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The first advice the author [Michel Talagrand] received from
his advisor Gustave Choquet was as follows: Always consider a
problem under the minimum structure in which it makes sense.
This advice will probably be as fruitful in the future as it has
been in the past, and it has strongly influenced this work. By
following it, one is naturally led to the study of problems with a
kind of minimal and intrinsic structure. Besides the fact that it is
much easier to find the crux of the matter in a simple structure
than in a complicated one, there are not so many really basic
structures, so one can hope that they will remain of interest for
a very long time.

Talagrand (2005, p. 5)

1 Introduction

My PhD thesis (Geyer, 1990) partially develops the theory of exponen-
tial families on abstract finite-dimensional affine spaces. Chapter 1 of the
thesis discusses three “pictures” of exponential families. One can take the
space where the canonical statistic takes values to be Rd for some d, an
abstract finite-dimensional vector space, or an abstract finite-dimensional
affine space.

The Rd picture has nothing to recommend it except that almost all of the
literature uses it and people are familiar with it. There is a lot of structure
that Rd has over and above its vector space structure. It has a preferred
coordinate system, a preferred inner product, and a preferred metric, among
other things. An abstract vector space has none of these things. One can
introduce coordinates or an inner product or a norm or a metric, but there
is no unique way to do so. An abstract affine space has even less structure.
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It has no preferred point (no origin), so every point is just like every other
point.

So what is the harm in using all of this familiar structure? There are two
kinds of harm. Extra irrelevant structure invites obscuring the essence of
a subject by relying on the irrelevant extra structure in proofs and even in
definitions. But even worse, it invites producing results and procedures that
do not generalize to the abstract situation and hence are of questionable
interest. We need the abstract picture to tell us what is interesting and
essential.

In the process we will see that we have to relearn a lot of math, transfer-
ring what we know about linear algebra, differentiation, integration, convex
functions, and random vectors to abstract vector and affine spaces. And all
of that is very useful in all of statistics, not just for exponential families.

2 Abstract Vector Spaces

2.1 Introduction

An abstract vector space is what is defined at the beginning of any linear
algebra book. We will use Halmos (1974) for our linear algebra references,
but any good abstract linear algebra book will do as well. Section 2 of
Halmos (1974) has the vector space axioms. A vector space over a field
consists of a set of objects called vectors that participate in two operations,
vector addition and scalar multiplication (scalars being another name for
elements of the field) that satisfy a list of axioms.

In exponential family theory we are only interested in finite-dimensional
real vector spaces, meaning the field is R, the real numbers, and there is a
finite basis (Halmos, 1974, Section 8).

2.2 Isomorphism

A vector space isomorphism is an invertible linear transformation. The
inverse function is automatically linear (Halmos, 1974, Section 36). Every
finite-dimensional abstract vector space V is isomorphic to Rd for some d
(Halmos, 1974, Theorem in Section 9), meaning there is an invertible linear
transformation V → Rd. But there are many such isomorphisms and no
favored isomorphism.

Every such isomorphism can be thought of as providing a coordinate
system for V . But there is no preferred coordinate system.
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2.3 Vectors, Matrices, and Functions

The unsophisticated view of linear algebra is that vectors are a special
case of matrices which come in two kinds: row vectors and column vectors.
The sophisticated view is the reverse: matrices are a special case of vectors;
any things that can be added and multiplied by scalars are vectors.

Real-valued and vector-valued functions are also vectors. Vector addition
and scalar multiplication are defined in the obvious way

(f + g)(x) = f(x) + g(x) (1a)

(af)(x) = af(x) (1b)

where f and g are scalar-valued or vector-valued functions having the same
domain and codomain and a is a scalar. This is the reason that the study of
infinite-dimensional topological vector spaces (which will be defined in the
following section) is called “functional analysis.”

In particular, if U and V are vector spaces, then the space of all linear
functions U → V is another vector space (Halmos, 1974, Section 33).

The space of all functions U → V is also a vector space, but that is not
important in what follows.

2.4 Topology

A vector topology for an abstract real vector space V is a topology sat-
isfying the following axioms (Rudin, 1991, Section 1.6).

� Vector addition is a continuous operation V × V → V .

� Scalar multiplication is a continuous operation R× V → V .

