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ABSTRACT22

The lifetime fitnesses of individuals comprising a population determine its nu-

merical dynamics, and genetic variation in fitness results in evolutionary change.

The dual importance of individual fitness is well understood, but empirical fit-

ness records generally generally violate the assumptions of standard statistical

approaches. This problem has plagued comprehensive study of fitness and im-

peded empirical study of the link between numerical and genetic dynamics of

populations. Recently developed aster models address this problem by explicitly

modeling the dependence of later expressed components of fitness (e.g. fecundity)

on those expressed earlier (e.g. survival to reproduce). Moreover, aster models

employ different sampling distributions for components of fitness, as appropriate

(e.g. binomial for survival over a given interval and Poisson for fecundity). The

analysis is conducted by maximum likelihood, and the resulting compound distri-

butions for lifetime fitness closely approximate the observed data. We illustrate

the breadth of aster’s utility with three examples demonstrating estimation of the

finite rate of increase, comparison of mean fitness among genotypic groups, and

phenotypic selection analysis. Aster models offer a unified approach to address

the breadth of questions in evolution and ecology for which life history data are

gathered.

Subject headings: Chamaecrista fasciculata, community genetics, demography,24

Echinacea angustifolia, fitness components, Uroleucon rudbeckiae
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The fitness of an individual is well understood as its contribution, in offspring, to the26

population. Fitness has both evolutionary significance, as an individual’s contribution to a

population’s subsequent genetic composition, and ecological importance, as an individual’s28

numerical contribution to a population’s growth. The simplicity of these closely linked

ideas belies serious complications that arise in empirical studies. Lifetime fitness comprises30

multiple components of fitness expressed over one to many intervals. As a result, the

distribution of fitness, even for a synchronized cohort in the absence of systematic sources32

of variation, is typically multimodal and highly skewed in shape and thus corresponds to no

known parametric distribution. This problem has long been acknowledged (Mitchell-Olds34

and Shaw 1987; Stanton and Thiede 2005), yet to date there is no single, rigorously justified

approach for jointly analyzing components of fitness measured sequentially throughout36

the lives of individuals. This limitation severely undermines efforts to link ecological and

evolutionary inference.38

Here we present applications of a new statistical approach, aster, for analyzing

life-history data with the goal of making inferences about lifetime fitness or population40

growth. Aster modeling generates the overall likelihood for a set of components of fitness

expressed through the lives of individuals. Within a single analysis, aster permits different42

fitness components to be modeled with different statistical distributions, as appropriate.

It also accounts for the dependence of fitness components expressed later in the life-span44

on those expressed earlier. The statistical theory for aster models is presented in Geyer

et al. (2007). Here, we first review the limitations of previous approaches to analysis46

of life-histories. Second, we describe aster models. Finally, we present three empirical

examples to illustrate the utility of aster modeling as a comprehensive approach to analysis48

of life-history data.
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1. The problem and previous efforts to address it50

Individual fitness realized over a lifespan typically does not conform to any well known

distribution that is amenable to parametric statistical analysis. In contrast, individual52

components of fitness, such as survival to age x, reproduction at that age, and the number

of young produced by a reproductive individual of that age, generally conform much54

more closely to simple parametric distributions. For this reason, components of fitness

are sometimes analyzed separately to obviate the problem of the distribution of lifetime56

fitness. For example, in a study of genetic variation in response to conspecific density of

a population of Salvia lyrata, Shaw (1986) provided separate analyses of two components58

of fitness, survival over two time intervals and size of the survivors, as a proxy for future

reproductive capacity in this perennial plant. Implicitly, this approach considers size,60

or in other cases fecundity, conditional on survival. Though the statistical assumptions

underlying the analyses tend to be satisfied, it offers no way to combine the analyses to62

yield inferences about overall fitness.

A common method for analyzing fitness as survival and reproduction jointly is to use64

fecundity as the index of fitness, assigning values of zero for fecundity of individuals that

died prior to reproduction. When observations are available for replicate individuals, a66

variant of this method is to use as the measure of fitness the product of the proportion

surviving and the mean fecundity of survivors (e.g. Belaoussoff and Shore 1995; Galloway68

and Etterson 2007). In both cases, the resulting distribution is actually a mixture of

underlying discrete and (quasi)continuous distributions, yet analyses have generally treated70

it as a single, continuous response, despite its skewness and multimodality, such that no

transformation yields a distribution suitable for parametric statistical analysis. Authors72

frequently remark on the awkwardness of these distributions in their studies (e.g. Etterson

2004), but rarely publish fitness distributions. Antonovics and Ellstrand (1984), however,74
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presented the extremely skewed distribution of lifetime reproductive output (their Fig. 2)

from their experimental studies of frequency-dependent selection in the perennial grass,76

Anthoxanthum odoratum. Finding no transformation that yielded a normal distribution

suitable for analysis of variance, they assessed the robustness of their inferences by applying78

three distinct analyses (categorical analysis of discrete fecundity classes, ANOVA of means,

and nonparametric analysis). In this study, results of the three analyses were largely80

consistent, but, in general, results are likely to differ.

