses of fitness components62

cannot substitute for an analysis of overall fitness, particularly considering the possibility

of tradeoffs between components.64

A common approach to analyzing fitness as survival and reproduction jointly is to use

fecundity as the index of fitness and retain fecundity values of zero for individuals that66

died prior to reproduction. When observations are available for replicate individuals, a

variant of this approach is to use as the measure of fitness the product of the proportion68

surviving and the mean fecundity of survivors (e.g. Belaoussoff and Shore 1995; Galloway

and Etterson 2007). In either case, the resultant distributions typically have at least two70

modes (one at zero) and are highly skewed, such that no data transformation yields a

distribution that is suitable for parametric statistical analysis. Authors frequently remark72

on the awkwardness of these distributions in their studies (e.g. Etterson 2004), but rarely
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publish fitness distributions. Antonovics and Ellstrand (1984), however, presented the74

distribution of lifetime reproductive output (their Fig. 2) in their experimental studies of

frequency-dependent selection in the perennial grass, Anthoxanthum odoratum, noting its76

extreme skewness. Finding no transformation that yielded a normal distribution suitable

for analysis of variance, they assessed the robustness of their inferences by applying three78

distinct analyses (categorical analysis of discrete fecundity classes, ANOVA of means, and

nonparametric analysis). In this study, results of the three analyses were largely consistent,80

but, in general, results are likely to differ.

Others have noted the importance of complete accounting of life-history in inferring82

fitness or population growth rate, as well as evaluation of its sampling variation, and

have presented methods to accomplish this. Caswell (1989) and Morris and Doak (2002)84

explain how to obtain population projection matrices from life-history records and, from

them, to estimate population growth rate. They also describe methods for evaluating its86

sampling variation and acknowledge statistically problematic aspects of these methods

(their Chapters 8 and 7, respectively). Lenski and Service (1982) considered the complete88

life-history record of individuals as the unit of observation and used jackknife resampling to

estimate population growth rate and its sampling variance. Recent efforts to evaluate the90

nature of selection have likewise taken a comprehensive demographic approach. McGraw

and Caswell (1996) considered individual life-histories but chose the maximum eigenvalue92

of an individual’s Leslie matrix (λ) as its fitness measure. They regressed λ on the fitness

components, age at reproduction and lifetime reproductive output to estimate selection on94

them. Van Tienderen (2000) advocated an alternative approach for studying phenotypic

selection. This approach involves evaluating the relationships between each component96

of fitness and the phenotypic traits of interest via separate multiple regression analyses

(Lande and Arnold 1983) to obtain the selection gradients in different episodes of selection.98

These selection gradients are then weighted by the elasticities (Caswell 1989) of each
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component of fitness obtained from analysis of the appropriate population projection100

matrix. Beyond these approaches linking demography and fitness, methods targeting the

problem of “zero-inflated” data (i.e. many observations of zero distorting a distribution)102

have been proposed (Cheng et al. 2000; Dagne 2004). Each method has liabilities, however.

For example, elasticities do not take into account sampling variation in the life-history,104

and violations of distributional assumptions remain a problem (McGraw and Caswell 1996;

Coulson et al. 2003). Moreover, none of these methods generalize readily for inference in106

the wide range of contexts that life-history data can, in principle, address.

2. Inference of individual fitness with aster108

We present aster models (Geyer et al. 2007) for rigorous statistical analysis of

life-history records as a general approach for addressing diverse questions in evolution110

and ecology. As noted above, two standard properties of life-history data are central to

the statistical challenges that aster addresses. First, the expression of an individual’s112

life-history at one stage depends on its life-history status at earlier stages. For example,

observation of an individual’s fecundity at one stage is contingent on its survival to that114

stage. Second, no single parametric distribution is generally suitable for modeling various

components of fitness, e.g. survival and fecundity. Aster analysis models fitness components116

observed through a sequence of intervals bounded by the times at which individuals are

observed. The intervals could be days or years, and need not all be the same duration.118

The components of fitness are modeled jointly over successive intervals by explicitly taking

into account the inherent dependence of each stage on previous stages, e.g. that only120

survivors reproduce. We represent the life-history and, in particular, the dependence of one

component of the life-history on another, graphically as in Fig. 1.122

EDITOR: PLACE FIGURE 1 HERE.
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The aster approach models the joint distribution of a set of variables (fitness124

components). We say an arrow in the graphical model points from a variable to its successor

or, going backwards along the arrow, from a variable to its predecessor (Geyer et al. 2007126

used “parent” and “child” instead of “predecessor” and “successor” but this is confusing

in biology). The theory underlying the aster approach requires modeling the conditional128

distribution of each variable given its predecessor variable as an exponential family of

distributions (Barndorff-Nielsen 1978; Geyer et al. 2007) with the predecessor variable130

playing the role of sample size. This requirement retains considerable flexibility, because

many distributions are exponential families, including Bernoulli, Poisson, geometric, normal,132

and negative binomial.