� Points are closed sets.

An abstract vector space equipped with a vector topology is called a topo-
logical vector space. For an infinite-dimensional abstract vector space, there
may be many vector topologies. It is commonplace in the study of infinite-
dimensional topological vector spaces, which is called functional analysis,
to use more than one vector topology for the same space, sometimes in the
same argument.

A topological space isomorphism (also called homeomorphism) is an in-
vertible function such that both the function and its inverse are continuous:
they map open sets to open sets and convergent sequences to convergent
sequences. A topological vector space isomorphism is a function that is
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both a vector space isomorphism and a topological space isomorphism: an
invertible function such that both the function and its inverse are linear and
continuous.

A finite-dimensional real vector space V has exactly one vector topol-
ogy, and any linear isomorphism V → Rd is also a topological isomorphism
(Rudin, 1991, Theorem 1.21, this theorem is stated for complex rather than
real scalars, but the comment at the end of Rudin’s Section 1.19 says this is
also valid for real scalars, and indeed examination of the proofs of Rudin’s
Lemma 1.20 and Theorem 1.21 shows that they are valid when real scalars
are substituted for complex scalars and Rn for Cn).

The topology for Rd is the “usual” topology, which is the product topol-
ogy (open sets are unions of open boxes) inherited from the “usual” topology
for R, which is the order topology (open sets are unions of open intervals).

Every linear function from one abstract finite-dimensional vector space
to another is continuous (Rudin, 1991, Theorems 1.18 and 1.21). It fol-
lows that every invertible linear function between abstract finite-dimensional
topological vector spaces is a topological vector space isomorphism.

Every vector subspace of a finite-dimensional topological vector space is
a closed set (Rudin, 1991, Theorem 1.21).

2.5 Transfer

It follows from the previous section that any results that are purely
linear-algebraic or purely topological can be transferred from what we call
the “Rd picture” (finite-dimensional vectors are elements of Rd or perhaps
d×1 matrices) to what we call the “abstract vector space picture” (abstract
d-dimensional vector spaces are not Rd, they are isomorphic to Rd, but
isomorphism is not equality).

The question is: what is purely linear-algebraic or topological? If there
is more structure to a concept, then perhaps the additional structure is not
transferred by linear isomorphism, and we will want to investigate transfer.

The reason for the interest in transfer is that most of the literature and
most textbooks use the Rd picture so we need to transfer their results to the
abstract picture in order not to have to rewrite the whole literature.
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3 Abstract Affine Spaces

3.1 Introduction

An abstract affine space is what you learn about in high school geome-
try (Euclidean geometry) and then never see again (until now). Euclidean
geometry is almost entirely replaced in modern (college level and above)
mathematics by linear algebra.

Roughly speaking, an affine space is what you get when you start with
a vector space and forget where the origin is. Conversely, a vector space is
what you get when you start with an affine space and chose an arbitrary
point to serve as the origin. In an affine space, every point is just like every
other point. In a vector space, the origin is very special.

Affine spaces can be given an abstract axiomatic treatment (Godement,
1963; Bourbaki, 1970; Appendix A.2 of Geyer, 1990), but they are easier to
understand (nowadays) if considered as subspaces of vector spaces. This is
the approach taken in Advanced Linear Algebra (Roman, 2008, Chapter 16),
Convex Analysis (Rockafellar, 1970, Section 1.1), and Variational Analysis
(Rockafellar and Wets, 1998, Section 2.B).

Affine subspaces of vector spaces and affine functions appear here and
there in applications but may escape notice because in many areas of applied
mathematics affine functions are called “linear functions” in conflict with
linear algebra and all of mathematics more advanced than that (including
real and functional analysis and any subject with algebra or algebraic in
its name) and because many affine subspaces are not named as such but
given special names like point, line, plane, hyperplane. Thus many people
are familiar with affine spaces and affine functions but call them something
else.

Although affine subspaces can be defined in any vector space, we will only
be interested in affine subspaces of real finite-dimensional vector spaces.

3.2 Definitions

3.2.1 Translates

For subsets A and B of a vector space, their Minkowski sum is

A+B = {x+ y : x ∈ A and y ∈ B }.