Others have noted the importance of complete accounting of life-history in inferring82

fitness or population growth rate, as well as evaluation of its sampling variation, and have

presented methods to accomplish this. Caswell (2001) and Morris and Doak (2002) explain84

how to obtain population projection matrices from life-history records and, from them, to

estimate population growth rate. They also describe methods for evaluating its sampling86

variation and acknowledge statistically problematic aspects of these methods. Specifically,

Caswell (2001) notes (p.304) that the delta method and other series approximations assume88

both that variances of the elements of a population projection matrix are small and that

the population growth rate is normally distributed. It is often further assumed that all90

the parameters are independent (Caswell (2001), p.302). These assumptions are likely

to be violated in many cases. To avoid these assumptions, Caswell (2001) recommended92

resampling approaches, first applied in this context by Lenski and Service (1982), who

emphasized that the complete life-history record of each individual is the unit of observation.94

Recent efforts to evaluate the nature of selection have likewise taken a comprehensive

demographic approach. McGraw and Caswell (1996) considered individual life-histories but96

chose the maximum eigenvalue of an individual’s Leslie matrix (λ) as its fitness measure.

They regressed λ on the fitness components, age at reproduction and lifetime reproductive98

output to estimate selection on them, but noted violation of the assumption of normality
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of residuals required for statistical testing. Van Tienderen (2000) advocated an alternative100

approach involving evaluation of the relationships between each component of fitness and

the phenotypic traits of interest via separate multiple regression analyses to obtain the102

selection gradients in different episodes of selection (Lande and Arnold 1983). These

selection gradients are then weighted by the elasticities (Caswell 2001) of each component of104

fitness obtained from analysis of the appropriate population projection matrix. Using this

method, Coulson et al. (2003) also noted violation of the usual distributional assumption.106

Moreover, because the method combines results from multiple analyses, it does not fully

account for sampling variation. Beyond these approaches, methods targeting the problem108

of “zero-inflated” data (i.e. many observations of zero distorting a distribution) have also

been proposed (Cheng et al. 2000; Dagne 2004; Martin, et al. 2005). However, like the110

other methods, this method does not generalize readily for inference in the wide range of

contexts that life-history data can, in principle, address.112

2. Inference of individual fitness with aster

We present aster models (Geyer et al. 2007) for analysis of life-history records as114

a general, statistically sound approach to address diverse questions in evolution and

ecology. As noted above, two standard properties of life-history data are central to116

the statistical challenges that aster addresses. First, the expression of an individual’s

life-history at one stage depends on its status at earlier stages. For example, observation of118

an individual’s fecundity at one stage is contingent on its survival to that stage. Second,

no single parametric distribution is generally suitable for modeling all components of120

fitness, e.g. survival and fecundity. The aster approach jointly models the components of

fitness using distributions suitable for each and explicitly taking into account the inherent122

dependence of each stage on previous stages. We represent the life-history and, in particular,
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the dependence of one life-history component on another, with graphical models as in Fig. 1124

with arrows pointing from a predecessor variable to its successor.

EDITOR: PLACE FIGURE 1 HERE.126

The theory underlying the aster approach requires modeling the conditional distribution

of each variable given its predecessor variable as an exponential family of distributions128

(Lehmann and Casella 1998; Barndorff-Nielsen 1978; Geyer et al. 2007) with the predecessor

variable providing the sample size for its successors. This requirement retains considerable130

flexibility, because many well-known distributions are exponential families, including

Bernoulli, Poisson, geometric, normal, and negative binomial (Mood, et al. 1974, p. 312132

ff.). When questions arise about the applicability of aster models, some diagnostic tools are

available, as demonstrated in our Example 3.134

A predecessor variable n must be nonnegative integer valued. If n > 0, then the

successor is the sum of n independent and identically distributed variables having the136

named distribution. If n = 0, then the successor is zero. This accommodates much of the

dependence in life history data. In a graph like Fig. 1A, where each of the variables Sx138

models survival (zero-or-one with one indicating alive), a dead individual stays dead and

does not reproduce.140

Aster is a general approach, suited to analyzing complicated life-histories (e.g. Fig. 1).

Approaches commonly used for particular data structures are special cases of aster. The142

simplest possible aster models have graphs with only one arrow per individual 1 → X. If

X is normal, this is a linear model (LM) as in multiple regression or analysis of variance.144

If X is Bernoulli or Poisson, this is a generalized linear model (GLM) as in logistic or

Poisson regression (McCullagh and Nelder 1989). The next simplest models have graphs146

1 → X → Y with X Bernoulli and Y zero-truncated Poisson (like Fig. 1D); here the
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marginal distribution of Y is zero-inflated Poisson (Martin, et al. 2005). An aster model148

with graph 1 → X1 → X2 → · · · → Xn with all Xi Bernoulli corresponds to survival

analysis. We note that, in all these cases, multiple parameterizations arise. The parameters150

that are directly interpretable, the mean-value parameters, are different from those that

are modeled linearly, the canonical parameters. In Bernoulli (logistic) regression, the152

mean value parameter is the proportion p = E(X), whereas the canonical parameter is

θ = logit(p) = log(p) − log(1 − p). In Poisson regression, the mean value parameter is154

µ = E(X) whereas the canonical parameter is θ = log(µ).

