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Aster Models

Aster models (named after the flowers) are a generalization of

generalized linear models (GLM) and survival analysis.

As in linear models (LM) and GLM we model the distribution of

the response vector y conditional on covariate data x.

Components of y are allowed to be dependent conditional on x.

Components of y are allowed to have different families (e. g.,

some Bernoulli, some Poisson, some normal) conditional on x

and on each other.
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Typical Aster Data

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4yBer

yBer

yBer

yBer

y5 y6 y7 y8y0-Poi

y0-Poi

y0-Poi

y0-Poi

y9 y10 y11 y12

Graph shows components of response vector for one individual.

Every individual has isomorphic graph.

Joint distribution is product of conditional distributions, one for

each arrow in graph. Labels indicate conditional distributions

(Ber = Bernoulli, 0-Poi = zero-truncated Poisson).
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Typical Aster Data (cont.)

1
Ber−−→ y1

Ber−−→ y2
Ber−−→ y3

Ber−−→ y4 survivalyBer

yBer

yBer

yBer

y5 y6 y7 y8 any offspringy0-Poi

y0-Poi

y0-Poi

y0-Poi

y9 y10 y11 y12 number offspring

y1, . . ., y4 indicate survival in each of 4 years.

y5, . . ., y8 indicate one or more offspring in each year.

y9, . . ., y12 count offspring in each year.

Conditional distribution of yj+8 given yj is zero-inflated Poisson.
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Typical Aster Data (cont.)

Lots of data like this — thousands of papers on evolution in wild

or experimental populations of plants and animals.

Main interest is in lifetime number of offspring, y9 + · · ·+ y12 in

example. Best surrogate of Darwinian fitness.

Marginal distribution of y9 + · · ·+ y12 is nonnegative, has large

atom at zero, is multimodal. No LM or GLM appropriate. Nor

any other procedures available before aster models.

Scientists made do with either analyzing separate variables or

treating y9 + · · · + y12 as normal even though usually grossly

wrong. Neither satisfactory. Much literature saying so.
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General Aster Graphical Model

Arbitrary directed acyclic graph such that each node has at most

one incoming arrow.

Let J indicate nodes with incoming arrow and F nodes without.

Each j ∈ J associated with component yj of response vector.

Each j ∈ F associated with constant yj.

For each j ∈ J let p(j) denote unique node such that there is

arrow p(j) −→ j.

6



Joint Distribution

Graph determines factorization of joint distribution of y into

product of conditionals

pr(y) =
∏
j∈J

pr(yj | yp(j))

(conditioning on constant same as unconditional).

Conditional distributions are exponential family with canonical

statistic yj, canonical parameter θj, cumulant function cj, and

sample size yp(j). Log likelihood is

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
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Aster Transform

Joint distribution is exponential family because all components
of y enter linearly in

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

=
∑
j∈J

yj

θj −
∑
k∈J

p(k)=j

ck(θk)

−
∑
k∈J

p(k)∈F

yp(k)ck(θk)

Coefficients of yj (blue) are canonical parameters for the joint
distribution

ϕj = θj −
∑
k∈J

p(k)=j

ck(θk), j ∈ J

This is invertible change-of-parameter, infinitely differentiable
both ways.
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Log Likelihood and Fisher Information

Log likelihood for canonical parameters is

l(ϕ) = yTϕ− c(ϕ)

where

c(ϕ) =
∑
k∈J

p(k)∈F

yp(k)ck(θk)

the relation between ϕ and θ being the aster transform. Fisher

information is

I(ϕ) = ∇2c(ϕ)
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Canonical Linear Submodels

Submodels parameterized

ϕ = Mβ

(model matrix M depends on covariate data) are themselves ex-
ponential families with canonical statistic vector MTy, canonical
parameter vector β, and mean value parameter vector

τ = Eϕ(MTy)

Exponential family theory gives interpretability of submodels.
“Observed equals expected” property of maximum likelihood es-
timates

τ̂ = MTy

and

∂τj/∂βj > 0, j ∈ J.
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Fitness Landscapes

In plot vertical coordinate “fitness” is y9 + · · · + y12 in aster

graphical model (lifetime number of offspring) and horizontal

coordinate “trait” is some measured characteristic of organism,

like height or weight.

Biologists want to know the relationship between traits and fit-

ness, the “fitness landscape”.

To statisticians this is just a regression function. Solid curve in

plot is

Eβ̂(y9 + · · ·+ y12 | x)

where x is the trait, plotted as a function of x. Dashed curves

indicate pointwise asymptotic 95% confidence intervals from the

aster model.
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Fitness Landscapes (cont.)

R contributed package aster from CRAN does aster models.

After setting up data structures

out <- aster(resp ~ varb + x + I(x^2),

pred, fam, varb, id, root, data = mydata)

summary(out)

pout <- predict(out, newdata = newdata, varb, id, root,

amat = amat, se.fit = TRUE)

fits aster model, shows fitted regression coefficients with stan-

dard errors etc., and calculates predicted values and standard

errors for regression function.
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Reproducible Research

All analyses in these papers in technical reports available at

http://www.stat.umn.edu/geyer/aster/

done using R function Sweave so exactly reproducible by anyone

who has R.

Voluminous examples with all details.
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