This operation is called Minkowski addition of sets.
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When one of the sets is a singleton, we abuse notation by writing x+A
rather than {x} + A. This sum of a vector x and and a set of vectors A is
called a translate of A.

3.2.2 Affine Spaces

A nonempty subset A of a vector space E is an affine space if and only
if it is a translate of a vector subspace, that is, A = x + V , where V is a
vector subspace of E. When we consider A as a substructure of E, we say
it is an affine subspace of E.

In linear algebra, it is typical for the word “subspace” without qualifica-
tion to refer to a vector subspace, but we will always say “vector subspace”
or “affine subspace.” If A and B are affine subspaces of a vector space and
A ⊂ B then we also say that A is an affine subspace of the affine space B.

The mathematical object V is called the translation space of A or (es-
pecially when discussing differentiation) the tangent space of A.

The empty set is also considered an affine space, but it does not have
a translation space. It is an affine subspace of every affine space and every
vector space.

The reason why the empty set is considered an affine subspace is to
make valid Theorem 18 and Lemma 27 below. Without the empty set being
considered an affine subspace, these theorems and others would need ugly
conditions to rule out emptiness. Also the definition (25) of convex set is
analogous to the characterization of affine set in Theorem 16 and both say
the empty set satisfies the criterion (vacuously, because there is nothing to
check unless the set has at least two points, so every empty set or singleton
set is both convex and affine).

Every vector space is also an affine space because x + V = V for any
x ∈ V . And every vector space when considered as an affine space is its own
translation space.

3.2.3 Types and Operations

The mathematics of affine spaces can be described two different ways:
affine spaces can be embedded in vector spaces, so the mathematics of affine
spaces is part of linear algebra, or we can consider affine spaces as objects
in their own right, as the axiomatic definition of affine spaces does. Either
way is mathematically equivalent to the other, so we are free to choose the
one easiest to understand.
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We will use parts of both. Formally, we have defined affine spaces as
subsets of vector spaces. But we will use terminology and notation that
applies to either approach.

In the mathematics of vector spaces (linear algebra) there are two types
of objects, scalars and vectors, and two operations, vector addition and
scalar multiplication. One cannot talk about vectors by themselves, only in
conjunction with scalars (elements of the field the vector space is over).

When we consider affine spaces abstractly, as objects in their own right,
we do not mention an enclosing vector space (because that is not part of the
axiomatic definition). This is similar to the way we often do not mention a
basis for a vector space or do not mention the probability space on which a
random variable is defined. We consider just the affine space, its translation
space, and the scalar field of its translation space. We do not mention any
elements of the enclosing vector space that are not in the affine space under
discussion or in its translation space.

Thus there are three types of objects: scalars, vectors, and points. The
points are elements of the affine space (considered as a mathematical object
in its own right), the vectors are elements of the translation space of the
affine space, and the scalars are the elements of the field the translation
space is over. There are two operations that involve points. The difference
of points is a vector, and a point plus a vector gives a point. In symbols, if
A is an affine space having translation space V , then x − y ∈ V whenever
x, y ∈ A, and x+ v ∈ A whenever x ∈ A and v ∈ V . Moreover x− y = v if
and only if x = y + v.

When we are thinking abstractly like this, it makes no sense to multiply
points by scalars (this would take us outside the affine space and its transla-
tion space into the enclosing vector space, which we do not want to mention)
Thus if A is an affine space, and x1, . . . , xn are points in A and a1, . . . , an
are scalars, it makes no sense to write the general linear combination

a1x1 + · · ·+ anxn

(this is, in general, not a point in A). What we can do is, if x0 is another
point in A, write the general affine combination

x0 + a1(x1 − x0) + · · ·+ an(xn − x0) (2)

(now xi − x0 is a vector, so ai(xi − x0) is a vector, so
∑

i ai(xi − x0) is a
vector, so x0 +

∑
i ai(xi − x0) is a point).

Lemma 1. The affine combination (2) does not depend on x0 if the ai sum
to one.
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Proof.[
x+

∑
i
ai(xi − x)

]
−
[
y +

∑
i
ai(xi − y)

]
= (x− y)

(
1−

∑
i
ai

)

3.3 Dimension

We say the dimension of a non-empty affine space is the dimension of its
translation space. The empty affine space does not have a dimension.