In all aster models, a transition between life-history stages, i. e. each arrow in

the graph, corresponds to the conditional distribution of one fitness component, which

contributes one term to the log likelihood

l(θ) =
∑

j

[
xjθj − xp(j)cj(θj)

]
, (1)

where xj is the canonical statistic and θj the canonical parameter for the j-th conditional

distribution and xp(j) is the predecessor of xj. Each term of (1) has exponential family

form, but the sum does not. It can, however, be put in exponential family form

l(ϕ) =
[∑

j xjϕj

]
− c(ϕ) (2)

by a change of parameter. Either (1) or (2) is a log likelihood for the full model with one156

parameter per variable, and the canonical statistic vector x is the same for both, but the

linearly modeled canonical parameters, θ and ϕ, differ. To distinguish the two canonical158

parameter vectors, we call θ conditional and ϕ unconditional.

Unconditional aster models are submodels of the full model determined by the change

of parameter ϕ = Mβ. The submodel is also an exponential family with log likelihood

l(β) =
[∑

k ykβk

]
− d(β) (3)
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where y = MT x. The matrix M is called the model or design matrix. For this submodel

y is the canonical statistic and β is the canonical parameter whose maximum likelihood

estimate (MLE) solves the equations

yk = Eβ(Yk). (4)

Both y and the MLE of β are minimal sufficient (contain all of the information in the data160

about the parameter). The expectation of the canonical statistic Eβ(Y ) is the mean value

parameter. The relationship between canonical and mean value parameter is monotone162

∂Eβ(Yk)/∂βk > 0; increasing one β while holding the rest fixed increases the corresponding

mean value parameter. Moreover, hypothesis tests and confidence intervals concerning the164

corresponding canonical parameters directly evaluate the statistical significance of these

canonical statistics. Unconditional aster models share all of these properties with GLM.166

In contrast, none of these properties are shared with conditional aster models, i. e.

when the conditional canonical parameter is modeled linearly θ = Tγ, where T is a model

matrix. The resulting submodel is not itself an exponential family. The MLE is the γ that

solves the equations

yk =
∑

j Eγ(Xj | xp(j))tjk, (5)

where tjk are the components of T , but it has no simple properties. The MLE is not a

sufficient statistic and has no monotone relationship with expectations.168

Either kind of aster model (conditional or unconditional) is a model for the joint

distribution of all the data. Whereas either may be useful for some particular data, only170

unconditional models have simple interpretations in terms of unconditional mean values

(of the canonical statistics), like those familiar from LM and GLM. We recommend them172

because, when lifetime fitness is a canonical statistic, these tests and confidence intervals

directly address fitness. The unconditional parameterization is not readily understood174

intuitively because terms in β that nominally refer to a single component of fitness (affect
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its ϕi only) directly influence the unconditional expectation of overall fitness by affecting176

not only the distribution of the specified component, but also the distributions of its

predecessor, predecessor of predecessor, etc. Consequently, it is difficult (but not impossible,178

see our Example 2), to see the role played by a single component of fitness. This is an

unavoidable consequence of being able to address overall fitness.180

We demonstrate the value and versatility of the aster approach with three examples. In

the first, we illustrate inference of population growth rate. We consider a small dataset that182

Lenski and Service (1982) used to demonstrate their nonparametric method for inferring

population growth rate from a set of individual life-histories of the aphid, Uroleucon184

rudbeckiae. In this case, we illustrate the use of a conditional model, though either form of

model could be used. In our second example, we apply aster to compare mean fitness among186

groups. Specifically, we quantify effects of inbreeding on fitness of Echinacea angustifolia, a

long-lived plant, showing confidence intervals for mean fitness (Fig. 2). In the last example,188

we reanalyze data of Etterson (2004) to evaluate phenotypic selection on the annual legume,

Chamaecrista fasciculata, to estimate the fitness surface in relation to phenotypic traits. In190

this case, we show how much simpler aster analysis is when fitness is a canonical statistic

of an unconditional model and also how to proceed when, due to the experimental design,192

it is not. A contributed package “aster” for the R statistical language (R Development

Core Team 2006) does all calculations related to aster models, contains the datasets for our194

examples, and is freely available (http://www.r-project.org). Two technical reports (Shaw,

et al. 2007a,b) give more extensive analyses, which are reproducible (see Chapter 1 of Shaw,196

et al. 2007a).



– 12 –

3. Example 1: Estimation of population growth rate, λ198

Lenski and Service (1982) recognized the need for a valid statistical approach to

inferring rates of population growth (λ) from life-history records via the stable age equation200

(Fisher 1930). They emphasized the importance of accounting for individual variation in

survivorship and fecundity and of treating the full life-history record of an individual as the202

unit of observation. Lenski and Service (1982) presented a nonparametric approach that

resamples complete records of individual life histories via the jackknife procedure. Using the204

properties of the jackknife, they showed how to obtain estimates and sampling variances of

λ. They illustrated the approach with a small dataset sampled from the aphid, Uroleucon206

rudbeckiae. The survival and fecundity in each of fourteen age intervals were recorded for

18 individuals in a cohort (see Fig. 1A), and these data served as the basis for estimating λ208

and its sampling variance.