If the predecessor is zero then so is the successor. If the predecessor has the value134

n > 0, then the successor is the sum of n independent and identically distributed variables

having the named distribution. For example, the binary outcome of an individual’s survival136

over a given interval is modeled as a Bernoulli variable. Likewise, given that an individual

survived to this point, whether or not it reproduced is considered Bernoulli. Fecundity,138

given that it reproduced in this interval, may be modeled according to a zero-truncated

Poisson distribution (i.e. a Poisson random variable conditioned on being greater than 0).140

Aster analysis yields estimates of unconditional (lifetime) fitness that account for

the expression of all the fitness components. The modeling of each single component of142

fitness with an appropriate probability distribution leads to a sampling distribution for the

joint expression of the fitness components as lifetime fitness that approximates the actual144

distribution, as we show in Example 2 below.

Modeling the joint distribution of fitness components establishes a proper foundation

for sound analysis, but another key idea is needed. Restriction of the choice of

conditional distributions for fitness components to exponential families results in a joint
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distribution of the components that is a multivariate exponential family. Its canonical

parameterization, described by equation (5) in Geyer et al. (2007), is called the unconditional

parameterization of the aster model. Let Xi denote the variables (fitness components) and

ϕi the corresponding canonical parameters of a model. When overall fitness is considered

a linear combination
∑

i aiXi, where ai are known constants, then its unconditional

expectation is directly controlled by a single parameter βk if the regression part of the

model has the form

ϕi = aiβk + other terms not containing βk

by equation (22) in Geyer et al. (2007); increasing βk increases the unconditional expectation146

of
∑

i aiXi other betas being held fixed. Thus confidence intervals and hypothesis tests for

βk address overall fitness directly. For this reason, the unconditional parameterization is148

used for the example in Geyer et al. (2007) and Examples 1 and 2 below. This situation

most often arises when the linear combination is a simple sum (so the ai are zero or one),150

e.g. some of the Xi are counts of offspring in one year and
∑

i aiXi is the total number of

offspring observed in all years.152

The unconditional parameterization is somewhat counterintuitive because terms in the

regression model that nominally refer to a single component of fitness (affect its ϕi only)154

directly influence the unconditional expectation of overall fitness by affecting not only its

distribution but also the distributions of all components before it in the graphical model156

(its predecessor, predecessor of predecessor, etc.) This makes it somewhat difficult, but not

impossible (see our Example 1), to see the role played by a single component of fitness.158

This is, however, an unavoidable consequence of being able to address overall fitness.

The analysis employs the principle of maximum-likelihood, developed by Fisher (1922)160

and now widely applied as a rigorous, general approach to any statistical problem (Kendall

and Stuart 1977). Software for conducting the analysis, is a contributed package “aster”162
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in the R statistical language (R Development Core Team 2006) and is freely available

(http://www.r-project.org).164

We demonstrate the value and versatility of the aster approach with three examples.

In the first, we apply aster to compare mean fitness among groups. Specifically, we166

quantify effects of inbreeding on fitness of Echinacea angustifolia, a long-lived composite

plant. In our second example, we reanalyze data of Etterson (2004) to evaluate phenotypic168

selection on the annual legume, Chamaecrista fasciculata. In the last example, we illustrate

inference of population growth rate via aster. We consider a small dataset that Lenski and170

Service (1982) used to demonstrate their nonparametric method for inferring population

growth rate from a set of individual life-histories of the aphid, Uroleucon rudbeckiae.172

The datasets for our examples are in the aster package for R. Complete analyses for our

examples are given in a technical report (Shaw, et al. 2007) available at the aster website174

http://www.stat.umn.edu/geyer/aster and are reproducible by anyone who has R (see

Chapter 1 of the technical report).176

3. Example 1: Comparison of fitness among groups

In this example, we illustrate use of aster models to compare mean fitnesses of defined178

groups, here, genotypic classes. Specifically, we investigate how parental relatedness

affects progeny fitness in the perennial plant, Echinacea angustifolia (narrow-leaved purple180

coneflower), a common species in the N. American tallgrass prairie and Great Plains. The

plant is self-incompatible, and Wagenius (2000) detected no deviation from random mating182

in large populations. However, following the abrupt conversion of land to agriculture and

urbanization that started about a century ago, the once extensive populations now persist184

in small patches of remnant prairie. In this context of fragmented habitat, we expect

that matings between close relatives in the same remnant, and perhaps also long distance186
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matings, have become more common.