When we consider affine spaces as subsets of vector spaces, we can always
consider finite-dimensional affine spaces as subsets of finite-dimensional vec-
tor spaces. If A = x + V , where x is a point and V is a vector subspace,
and B is a finite basis for V , then {x} ∪ B spans a finite-dimensional vector
space containing A and V .

3.4 Topology

When we consider affine spaces as subspaces of an enclosing vector
space, they get the subspace topology: if A is an affine subspace of a finite-
dimensional vector space E, then O is open in A if and only if there exists
an open set W in E such that O = A ∩W .

Theorem 2. If A is a finite-dimensional affine space, V is its translation
space, and x ∈ A, then the map V → A given by v 7→ x+ v is a homeomor-
phism (isomorphism of topological spaces).

Note that the inverse of v 7→ x+ v is y 7→ y − x.

Proof. What must be shown is that O is open in A if and only if O−x is open
in V . Let E be a finite-dimensional vector space enclosing A and V . Suppose
O is open in A, so there exists W open in E such that O = W ∩ A. Then
W −x is open in E because y 7→ y−x is an invertible linear function, hence
a topological vector space isomorphism of E. Hence O − x = (W − x) ∩ V
is open in V . The other direction of the proof is similar.

Thus when we consider affine spaces without mentioning an enclosing
vector space we can use Theorem 2 to define the topology. A set O is open
in A if and only if O − x is open in V . And any x ∈ A can be used here.

Of course the empty affine space has the only topology it can have. In
every topological space the empty set is both closed and open, and the empty
set is the only subset of the empty space.
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Corollary 3. Every affine subspace of a finite-dimensional affine space is
closed.

Proof. We already know that every vector subspace of a finite-dimensional
vector space is closed (Section 2.4 above). The empty set is closed in any
topology. Suppose A is an affine subspace of a finite-dimensional affine space
B, and suppose x ∈ A. Then A − x is a vector subspace of the translation
space of B, hence a closed subset of this translation space. Theorem 2 says
that the map v 7→ x+ v is a topological isomorphism. Since it maps A− x
to A, that proves A is a closed subset of B.

3.5 Structure-Preserving Functions

In many areas of mathematics there are structure-preserving functions,
which are considered just as important as the mathematical objects they go
between. In set theory, all functions are structure-preserving because ab-
stract sets have no structure to preserve. In general topology, the structure-
preserving functions are the continuous functions. In linear algebra, the
structure-preserving functions are the linear functions. In the study of affine
spaces, the structure-preserving functions are the affine functions.

We say a function f that maps points to points and vectors to vectors
is structure-preserving if

f(x− y) = f(x)− f(y)

f(x+ v) = f(x) + f(v)
(3)

but it seems strange to have one function work on two types of elements. So
we denote the part of f that maps vectors to vectors by a different symbol
g. This gives

g(x− y) = f(x)− f(y)

f(x+ v) = f(x) + g(v)

which no longer looks so structure-preserving but conforms to ordinary us-
age. We want g to be structure-preserving between vector spaces, so it must
be a linear function.

Formalizing this discussion gives the following definition. A function
f : A→ B between affine spaces having translation spaces U and V , respec-
tively, is affine if there exists a linear function g : U → V such that

g(x− y) = f(x)− f(y), x, y ∈ A (4a)

f(x+ v) = f(x) + g(v), x ∈ A, v ∈ U (4b)
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Note that (4b) holds if and only if

f(x+ v)− f(x) = g(v), x ∈ A, v ∈ U (5)

and this holds if and only if (4a) holds. Thus each of (4a), (4b), and (5)
implies the others, and we can take any one of them as our characterization
of affine functions.

Theorem 4. With the setup above, (5) holds with g a linear function if and
only if

f(x+ v)− f(x) = g(v), v ∈ U, (6)

for some x ∈ A.

That is, if (6) holds for one x ∈ A, then it holds for all x ∈ A.

Proof. One direction is trivial. So assume (6) holds for some x ∈ A. For
x∗ ∈ A and v ∈ V we have

f(x∗ + v)− f(x∗) = f(x+ [x∗ − x+ v])− f(x+ [x∗ − x])

= g(x∗ − x+ v)− g(x∗ − x)

= g(v)

We call the function g defined by (4a) (4b), (5), or (6) the associated
linear function of f . It is clear from (5) that the linear function g associated
with an affine function f is unique.