Applying aster to these data, we modeled the binomial parameter governing survival210

probability, logit(σx), as a quadratic function of age, x. Survivorship declined significantly

with age (P = 0.001), significantly (P = 0.028) nonlinearly. Expected fecundities, βx,212

modeled according to a Poisson distribution, were estimated for each age class, x, given

survival to that age.214

Interest focuses primarily on estimating λ, but also on its sampling variance, as noted

by Alvarez-Buylla and Slatkin (1994), because of its importance in assessing whether216

a population is growing or declining. The stable age equation implicitly defines λ as a

nonlinear function of the unconditional expectations µx = σxβx, which are estimated by218

aster; from these, λ is determined by solving the stable age equation, and standard errors

are obtained using the delta method (Shaw, et al. 2007a, give details). From these data, we220

estimated λ = 1.677 with a standard error of 0.056. Our estimate agrees closely with that

of Lenski and Service (1982) (1.688), and 95% confidence intervals are also similar (aster:222



– 13 –

1.57, 1.79; jackknife: 1.52, 1.85). We emphasize, however, that the aster approach can be

used in more complicated situations where resampling methods would not be valid.224

4. Example 2: Comparison of fitness among groups

In this example, we illustrate use of aster models to compare mean fitnesses of groups.226

Specifically, we investigate how relatedness of parents affects progeny fitness in a perennial

plant, Echinacea angustifolia (narrow-leaved purple coneflower), a widespread species in228

the N. American prairie and Great Plains. Following the conversion of land to agriculture

and urbanization that began about a century ago, the formerly extensive populations230

now persist in typically small patches of remnant prairie. The plant is self-incompatible,

and Wagenius (2000) detected no deviation from random mating in a large population in232

western Minnesota. In the context of fragmented habitat, matings between close relatives

in the same remnant, and perhaps also long distance matings, may have become more234

common.

To evaluate the effects of different mating regimes on the fitness of the progeny, formal236

crosses were conducted between pairs of plants a) from different remnants, b) chosen at

random from the same remnant, and c) known to share maternal parent. The parental238

plants had been growing for 3–4 years in randomized arrays in a common experimental

field. From the resulting seeds, 557 seedlings were germinated. After three months in240

a growth chamber, the surviving 508 individuals were transplanted back into the same

experimental field. Survival of each seedling was assessed in the growth chamber on three242

dates and, after transplanting into the field, annually, 2001–2005. The number of rosettes

(basal leaf clusters, 1–7) per plant was also counted annually 2003–2005. Here, individual244

size is considered a component of fitness during the juvenile period; the typically strong

positive relationship between size and eventual fecundity justifies this here, as elsewhere.246
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Mortality of many plants (∼ 30%) resulted in a distribution of rosette count in 2005

having many zeros. We modeled survival through each of eight observation intervals as248

Bernoulli, conditional on surviving through the preceding stage; we modeled rosette count

in each of three field seasons, given survival to that season, as zero-truncated Poisson250

(Fig. 1B). To account for spatial and temporal heterogeneity, we also included in the models

as fixed effects a) year of crossing (1999 or 2000), b) planting tray during the period in the252

growth chamber, c) spatial location (row and position within row) in the field.

Our primary focus is on evaluating the effects of mating treatments on overall progeny254

fitness, taken as expected rosette count in 2005 for a seed obtained in 2001. In addition, we

investigated the timing and duration of the effects of mating treatment on fitness. These256

effects could be slight during the early stages but, cumulatively, could strongly influence

overall fitness. Alternatively, it may be that the effects of mating treatment at the early258

stages largely account for their overall effects on fitness. These scenarios differ in their

implications concerning the inbreeding load expected in standing populations (Husband260

and Schemske 1996). To evaluate these scenarios, we developed four aster models, named

“chamber,” “field,” “sub,” and “super.” Each was a joint aster analysis of all 11 fitness262

components (survival over eight intervals, rosette count at three times). The “field”

model, corresponding to the first scenario, includes explicit mating treatment effects only264

on the final rosette count (variable r05 in Fig. 1B), but because of the unconditional

parameterization of aster models, these effects propagate back to earlier stages as well.266

The “chamber” model, referring to the second scenario, includes explicit mating treatment

effects only on the final survival before transplanting (variable lds3 in Fig. 1B), but, again,268

these effects propagate back through the two preceding bouts of survival. The remaining

two models are required to test the above scenarios of timing of effects; the “sub” model is270

the greatest common submodel of “chamber” and “field,” and the “super” model is their

least common supermodel (i. e. “sub” includes no effects of mating treatment on any aspect272
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of fitness, whereas “super” includes separate effects of mating treatment on survival up to

transplanting and on final rosette count).274

The aster analysis revealed clear differences among the mating treatments in mean

fitness (model “field” compared to “sub”, (P = 1.1 × 10−5). The fitness disadvantage of276

progeny resulting from sib-mating relative to the other treatments is a 35%–42% reduction

in rosette count (Fig. 2 B).278

EDITOR: PLACE FIGURE 2 HERE.

Because of the propagation of effects back to earlier stages, the effects of mating treatment280

on r05 in the “field” model directly account for expression of fitness at all earlier stages.

Thus, this analysis suffices for inferring the overall effects of mating treatment on fitness.282

Our further investigation of the timing and duration of these effects detects differences

among mating treatments in survival up to transplanting (comparison of “sub” and284

“chamber” models P = 0.012). Beyond this, the comparison of the “chamber” and “field”

models with the “super” model shows that the “field” model accounts well for differences286

in expressed fitness; “super” fits no better than “field” (P = 0.34) but does fit better than

“chamber” (P = 3.1 × 10−4). The terms in the “super” model that quantify the effect of288

mating treatment on survival up to transplanting are not needed to fit the data, because the

back propagation of effects subsumes the effects of mating treatment in the growth chamber.290

This does not mean there are no effects of mating treatment on fitness before transplanting.