To evaluate the effects of different mating regimes on the fitness of resulting progeny,188

formal crosses were conducted in the field to produce progeny of matings between plants

a) from different remnants, b) chosen at random from the same remnant, and c) known190

to share the maternal parent. The resulting seeds were germinated, and the plants were

grown in a growth chamber for three months, after which they were transplanted into an192

experimental field plot. In this example, we focus on pre-reproductive components of fitness,

survival and plant size. Survival of each seedling was assessed in the growth chamber on194

three dates. The seedlings were then transplanted into an experimental field plot, and their

survival was monitored annually 2001–2005. The number of rosettes (basal leaf clusters,196

1–7) per plant was also counted annually 2003–2005. Rosette count reflects plant vigor and

is likely related to eventual reproductive output.198

Mortality of many plants as seedlings and juveniles resulted in a distribution of rosette

count in 2005 having many structural zeros. We modeled survival through each of eight200

observation intervals as Bernoulli, conditional on surviving through the preceding stage;

we modeled rosette count in each of three field seasons, given survival to that season, as202

zero-truncated Poisson (Fig. 1A). To account for spatial and temporal heterogeneity, we

also included in the models the factors a) year of crossing (1999 or 2000), b) planting tray204

during the period in the growth chamber, c) spatial location (row and position within row)

in the field.206

In addition to evaluating the effects of mating treatments on overall fitness, we

developed models to test for differences in the timing and duration of the mating treatment208

effects on fitness. At the earliest stages, in the benign conditions of the growth chamber,

effects of the mating treatments may be negligible. Alternatively, it may be that the210

effects of mating treatment at the earliest stages largely account for their overall effects on
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fitness. These scenarios differ in their implications concerning the inbreeding load expected212

in standing populations (Husband and Schemske 1996). We developed four aster models,

named “chamber,” “field,” “sub,” and “super.” Each was a joint aster analysis of all 11214

bouts of selection (survival over eight intervals, rosette count at three times). The “field”

model includes explicit mating treatment effects only on the final rosette count (variable216

r05 in Figure 1A), but because of the unconditional parameterization of aster models

(section 2, above) these effects propagate back to earlier stages. The “chamber” model218

includes explicit mating treatment effects only on the final survival before transplanting

(variable lds3 in Figure 1A), but, again, these effects propagate through all preceding220

bouts of survival. The “sub” model is the greatest common submodel of “chamber” and

“field,” and the “super” model is their least common supermodel (i. e. “sub” includes no222

effects of mating treatment on any aspect of fitness, whereas “super” includes effects of

mating treatment on both survival up to transplanting and on final rosette count).224

The aster analysis revealed clear differences among the mating treatments in overall

progeny fitness through the end of the available set of records, (model “field” compared to226

“sub”, (P = 1.1 × 10−5). The unconditional expected rosette count for each cross type is

the best estimate for the expected rosette count in 2005 for every seed that germinated in228

2001. The fitness disadvantage of progeny resulting from sib-mating relative to the other

treatments is a 35%–42% reduction in rosette count (Fig. 2).230

EDITOR: PLACE FIGURE 2 HERE.

Because of the aforementioned propagation of effects back to earlier stages, the effects of232

mating treatment in the “field” model directly subsume overall fitness expressed over the

course of the experiment. Though this analysis suffices for inferring the overall effects234

of mating treatment on fitness, we investigated further the timing and duration of these

effects using the additional models described above. The comparison of the “sub” and236
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“chamber” models shows that survival before transplanting differs among mating treatments

(P = 0.012). However, the comparison of the “chamber” and “field” models with the238

“super” model shows that “super” fits no better than “field” (P = 0.34) but does fit better

than “chamber” (P = 3.1 × 10−4). Hence the “field” model fully accounts for differences240

in expressed fitness. The terms of the “chamber” model that quantify the effect of mating

treatment on survival up to transplanting are not needed to fit the data, because the242

aforementioned back propagation of effects subsumes the effects of mating treatment in the

growth chamber. This does not mean there are no effects of mating treatment on fitness244

before transplanting. The comparison of “sub” and “chamber” confirms they exist, and

Fig. 2 clearly shows them. The fitness disadvantage of progeny resulting from sib-mating246

relative to the other treatments is clear in the 7%–10% reduced survival up to the time of

transplanting but the overall fitness disadvantage of inbreds is considerably greater (Fig. 2).248