Later on (Section 4.3 below) we shall learn another name for the associ-
ated linear function (it’s a derivative).

Theorem 5. An affine function between vector spaces is a linear function
plus a constant function.

Proof. Taking the case x = 0 in (4b) gives f(v) = f(0) + g(v).

There is precisely one function from the empty set to any other set, the
empty function, which has an empty graph (the graph of a function is the
set of its argument-value pairs). If A is the empty affine space and B is any
other affine space, then we consider the empty function A → B to be an
affine function. There are no functions from any nonempty set to the empty
set, hence no functions from any nonempty affine space to the empty affine
space,

Empty affine functions have no associated linear functions.
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3.6 Category Theory

3.6.1 Introduction

Set theory was “new math” peddled as the foundations of mathematics
around 1900. It percolated through mathematics in the first half of the
twentieth century. An example is how families of sets (sigma-algebras) are
basic objects in probability theory.

Category theory was “new math” peddled as the foundations of mathe-
matics around 1950. It percolated through mathematics in the second half
of the twentieth century. It has as yet had little effect on probability theory
and mathematical statistics. We will make only the most naive use of it
here.

3.6.2 Axioms

Category theory is like set theory except that functions are treated as
first class things and also the function concept is generalized. A category
consists of objects and morphisms. The morphisms are function-like in that
they go between objects. We write f : A→ B for a morphism f from A to
B. Or in displays

A B
f

Like with functions, we call A the domain of f and B the codomain of f .
Like functions, morphisms are composable. If we have morphisms

A B C
f g

then there is also a morphism g ◦ f : A→ C.
For every object A there is a morphism idA : A→ A that “does nothing”

in composition, that is,

f ◦ idA = f, ∀f : A→ B

idA ◦ g = g, ∀g : C → A

This is called the identity axiom, and idA is called the identity morphism
for A. It is easy to show from the identity axiom that every object has a
unique identity morphism.

We also have one other axiom, associativity of composition: whenever

A B C D
f g h (7)
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we have (h◦g)◦f = h◦ (g ◦f). Thus it is clear what (7) means even though
there are no parentheses indicating order of operations.

The final “tool” of category theory is the commutative diagram, which
is a picture of objects and morphisms such that all (possibly composite)
morphisms between any two objects are equal. For example, the assertion
that

A B

C

f

h
g

is a commutative diagram says h = g ◦ f , and the assertion that

A B

C D

f

g h
i

j

is a commutative diagram says i ◦ f = h = j ◦ g.
This doesn’t seem very powerful at first glance but commutative dia-

grams can organize whole proofs. A few examples will appear below.

3.6.3 Isomorphism

A morphism f : A → B is an isomorphism if there exists a morphism
g : B → A such that

g ◦ f = idA

f ◦ g = idB

Then g is called the inverse of f and written g = f−1. It is easy to show
from this definition and the identity and associativity axioms that every
isomorphism has a unique inverse.

3.6.4 When Morphisms are Functions

When morphisms for some category are actually functions, we always
define composition to be the usual composition of functions, that is h = g◦f
means h(x) = g(f(x)) for all x in the domain of f (which is also the domain
of h), and we always define identities to be the usual identity functions that
map x 7→ x.

It is easy to show that with these definitions the identity axiom and the
associativity of composition axiom are satisfied.
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And with this definition of identity morphisms, the inverse morphism (if
it exists) is the inverse function in the usual sense.

We will be only interested in categories in which objects are sets with
structure and morphisms are structure-preserving functions.

3.6.5 When Morphisms are Not Functions

(This section can be skipped.) There are many interesting categories in
which morphisms are not functions, but statisticians are not familiar with
the concepts. But here are two simple examples when morphisms are not
functions.

Preorders Consider a category in which for any objects A and B there
is at most one morphism A→ B. Then we usually change notation writing
A ≤ B instead of A → B. For any object A, there is always the identity
morphism A → A, so this change of notation says A ≤ A for all objects A.
And the existence of compositions says that A ≤ B ≤ C implies A ≤ C.
And these two properties say that ≤ is a reflexive and transitive relation.
Such a relation is called a preorder.