The comparison of “sub” and “chamber” confirms they exist, and Fig. 2 clearly shows292

them. The fitness disadvantage of progeny resulting from sib-mating relative to the other

treatments is clear in the 7%–10% reduced survival up to the time of transplanting but the294

overall fitness disadvantage of inbreds is considerably greater (Fig. 2A).
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5. Example 3: Phenotypic selection analysis296

Lande and Arnold (1983) proposed multiple linear and quadratic regression of fitness

on a set of quantitative traits as a method for quantifying natural selection directly on298

each trait. In practice, these analyses have generally employed measures of components of

fitness as the response variable, rather than overall fitness (e.g. Lande and Arnold 1983;300

Kingsolver et al. 2002). As a result, the estimated selection gradients (the partial regression

coefficients) reflect selection on a trait through a single episode of selection, rather than302

selection over multiple episodes or over a cohort’s lifespan, as needed for evolutionary

prediction. Focusing on this limitation, Arnold and Wade (1984a) considered partitioning304

the overall selection gradient into parts attributable to distinct episodes of selection, and

Arnold and Wade (1984b) illustrated the approach with examples. Wade and Kalisz (1989)306

modified this approach to allow for change in phenotypic variance among selection episodes.

Whereas these developments were intended to accommodate the multiple stages of selection,308

they do not directly account for the dependence of later components of fitness on ones

expressed earlier, because they entail multiple separate analyses.310

Further, Mitchell-Olds and Shaw (1987), among others, have noted that statistical

testing of the selection gradients is often compromised by the failure of the analysis to satisfy312

the assumption of normality of the fitness measure, given the predictors. This concern

applies to McGraw and Caswell’s (1996) approach, which integrates observations from the314

full life-history. To address this problem for the case of dichotomous fitness outcomes,

such as survival, Janzen and Stern (1998) recommended the use of logistic regression for316

testing selection on traits and showed how the resulting estimates could be transformed to

obtain selection gradients. To allow for shapes of the fitness function more general than318

quadratic, Schluter (1988) and Schluter and Nychka (1994) suggested estimation of the

relationship between fitness and traits as a cubic spline, but this also requires a parametric320
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error distribution, whether normal, binomial, or Poisson.

Unconditional aster analysis estimates the relationship between overall fitness and322

traits directly in a single, unified analysis. We illustrate this use of aster with a reanalysis

of Etterson’s (2004) study of phenotypic selection on three traits in three populations of324

the annual legume, Chamaecrista fasciculata, reciprocally transplanted into three sites.

The three traits, measured when the plants were 8–9 weeks old, are leaf number (LN, log326

transformed), leaf thickness (measured as specific leaf area, SLA, the ratio of a leaf’s area

to its dry weight, log transformed) and reproductive stage (RS, scored in 6 categories,328

increasing values denote greater reproductive advancement). Here, for simplicity, we

consider a subset of the data for the three populations grown in the Minnesota site,330

comprising records on 2235 individuals.

In this experiment, individuals were planted as seedlings, and fitness was assessed as332

1) survival to flowering, 2) flowering, given that the plant survived, 3) the number of fruits

a plant produced, and 4) the number of seeds per fruit in a sample of three fruits, the last334

two contingent on the plant having flowered. For simplicity, we collapsed survival, flowering

and fruiting to a single component of fitness, modeled as Bernoulli (reprod). Plants that336

produced fruit were assigned 1 for reprod, and those that didn’t, regardless of the reason,

0. Consequently, overall fitness was modeled jointly as reproduction, number of fruits,338

and number of seeds in 3 fruits, (termed reprod, fruit, and seed, Fig. 1C). Preliminary

analyses assessed the fit of truncated Poisson and truncated negative binomial distributions340

to the data for both fecundity components; on this basis the latter distribution was used

for fruit and seed. In addition to the traits of interest, the model included as fixed effects342

the spatial blocks in which individuals were planted.

To illustrate phenotypic selection analysis most straightforwardly, we begin by344

analyzing two of the fitness components, reprod and fruit with graph Fig. 1D, in relation



– 18 –

to the traits LN, SLA, and RS. We use an unconditional aster model, in which overall346

fitness is the number of fruits an individual seedling produced. This model detected

strong dependence of fitness on all three traits such that selection is toward more leaves348

(P < 10−6), thinner leaves (P = 0.006) and earlier (P < 10−6) reproductive stage.

We detected highly significant negative curvature for LN and SLA suggestive of350

stabilizing selection, (P < 10−6); because RS is categorical, we did not consider models

quadratic in it. The plot of the fitness function together with the observed phenotypes352

(Fig. 3, solid contours) reveals that the fitness optimum lies very near the edge of the

distribution of leaf number.354

EDITOR: PLACE FIGURE 3 HERE.

Thus, for this trait, despite significant negative curvature, selection against both extremes356

of the standing variation in the trait (i.e. stabilizing selection) is not observed. The aster

analysis fits the data well, as reflected by the scatter plots of Pearson residuals which show358

very little trend and only a few extreme outliers for fruit number (Fig. 4A).