4. Example 2: Phenotypic selection analysis

Lande and Arnold (1983) proposed multiple regression of fitness on a set of quantitative250

traits as a method for quantifying natural selection directly on each trait. In practice,

these analyses have generally employed measures of components of fitness as the response252

variable, rather than overall fitness (see e.g. examples in Lande and Arnold 1983). As a

result, the estimated selection gradients, the partial regression coefficients, reflect selection254

on a trait through a single ’episode of selection’, rather than selection over multiple episodes

or, ideally, over a cohort’s lifespan. Focusing on this limitation, Arnold and Wade (1984a)256

considered partitioning the overall selection gradient into parts attributable to distinct

episodes of selection, and Arnold and Wade (1984b) illustrated the approach with examples.258

Wade and Kalisz (1989) modified this approach to allow for change in phenotypic variance

among selection episodes. Whereas these developments were intended to account for260
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the multiple stages of selection, they do not directly account for the dependence of later

components of fitness on ones expressed earlier, an issue that also applies to van Tienderen262

(2000).

Apart from the problem of dependence among fitness components, Mitchell-Olds and264

Shaw (1987), among others, have noted that statistical testing of the selection gradients

is compromised, in many cases, by the failure of the analysis to satisfy the assumption of266

normality of the fitness measure, given the predictors. This concern applies to McGraw and

Caswell’s (1996) approach to phenotypic selection analysis, which integrates observations268

from the full life-history. To address this problem for the case of dichotomous fitness

outcomes, such as survival, Janzen and Stern (1998) recommended the use of logistic270

regression for testing selection on traits and showed how the estimates resulting from

logistic regression could be transformed to obtain selection gradients. Schluter (1988) and272

Schluter and Nychka (1994) suggested estimating fitness functions as a cubic spline to allow

for general form, but this method requires a parametric error distribution, whether normal,274

binomial, or Poisson.

Aster explicitly models the dependence of components of fitness on those expressed276

earlier. Moreover, unconditional aster analysis estimates the relationship between overall

fitness and the traits directly in a single, unified analysis. It thus serves as a basis for278

statistically valid inference about phenotypic selection, unlike other methods whose required

assumptions are often seriously violated. We illustrate this use of aster with a reanalysis280

of Etterson’s (2004) study of phenotypic selection on three traits in three populations of

the annual legume, Chamaecrista fasciculata, reciprocally transplanted into three sites.282

The three traits, measured when the plants were 8–9 weeks old, are leaf number (LN, log

transformed), leaf thickness (measured as specific leaf area, SLA, the ratio of a leaf’s area284

to its dry weight, log transformed) and reproductive stage (RS, scored in 6 categories,
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increasing values denote greater reproductive advancement). Here, for simplicity, we286

consider only the data for the three populations grown in the Minnesota site.

C. fasciculata grows with a strictly annual life-history. In this experiment, fitness288

was assessed as 1) survival to flowering, 2) flowering, given that the plant survived, 3) the

number of fruits a plant produced, and 4) the number of seeds per fruit in a sample of three290

fruits, the last two contingent on the plant having flowered. Preliminary analyses revealed

that nearly all survivors flowered and fruited, so these fitness components were collapsed292

to a single one, modeled as Bernoulli (reprod). Consequently, overall fitness was modeled

based on survival and reproduction, the number of fruits per plant, and the number of294

seeds per fruit, (termed reprod, fruit, and seed, Fig. 1B). Preliminary analyses assessed

the fit of truncated Poisson and truncated negative binomial distributions to the data for296

both fecundity components. On this basis, the fecundity components were modeled with

truncated negative binomial distributions. In addition to the traits of interest, the model298

included the spatial block in which individuals were planted.

To illustrate phenotypic selection analysis most straightforwardly, we begin by300

analyzing two of the fitness components, reprod and fruit in relation to two of the traits,

leaf number (LN) and leaf thickness (SLA). This model detected strong dependence of302

fitness on both traits such that selection is toward more, (P < 10−6) thinner (P = 0.007)

leaves.304

Extending this analysis to assess curvature in the bivariate fitness function, we detected

highly significant negative curvature for both traits, suggestive of stabilizing selection,306

(P < 5.7× 10−43). The plot of the fitness function together with the observed phenotypes

(Fig 3) reveals that the fitness optimum lies very near the edge of the distribution of leaf308

number.