All partial orders and total orders are special cases of preorders. In a
preorder it is possible that A ≤ B and B ≤ A but A 6= B (so A and B are
isomorphic but not equal). If we add an axiom that A ≤ B and B ≤ A
implies A = B, then this makes the preorder a partial order. If we add an
axiom that for any objects A and B either A ≤ B or B ≤ A, then this
makes the partial order a total order.

Thus any order (preorder, partial order, or total order) can be thought
of as a category in which there is a morphism A→ B if and only if A ≤ B.

Groupoids Consider a category in which every morphism is an isomor-
phism. Such a mathematical structure is called a groupoid.

If we add an axiom that every pair of morphisms be composable then in
order that idA and idB be composible we must have A = B. Thus we must
have only one object.

This is now a group if we think of

� the elements of the group as the morphisms of the category and

� the group multiplication operation as the composition of morphisms
in the category.

Then the category axioms imply the group axioms.
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� Associativity of the group multiplication operation is implied by the
associativity axiom for categories (and the assumption that every pair
of morphisms are composable).

� The identity element of the group is the identity morphism of the only
object of the category (and that there is only one object is implied by
the assumption that every pair of morphisms are composable).

� Then inverses in the group are the same as inverses in the category.

Thus any group can be thought of as a category in which there is only
one object and every morphism is an isomorphism. And groupoid is seen to
be an obvious generalization of group.

3.7 The Category of Finite-Dimensional Vector Spaces

This is the category in which the objects are finite-dimensional vector
spaces and the morphisms are linear functions.

In order for this to be a category it must be that identity functions are
linear and compositions of linear functions are linear. These are shown as
follows:

idA(x+ y) = x+ y = idA(x) + idA(y)

and
idA(cx) = cx = c · idA(x)

And, if h = g ◦ f , then

h(x+ y) = g(f(x+ y)) = g(f(x) + f(y)) = g(f(x)) + g(f(y)) = h(x) + h(y)

and
h(cx) = g(f(cx)) = g(cf(x)) = cg(f(x)) = ch(x)

Isomorphisms in this category are linear functions whose inverses are
linear. But we already know this holds for every invertible linear function
(Section 2.2 above). We also see that the category theoretic notion of iso-
morphism agrees with the usual notion of isomorphism taken from linear
algebra.

We can also consider this category as the category of finite-dimensional
topological vector spaces, if we give each finite-dimensional vector space the
only vector topology it can have (Section 2.4 above). The morphisms are still
linear functions, and the isomorphisms are still invertible linear functions.
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3.8 The Category of Finite-Dimensional Affine Spaces

This is the category in which the objects are finite-dimensional affine
spaces and the morphisms are affine functions. In order for this to be a
category it must be that identity functions are affine functions, and com-
positions of affine functions are affine functions. These are easily shown as
follows. Let A be an affine space and V its translation space. Then

idA(x+ v) = x+ v = idA(x) + idV (v)

and
idV (y − x) = y − x = idA(y)− idA(x)

so this agrees with (3). And, using the notation in (3) where the same
letter denotes both an affine function and its associated linear function, if
h = g ◦ f , then

h(x+ v) = g(f(x+ v)) = g(f(x) + f(v)) = g(f(x)) + g(f(v)) = h(x) + h(v)

and

h(y − x) = g(f(y − x)) = g(f(y)− f(x)) = g(f(y))− g(f(x)) = h(y)− h(x)

so this agrees with (3).
We also need to check empty affine functions. The identity morphism on

the empty affine space is the empty function, which is an affine function by
definition. The only way the empty affine space can appear in a composition
is

∅ A B

(because there are no arrows to the empty set except for the empty mor-
phism) and this composition is the empty function (because the empty
function is the only function whose domain is the empty set), hence this
composition is an affine function by definition.

Isomorphisms in this category are affine functions whose inverses are
affine. So we need a theorem about that.

Theorem 6. If an affine function is invertible, then its inverse is affine.

Before we prove this we rewrite Theorem 4 so it looks more category
theoretic.
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Lemma 7. Suppose A and B are affine spaces having translation spaces U
and V , respectively, and a ∈ A. For any affine space containing a point x,
let sx denote the map y 7→ y−x between that affine space and its translation
space. Consider the commutative diagram

A B

U V

f

sa sf(a)

g

(8)

Then f is an affine function if and only if g is a linear function.