EDITOR: PLACE FIGURE 4 HERE.360

The assumptions for the aster model appear satisfied, and the estimated fitness surface is

both biologically plausible and fits the data well. These points reinforce our confidence in362

the aster model P -values and estimated fitness surface.

We compare the result from aster modeling with that obtained by the approach of364

(Lande and Arnold 1983), which has become standard, ordinary least squares regression

(OLS) of fruit count on traits. The bivariate fitness function inferred via OLS has positive366

curvature for LN, suggesting disruptive selection. This contrasts with the negative curvature

obtained by aster. Fig. 3 reveals why OLS is misled. The fitness surface fitted by aster368
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(solid contours) has a peak on the right side (large LN) and is fairly flat on the left

(small LN). The quadratic approximation (dotted contours) cannot have flat regions; its370

best approximation is a saddle. Further, a quadratic function cannot have both a saddle

and a peak; thus OLS misses the peak. Another problematic feature of the quadratic372

approximation is that it goes negative. Thus, the main problem with OLS is the bias due to

using a quadratic approximation to a highly non-quadratic surface. The aster model is also374

quadratic, but it is quadratic on the canonical parameter scale. The corresponding fitness

estimates, which are mean value parameters, are necessarily positive.376

The nominal P -values produced by OLS regression indicate that the positive curvature

of the quadratic approximation in the LN direction is statistically significant (P < 10−6),378

but the homoscedasticity and normality assumptions required for OLS regression to give

meaningful P -values are seriously violated (Fig. 4B). Such violations of assumptions for an380

OLS regression analysis are expected, given that 3% of plants have fitness of zero and that

the distributions of numbers of fruits per plant is heavily skewed. These violations make382

the nominal P -value from the OLS invalid.

We extend the above phenotypic selection analysis to include the additional fitness384

component, seed, using the graph Fig. 1C. In this case, fitness is no longer a canonical

statistic, i.e. there is no linear combination of the variables corresponding to fitness.386

The two fecundity components, fruit and seed, are modeled as separately dependent

on reprod. This analysis detected dependence of fruit on LN (P < 10−6) and on SLA388

(P = 0.046) and of seed on both LN (P < 10−6) and RS (P < 10−6). It also found

significant curvature in the relationship between fruit and both LN (P < 10−6) and SLA390

(P = 0.035) and between seed and LN (P = 0.0008). Here again, we did not attempt to fit

quadratic dependence on RS. Use of an unconditional aster model in these analyses yields392

an estimate of the relationship between each fitness component and each trait that takes
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into account pre-reproductive mortality.394

The above analysis does not, however, satisfy the goal of evaluating the relationship

between overall fitness and the traits; because fitness is not a canonical statistic, its396

expectation is not produced directly by aster methods. However, it can be approximated

by averaging simulations. In detail, we use the estimated parameter values to simulate398

fitness records for individuals representing each trait combination, and from these, we

calculate fruit * seed / 3. The average over the simulated fitness values for each trait400

combination approximates its expected fitness. The resulting fitness surface (Fig. 5, solid

contours) resembles that estimated using only fruit as the fecundity measure, though it402

provides more compelling evidence of true stabilizing selection on LN. The best quadratic

approximation fitted by OLS has a saddle also in this case.404

EDITOR: PLACE FIGURE 5 HERE.

There are two alternative data structures in which a simple aster analysis, needing406

no simulation, would directly analyze fitness. The graph 1 → reprod → fruit → seed

would be appropriate if all seeds (from all fruits) had been counted for each individual.408

Then, in an unconditional aster model, fitness would be seed, a canonical statistic, and

the analysis would automatically take the contribution of reprod and fruit to fitness into410

account. However, it is often impractical, as in this case, to count all seeds. Subsampling

is a common practice in studies of animals (e.g. Howard 1979), as well as plants. An412

alternative to exhaustive enumeration that facilitates aster analysis is to obtain for each

individual the seed count for a random number of fruits, corresponding to the graph414

1 → reprod → fruit → samp → seed, where samp is the number of fruits sampled for

the individual, a binomial(fruit, p) random variable, where p is fixed and known (the416

fraction of fruit sampled). In this sampling scheme, fitness would be proportional to seed,

a canonical statistic, and aster analysis would be simplified.418
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For our actual data, it might seem natural to use the product of fruit count

and number of seeds per fruit as one variable in an aster analysis, so the graph is420

1 → reprod→ fruit * seed / 3 but this would not be valid, because this product is not

distributed according to an exponential family. Alternatively, it might seem natural to use422

the preceding graph with samp replaced by the constant 3, but this is also invalid because

the constant 3 is not distributed according to an exponential family. Thus, the structure424

of this aster model precluded inference of overall selection via a simple aster analysis.

Nevertheless, simulation yielded the expected fitness surface.426

In this section, we have illustrated how aster can conduct phenotypic selection analysis

on complete life-history records to yield more biologically interpretable estimates of the428

fitness surface. Moreover, even for analysis of an annual life-history, commonly considered

relatively straightforward, aster greatly improves over OLS in its adherence to statistical430

assumptions and, accordingly, in the validity of the inferences. We have also shown that,

even when the available data preclude modeling total reproductive output as sequentially432

dependent on all earlier expressed fitness components, aster estimates the parameters of

a fitness model that can be used (with simulation, if necessary) to produce a statistically434

sound phenotypic selection analysis.