EDITOR: PLACE FIGURE 3 HERE.310



– 16 –

Thus, for this trait, selection against both extremes of the standing variation in the trait

(i.e. stabilizing selection) is not observed. The aster analysis fits the data well, as reflected312

by the scatter plots of Pearson residuals which show very little trend and only three

extreme outliers for fruit number (Fig. 4A). This evidence that we have modeled the314

data appropriately reinforces our confidence in use of aster models to estimate phenotypic

selection gradients.316

Comparison of the bivariate fitness function inferred via aster with that obtained via

ordinary least squares (OLS), which has become standard (Lande and Arnold 1983), reveals318

that they differ in the sign of the curvature for leaf number, LN. In contrast to the negative

curvature for LN, which the aster analysis strongly indicates, OLS estimates positive320

curvature in this direction, suggestive of disruptive selection, such that the bivariate surface

is a saddle; each analysis attaches highly significant P values to this term of the quadratic322

(P < 5 × 10−16). However, the homoscedasticity and normality assumptions required for

OLS regression to give meaningful P -values are seriously violated (Fig 4). Such violations324

of assumptions for an OLS regression analysis are expected, given that 8% of plants have

fitness of zero and that the distributions of numbers of fruits per plant is heavily skewed.326

Violation of these assumptions distorts the surface inferred to represent selection. Because

the assumptions for the aster model appear satisfied, we trust the aster model P -values and328

estimated fitness surface and not those from OLS regression.

EDITOR: PLACE FIGURE 4 HERE.330

We extend the above phenotypic selection analysis to include the additional fitness

component, seed, and also the additional phenotypic predictor, reproductive stage (RS).332

This analysis detected dependence of both fruit and seed on LN (P < 10−15) and

dependence of seed on RS (P < 10−6). In addition, the dependence of fruit on SLA334

was marginally significant (P = 0.054). In each case, the relationship between fitness
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component and trait also takes into account pre-reproductive mortality. Thus, this analysis336

quantifies the relationship between the two components of fecundity and the traits; it does

not, however, satisfy the goal of evaluating the relationship between overall fitness and the338

traits. In the following, we explain the challenge of analyzing data in the structure given,

as well as its resolution.340

Though impractical in this case, as in many others, one could imagine having counts

of total numbers of seeds produced by each plant as well the number of fruits. Data in this342

structure would be amenable to phenotypic selection analysis by the standard aster method

illustrated above, extending the graph in Fig. 1B to include total seed count as a successor344

node of fruit count. Here, where seed counts are available for a set number (3) of fruits,

seed and fruit depend jointly on reprod (Fig. 1B). In this case, it might seem natural346

to use the product of fruit count and number of seeds per fruit in an aster analysis. This

would not be valid, because this product is not distributed according to an exponential348

family. Thus, the structure of this aster model precluded inference of overall selection via a

single aster analysis.350

To account jointly for both aspects of fecundity, we conducted a parametric bootstrap

(Efron and Tibshirani 1993, Section 6.5) to infer and test the relationship between overall352

fitness and the traits. This entailed simulating 1000 datasets from the aster model estimated

from the original data. Specifically, values for the fitness components, fruit and seed,354

were drawn from the sampling distributions used in the aster analysis, with parameters

inferred from it. For each individual in the simulated datasets, we calculated the overall356

absolute fitness (W ) of each individual as the product of its simulated values for seed

and fruit. From this, individual relative fitness (w) was obtained by dividing by the358

average, over the whole dataset, of absolute fitness. Estimates of the average selection

gradients were obtained for each dataset via multiple regression of w on the three traits360
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via OLS as described by Lande and Arnold (1983). Finally, each selection gradient for the

actual data was taken as the mean of the selection gradient estimates over all the datasets,362

and its sampling distribution was approximated by the bootstrap distribution, which was

approximately normal (Fig 5 shows the distribution for LN; others were similar). The364

estimates obtained in this way for the linear fitness function were qualitatively similar

to those produced by OLS multiple regression of w on the three traits. However, the366

magnitudes of the estimates differed; for LN, the OLS estimate of the selection gradient

exceeded that from the parametric bootstrap based on the aster model by over 25%.368

Note that our simulations used the aster model distribution rather than the usual OLS

assumptions of homoscedastic normal errors and are thus statistically valid; we used OLS370

only for estimation of the bivariate linear regression for each bootstrap dataset.

EDITOR: PLACE FIGURE 5 HERE.372

As noted, seeds were counted for a fixed number of fruits, three per individual.

Subsampling in this way is a common practice in studies of animals (e.g. Howard 1979), and374

of plants. It is this feature of the data that dictated modeling the dependence of seed count

and fruit number jointly on reproductive status (Fig. 1). This, in turn, obviated the direct376

aster analysis of the dependence of overall fitness on the traits and entailed application of

the parametric bootstrap. As a practical alternative, the seed count for each individual378

could be obtained for a subset of fruits, where the number of fruits on which to count seeds

is determined at random, e.g. each fruit is counted with probability p independently of all380

other fruits, so the number of fruits counted for an individual with n total fruits has a

binomial(n, p) distribution. Data in this design would be amenable to direct analysis of382

selection via aster by incorporating the sampling of fruits into the graphical model.