6. Discussion436

Both the numerical and genetic dynamics of a population depend fundamentally

on individuals’ contributions of offspring, their fitness. Extensive theoretical work (e.g.438

Fisher 1930; Charlesworth 1980) has formalized and extended this insight of Darwin, yet

statistical challenges have continued to compromise the empirical evaluation of fitness.440

The aster approach addresses these challenges and takes full advantage of available

data to yield comprehensive assessments of fitness that are as precise as possible. The442
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precision of aster modeling not only offers statistical power for tests of hypotheses; it also

promotes quantitative comparison of fitnesses. Most important, as a general framework for444

analyzing life-history data, aster can address questions that arise in diverse evolutionary

and ecological contexts. The examples presented here illustrate the breadth of aster’s446

applicability, including estimation of population growth rate, comparison of mean fitness

among groups, and inference of phenotypic selection. Even beyond analysis of life-history448

data, aster modeling is appropriate for any set of responses in which there are dependencies

analogous to those characteristic of life-histories. In an experimental study of foraging450

behavior, for example, individual subjects may forage in a given interval or not and, given

that they forage, may take varying numbers of prey. In a medical context, aster can expand452

on survival analysis by incorporating measures of patients’ well-being in evaluating the

relative benefits of different procedures. We emphasize that aster obviates the common454

practice of multi-step analysis, which cannot provide valid statistical tests or sound

estimates of sampling error. A single aster model can encompass the real complexities not456

only of life-histories, but also of discrete and continuous predictors, and thus provide a full

analysis to yield direct inferences about fitness and population growth.458

Lifetime fitness rarely, if ever, conforms to any distribution amenable to parametric

statistical analysis less complex than aster analysis. This pathology of fitness distributions460

has plagued empirical studies of fitness. Resampling approaches are sometimes used, but

this is not a general solution, because valid resampling schemes are not generally available462

for complex data structures. Moreover, resampling methods sacrifice statistical precision

relative to parametric analysis. As an alternative, transformations are often attempted, but464

the prevalence of mortality before reproduction typically results in fitness distributions with

many individuals at zero, such that no transformation produces a well known distribution.466

Moreover, even if such a transformation could be found, analyses of fitness on an alternative

scale can mislead (Stanton and Thiede 2005). Aster addresses these problems by directly468
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modeling each distinct component of fitness with a suitable parametric distribution and

accounting for the dependence of each fitness component on those expressed earlier. As470

a consequence, it models the sampling variation appropriately and yields results on the

biologically natural scale of expected number of individuals produced per individual. Even472

when life-history records are available for only a portion of the life-span of a cohort, as in

our Example 2, joint analysis via an unconditional aster model provides comparisons based474

on the most comprehensive fitness records at hand.

Studies of variation in fitness often focus on a single component of fitness (e.g. Arnold476

and Lande 1983). These are less subject to distributional problems and can yield insight

into the nature of fitness variation during a particular episode of selection. However, the478

resulting understanding of fitness and its variation is fragmentary and can be misleading

when the relationship between components of fitness, on the one hand, and traits or480

genotypes, on the other, varies over the lifespan (Prout 1971). Whereas Arnold and Wade

(1984a) proposed an approach to evaluate phenotypic selection over multiple episodes482

(modified by Wade and Kalisz 1989), this approach uses separate analyses of each episode,

ignoring the dependence structure of fitness components. Consequently, the sampling484

variance of the resulting estimates of selection cannot readily be determined.

Our first example illustrates use of aster to infer population growth rate. Lenski and486

Service (1982) first noted the importance of sound statistical modeling for population

growth. Our use of aster in this context builds on their work by employing parametric488

models for each life-history event. The resulting estimate of growth rate is similar to that

obtained by Lenski and Service’s (1982) method using the jackknife, as are the confidence490

intervals from the two approaches. The key point is that aster analysis provides a sound

parametric basis for inferences about population growth even for data structures that are492

not suited to resampling. Though we have emphasized the utility of unconditional aster
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models for inferences about lifetime fitness, conditional aster models also offer the capability494

of obtaining estimates of expected values of a life-history component, conditional on earlier

life-history status (e.g. fecundity at a given age, given survival to that age), as we have496

done in this example.

In the example of Lenski and Service (1982), complete records are available for each498

individual in a single cohort, so the life table can be based on age. Life histories are

often tabulated in relation to size or stage categories instead of age, because size or stage500

often predicts survival and fecundity better than age does (Caswell 2001, chap. 2); this

is especially useful when ages of individuals are unknown, for example, in censuses of502

populations in nature, as in the examples of Alvarez-Buylla and Slatkin (1994). Though

our examples include only cases based on age, aster analysis is also suitable for analyzing504

life-history data according to stage or size.