In this section, we have illustrated how aster can analyze complete life-history records384

to yield phenotypic selection analyses that do not suffer typical violations of assumptions
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of the OLS regression of fitness on phenotypes. Even for analysis of an annual life-history,386

commonly considered relatively straightforward, aster greatly improves the adherence of the

analysis to statistical assumptions and, accordingly, the validity of the inferences. We have388

also shown that, even when the available data preclude modeling total reproductive output

as sequentially dependent on all earlier expressed fitness components, aster estimates the390

parameters of a fitness model that can be used with a parametric bootstrap to yield a

statistically sound phenotypic selection analysis.392

5. Example 3: Estimation of population growth rate, φ

Lenski and Service (1982) recognized the need for a valid statistical approach to394

inferring rates of population growth (φ) from life-history records. In particular, they

emphasized the importance of accounting for individual variation in survivorship and396

fecundity when inferring φ via the stable age equation: (their eqn 1). This expression

weights earlier produced offspring more heavily in their contribution to population growth398

to an extent dependent on the population growth rate itself (Fisher 1930). Lenski and

Service (1982) presented a nonparametric approach that resamples records of individual400

life histories according to the jackknife procedure. Using the properties of the jackknife,

they showed how to obtain estimates and sampling variances of φ. They illustrated the402

approach with a small dataset sampled from the aphid, Uroleucon rudbeckiae. The survival

and fecundity in each of fourteen age intervals were recorded for 18 individuals in a cohort404

(see Fig. 1), and these data served as the basis for estimating φ and its sampling variance

for this cohort (data printed in Lenski and Service 1982).406

In using the aster approach to analyze these data, we modeled the binomial parameter

governing survival probability, logit(σx), as a quadratic function of age, x, and found not408

only that survivorship declined significantly with age (P = 0.001) but also that there is
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significant deviation (P = 0.028) from a linear decline in logit(σx). Expected fecundities,410

βx, modeled according to a Poisson distribution, were estimated for each age class, x, given

survival to that age, as the stable age equation requires.412

Interest focuses primarily on estimating φ, but also on its sampling variance, as noted

by Alvarez-Buylla and Slatkin (1994), because of its importance in assessing whether a414

population is growing or declining. We estimated φ directly as a nonlinear function of the

expectations of survivorship to age x, σx, and fecundity at that age, βx. From the data416

given, we estimated φ = 1.677 with a standard error of 0.056. Our estimate is similar

to the estimate 1.688 from the method Lenski and Service (1982) recommend, and 95%418

confidence intervals are also similar, ours being (1.57, 1.79) and theirs (1.52, 1.85). Whereas

we see only modest improvement over that of Lenski and Service (1982), the aster method420

can be used in more complicated situations where the jackknife is inapplicable. Moreover,

the generality of the aster framework permits incorporation of age structure into fitness422

comparisons, like those in Examples 1 and 2. Because aster employs parametric models, we

expect it also to surpass the approach of McGraw and Caswell (1996) in statistical power,424

while avoiding the distributional problems and estimation bias they acknowledge.

6. Discussion426

Both the numerical and genetic dynamics of populations depend fundamentally on

the individuals’ contribution to the next generation, their fitness. Extensive theoretical428

work (e.g. Fisher 1930; Charlesworth 1980) has formalized and extended this insight of

Darwin, yet statistical challenges have continued to compromise the empirical evaluation430

of fitness. The aster approach (Geyer et al. 2007) addresses these challenges by explicitly

modeling the dependence of components of life-history on those expressed earlier. It thus432

takes full advantage of available data to yield comprehensive assessments of fitness that
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are as precise as possible. The precision of aster modeling not only offers statistical power434

for tests of null hypotheses; it also promotes quantitative comparison of fitnesses. Most

important, as a general framework for inferring fitness from life-history, aster can address436

questions that arise in diverse evolutionary and ecological contexts. The examples presented

here illustrate the breadth of aster’s applicability, including comparison of mean fitness438

among genotypically distinct groups, inference of phenotypic selection, and estimation

of population growth rate. Thus, as a single, general framework for addressing diverse440

questions in evolution and ecology, aster modeling offers unification of these empirical

efforts. Even beyond analysis of life-history data, aster modeling is appropriate for any442

set of responses in which there are dependencies analogous to those characteristic of

life-histories. In an experimental study of foraging behavior, for example, individual444

subjects may forage in a given interval or not and, given that they forage, may take varying

numbers of prey. In a medical context, aster could be used to expand on survival analysis446

to incorporate measures of quality of life in evaluation of the relative benefits of different

procedures. We emphasize that aster obviates the common practice of multi-step analysis448

(e.g. van Tienderen 2000), which cannot provide valid statistical tests or sound estimates

of sampling error. A single aster model can encompass the real complexities not only of450

life-histories, but also of discrete and continuous predictors, and thus provide a full analysis

to yield direct inferences about fitness and population growth.452

Lifetime fitness rarely, if ever, conforms to any distribution amenable to parametric

statistical analysis less complex than aster analysis. This pathology of fitness distributions454

has plagued empirical studies of fitness. Resampling approaches are sometimes used, but

this is not a general solution, because valid resampling schemes are not generally available456

for complex data structures. Moreover, resampling methods sacrifice statistical precision

relative to parametric analysis. As an alternative, transformations are often attempted, but458

the prevalence of mortality before reproduction typically results in fitness distributions with
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many individuals at zero, such that no transformation produces a well known distribution.460

Even if individuals that don’t survive to reproduce are excluded, the fitness of survivors

alone is often highly skewed and may not readily transform to a suitable form. Moreover,462

even if such a transformation could be found, analyses of fitness on an alternative scale

can result in misinterpretation (Stanton and Thiede 2005). Aster avoids these problems by464

directly modeling each distinct component of fitness with a suitable parametric distribution

and accounting for the dependence of each fitness component on those expressed earlier.466

As a consequence, it suitably models the sampling variation and yields results on the

biologically natural scale of expected number of individuals produced per individual.468

Even when life-history records are available for only a portion of the life-span, as in our

example of genotypic differences in fitness of Echinacea angustifolia, joint analysis via an470

unconditional aster model provides comparisons based on the most comprehensive fitness

records at hand.472

Studies of variation in fitness often focus on a single component of fitness (e.g. Arnold

and Lande 1983). These are less subject to distributional problems and can yield insight474

into the nature of fitness variation during a particular episode of selection. However, the

resulting understanding of fitness and its variation is fragmentary and can be misleading476

when the relationship between components of fitness, on the one hand, and traits or

genotypes, on the other, varies over the lifespan (Prout 1971). Whereas Arnold and Wade478

(1984a) proposed an approach to evaluate phenotypic selection over multiple episodes

(modified by Wade and Kalisz 1989), this approach comprises separate analyses of each480

episode, ignoring the dependence structure of fitness components. The sampling variance of

the resulting estimates of selection cannot readily be determined.482

Our first example demonstrates the most basic use of unconditional aster models to

estimate and compare mean fitness for groups produced by different mating schemes and,484
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thus, differing in genetic composition. Here, individual size is considered a component of

fitness during the juvenile period; the typically strong positive relationship between size and486

eventual fecundity justifies this here, as elsewhere. This analysis reveals highly significant

inbreeding depression and yields an overall estimate of at least 70%, when extrapolated488

linearly to inbreeding arising from one generation of selfing. We have also used aster to

analyze survival and annual production of flower heads jointly for samples of remnant490

populations of E. angustifolia grown in a common field environment. This analysis, which

used an aster model similar in structure to that of example 1, revealed significant differences492

in fitness among remnants (Geyer et al. 2007). In the case we provide here, we further

demonstrate how the likelihood framework of aster permits straightforward tests of several494

alternative hypotheses. We show that the significant early disadvantage in size and survival

of inbred plants does not adequately account for the fitness differences at the end of the496

period of observation. Rather, inbreeding depression in growth and survival persists beyond

the first three months. Thus, in addition to providing statistically rigorous comparisons of498

overall fitness among groups, aster yields insights into the sources of fitness differences.

Aster readily extends beyond this basic application to address further questions500

in evolution and ecology, as our remaining examples show. To accomplish phenotypic

selection analysis, the aster model includes the traits under consideration as predictors of502

cumulative fitness. Inference of quadratic and correlational selection is also straightforward.

Phenotypic selection analysis via aster establishes the relationship between individuals’504

overall demographic-genetic contribution to the next generation and the traits they express.

This was the goal of a method presented by van Tienderen (2000), but because that method506

does not take into account variation among individuals in demographic inferences, it cannot

validly represent the statistical uncertainty of inferred parameters. Moreover, because van508

Tienderen’s approach involves separate analyses to estimate selection gradients for each

fitness component, it is does not take into account the dependence relationships of the510
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fitness components and is subject to the usual distributional problems (e.g. Coulson et al.