Our second example demonstrates the use of unconditional aster models to estimate506

and compare mean fitness for groups produced by different mating schemes and, thus,

differing in genetic composition. This analysis reveals that the remnant populations of508

E. angustifolia are subject to severe inbreeding depression of at least 70% overall, when

extrapolated linearly to inbreeding arising from one generation of selfing. In a similar510

application of aster, Geyer et al. (2007) have analyzed survival and annual production of

flower heads jointly for samples of these remnant populations grown in the common field.512

This analysis revealed greater than twofold differences in mean fitness among remnants

(P < 0.01). In the case we provide here, we further demonstrate how the likelihood514

framework of aster permits straightforward tests of several hypotheses. We show that the

significant early disadvantage in size and survival of inbred plants does not adequately516

account for the fitness differences at the end of the period of observation. Rather, inbreeding

depression in growth and survival exacerbates the fitness disparity beyond the first three518
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months. Thus, in addition to providing statistically rigorous comparisons of overall fitness

among groups, aster yields insights into the timing of fitness effects.520

Aster readily extends further to accomplish phenotypic selection analysis, by

establishing the relationship between individuals’ overall demographic-genetic contribution522

to the next generation and the traits they express. For this, the aster model includes the

traits under consideration as predictors of cumulative fitness; inference of quadratic and524

correlational selection is also straightforward. Our Example 3 shows aster’s estimation of

the fitness surface when fitness is a linear function of the components of fitness and also526

demonstrates how to obtain such an estimate even when it is not. Van Tienderen (2000)

presented a method with a similar goal, but it does not take into account the dependence528

relationships of the fitness components and is subject to the usual distributional problems

(e.g. Coulson et al. 2003). Further, it cannot validly represent the statistical uncertainty of530

inferred parameters because it involves separate analyses to estimate selection gradients for

each fitness component. In our examples 2 and 3 and the example in Geyer et al. (2007),532

use of an unconditional model was essential to obtain results that are interpretable as

comparisons of overall fitness. In our examples P -values and confidence intervals reported534

are asymptotic, but we do not need to rely on asymptotic normality of MLE because

the parametric bootstrap is easily done with the aster software and does not require this536

assumption.

The centrality of fitness to many evolutionary and ecological questions demands538

a statistical approach that rigorously models the inevitable, complex dependencies of

life-history data. Our examples provide only a glimpse of the range of possible uses of aster540

models. Conceivably, all the issues in all our examples and more besides, could arise in a

single analysis, as could more extensive dependence. The aster approach addresses these542

challenges. Its versatility suits it to answer the full breadth of questions that life-history
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data can address. Aster can play a key role in linking ecological and evolutionary study of544

populations.
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Fig. 1.— Graphical models for our three empirical examples. Each node of a graph is

associated with a variable, root nodes with the constant variable 1, indicating presence of

an individual at the outset. Arrows lead from one life history component to another that

immediately depends on it (from predecessor node to successor node of the graph). If a

predecessor variable is nonzero, then a particular conditional distribution of the successor

variable is assumed. If a predecessor variable is zero for a given individual, for example due

to mortality, then its successor variables are also zero. A: Example 1: Uroleucon rudbeckiae,

an aphid. An individual’s fitness is determined by its survival to each age, Si, modeled as

(conditionally) Bernoulli and the number of young it produces at each age, Bi modeled as

(conditionally) zero-truncated Poisson B: Example 2: Echinacea angustifolia, a perennial

plant. Fitness comprises juvenile survival at three times up to transplanting into the field

(ldsi) and subsequent survival through five years (ld0i), as well as the plant’s number of

rosettes (r0i) in three years. The survival variables are modeled as (conditionally) Bernoulli

(zero indicates mortality, one indicates survival), and r0i is (conditionally) zero-truncated

Poisson (i.e. a Poisson random variable conditioned on being greater than 0). C and D:

Example 3: Chamaecrista fasciculata, an annual plant. Success or failure of reproduction

(here, including survival to reproduction) is given by reprod, modeled as Bernoulli (zero

indicates no seeds, one indicates survival to reproduction). Given that a plant reproduces,

the components of its fecundity are its number of fruits (fruit) and, in C its and number

of seeds per fruit in a sample of three fruits (seed). Each are modeled as negative binomial,

respectively, two-truncated and zero-truncated.
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Fig. 2.— Predicted values and 95% confidence intervals for the unconditional mean value

parameter for (A) survival up to transplanting and (B) rosette count in the last year recorded

(i.e. overall fitness over the study period) for a “typical” individual for each cross type.

The experimentally imposed crossing treatments are Br, between remnant populations; Wr,

within remnant populations; and Wi, inbred within remnants (i.e. between sibs). Lines

indicate model: dotted, “sub” model; dashed, “chamber” model; solid, “field” model; dot-

dash, “super” model.
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Fig. 3.— Scatterplot of SLA (specific leaf area, ln transformed) versus LN (leaf number, ln

transformed) with contours of the fitness function (expected fruit count) estimated by aster

(solid) and its quadratic approximation via Ordinary Least Squares (dotted). Cf. Fig. 5.
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Fig. 4.— Residual plots from phenotypic selection analyses for Chamaecrista fasciculata.

A. Pearson residuals for fruit count conditional on reproduction plotted against values fit-

ted from the aster model quadratic in leaf number (LN) and specific leaf area (SLA) and

also containing reproductive stage (RS) and spatial block. B. Similar except standardized

residuals fitted by ordinary least squares (same response and predictors as in A).
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Fig. 5.— Scatterplot of SLA (specific leaf area, ln transformed) versus LN (leaf number, ln

transformed) with contours of the fitness function (expectation of fruit times seed divided

by three) estimated by aster (solid) and the quadratic approximation via Ordinary Least

Squares (dotted). Cf. Fig. 3.