2003).512

Aster also encompasses inference of population growth rates. Lenski and Service

(1982) first noted the importance of sound statistical modeling for population growth.514

They recognized that the appropriate unit of observation is the individual and its complete

life-history. Our use of aster for inferring φ builds on their work by employing parametric516

models for each life-history event. The resulting estimate and confidence interval for φ is

similar to that obtained by Lenski and Service’s (1982) method using the jackknife. This518

application of aster differs from our other examples in using aster models to obtain estimates

of life-history events, conditional on previous aspects of the life-history. In our example,520

expected fecundity at a given age x, which is the product βxσx in the notation of Lenski

and Service (1982), is an unconditional mean value parameter directly estimated by the522

aster model. As with any life table, σxβx for all x implicitly determines φ. The important

point is that aster analysis provides a sound parametric basis for evaluating the variance of524

φ. In cases where there is direct interest in inference about particular components of fitness,

aster models offer the capability of obtaining estimates of expected values of a life-history526

component, conditional on earlier life-history status (e.g. fecundity at a given age, given

survival to that age), as we show in our estimation of the finite rate of increase from the528

aphid data. Conditional estimation could also be used for inferring phenotypic selection in

a given episode.530

In the example of Lenski and Service (1982), complete records are available for each

individual in a single cohort, so the life table can be based on age. Life histories are often532

tabulated in relation to size or stage categories instead of age, because size or stage often

predicts survival and fecundity better than age does (Caswell 1989). Thus, life-history can534

be informative even when ages of individuals are unknown, for example, in censuses of
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populations in nature, as in the examples of Alvarez-Buylla and Slatkin (1994). Though our536

examples include only cases based on age, aster analysis applies equally well to life-history

data according to stage or size (Caswell 1989, chap. 2).538

Because aster accommodates the complex dependencies of life-history data, as well as

the varied probability models that are appropriate, it yields rigorous and precise inferences540

about population growth and fitness. Our examples demonstrate aster’s versatility, which

suits it to address the full breadth of questions that arise in relation to life-histories.542
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Fig. 1.— Graphical models used to analyze data for the three empirical examples presented.

In each case, each individual present at the outset is indicated by the constant variable 1,

the root node. Arrows lead from one life history component to another that immediately

depends on it (from predecessor node to successor node of the graph). Successor variables

are conditionally independent given the predecessor variable. If a predecessor variable is

nonzero, then a particular conditional distribution of the successor variable is assumed. If

a predecessor variable is zero for a given individual, for example due to mortality, then its

successor variables are also zero. A: Example 1: Echinacea angustifolia, a perennial plant.

Fitness comprises juvenile survival at three times up to transplanting into the field (ldsi) and

subsequent survival through five years (ld0i), as well as the plant’s number of rosettes (r0i)

in three years. The survival variables are modeled as (conditionally) Bernoulli (zero indicates

mortality, one indicates survival), and r0i is (conditionally) zero-truncated Poisson (i.e. a

Poisson random variable conditioned on being greater than 0). B: Example 2: Chamaecrista

fasciculata, an annual plant. Success or failure of reproduction (here, including survival to

reproduce) is given by reprod, modeled as Bernoulli (zero indicates no seeds, one indicates

nonzero seeds). Fecundity, given that a plant reproduces, is given by its number of fruits

(fruit), modeled as two-truncated negative binomial and number of seeds per fruit in a

sample of three fruits (seed), modeled as zero-truncated negative binomial. C: Example

3: Uroleucon rudbeckiae, an aphid. Si is (conditionally) Bernoulli and Bi is (conditionally)

zero-truncated Poisson (indicating count of offspring).
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Fig. 2.— Predicted values and 95% confidence intervals for the unconditional mean value

parameter for (A) survival up to transplanting and (B) rosette count in the last year recorded

(i.e. overall fitness over the study period) for a “typical” individual for each cross type.

The experimentally imposed crossing treatments are Br, between remnant populations; Wr,

within remnant populations; and Wi, inbred within remnants (i.e. Between sibs). Lines

indicate model: dotted, “sub” model; dashed, “chamber” model; solid, “field” model; dot-

dash, “super” model.
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Fig. 3.— Scatterplot of SLA (specific leaf area, ln transformed) versus LN (leaf number, ln

transformed) with contours of the estimated quadratic fitness function. Solid dot is the point

where the estimated fitness function achieves its maximum.
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Fig. 4.— Scatter plot of residuals from phenotypic selection analysis for Chamaecrista fasci-

culata. A. Pearson residuals for fruit count conditional on survival are plotted against values

fitted from the quadratic aster model including two traits, leaf number (LN) and specific leaf

area (SLA). B. Residuals for fruit count are plotted against values fitted for the quadratic

model including two traits, leaf number (LN) and specific leaf area (SLA) via ordinary least

squares (OLS).
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Fig. 5.— Histogram of the parametric bootstrap distribution for the selection gradient for

log leaf number, LN, obtained for each bootstrap dataset as the partial regression of seed

number on log leaf number, with specific leaf area (SLA) and reproductive stage (RS) also

included in the model.