Note that sx is invertible and its inverse is v 7→ x+ v.

Proof. Commutative diagram means g = sf(a) ◦ f ◦ s−1
a , or

s−1
a (u) = a+ u

f(s−1
a (u)) = f(a+ u)

sf(a)(f(s−1
a (u))) = f(a+ u)− f(a)

Thus this lemma merely translates the characterization of Theorem 4 into
category theoretic language.

Proof of Theorem 6. In (8) we know that sa and sf(a) are invertible by the
comment following following the statement of the lemma, and we assume in
the statement of the theorem that f is invertible. Thus g is invertible and
its inverse is sa ◦ f−1 ◦ s−1

f(a). Then we know from linear algebra (Section 2.2

above) that g−1 must be a linear function. Now it follows from the lemma
that f−1 defined by the commutative diagram

A B

U V

sa sf(a)

f−1

g−1

is an affine function.

Thus every invertible affine function is an isomorphism. We know from
linear algebra that finite-dimensional vector spaces are isomorphic if and
only if they have the same dimension (Halmos, 1974, Section 9).

Theorem 8. Nonempty finite-dimensional affine spaces are isomorphic if
and only if they have the same dimension. The empty affine space is iso-
morphic only to itself.
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Proof. In any category any object is isomorphic to itself because the identity
morphism is always an isomorphism (it is its own inverse). The empty affine
space can only be isomorphic to itself, because there are no functions that
map from a nonempty set to the empty set.

This leaves us with the case that both affine spaces are nonempty. We
know from the proofs of Theorem 6 and Lemma 7 that such affine spaces
have an isomorphism if and only if we have a commutative diagram (8) with
both f and g invertible functions. But there is such an invertible g if and
only if U and V have the same dimension (from linear algebra), and sa
and sf(a) map between spaces of the same dimension by definition of the
dimension of an affine space (Section 3.3 above). It follows that A and B
have the same dimension if and only if there exist invertible f and g that
give such a diagram.

Corollary 9. Every d-dimensional affine space is isomorphic to Rd.

We can also consider this category as the category of finite-dimensional
topological affine spaces, if we give each finite-dimensional affine space the
only topology it can have (Section 3.4 above). The morphisms are still affine
functions, and the isomorphisms are still invertible affine functions. But we
need a theorem to establish that.

Theorem 10. Every affine function between finite-dimensional affine spaces
is continuous.

Proof. Theorem 2 asserts that sa and sf(a) in (8) are homeomorphisms.
Every linear function is continuous (Section 2.4 above). And the composition
of continuous functions

f = s−1
f(a) ◦ g ◦ sa

is continuous.

We also tie up one loose end.

Theorem 11. The function sx : y 7→ y − x is a topological affine space
isomorphism.

Proof. We already know sx is invertible. So we only have to show it is affine,
because then Theorems 6 and 10 show that both sx and s−1

x are affine and
continuous.

To check that it is affine we use Theorem 4.

g(v) = sx(y + v)− sx(y) = (y + v − x)− (y − x) = v

so g is the identity function, which is linear.
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4 Calculus

4.1 Integration

If we have a topology, then we know the open sets and the Borel sigma-
algebra (the smallest sigma-algebra containing the open sets). So we can
identify Borel measures and Borel-measurable functions and integrals of real-
valued Borel-measurable functions with respect to Borel measures.

Transfer of integrals by affine isomorphism from Rd to any abstract finite-
dimensional affine space is accomplished by the change-of-variable theorem
for abstract integration.

For any measurable function f from a measurable space (A,A) to a
measurable space (B,B), any measure µ on A induces a measure ν on B
defined by

ν(C) = µ
(
f−1(C)

)
, C ∈ B,

where
f−1(C) = {x ∈ A : f(x) ∈ C }

defines the set-to-set inverse of f . This ν is called the image of µ under f ,
and this operation is denoted ν = µ ◦ f−1. Moreover, when µ and ν have
this relation, a real-valued function g on B is integrable with respect to ν if
and only if g ◦ f is integrable with respect to µ, in which case∫

(g ◦ f) dµ =

∫
g dν =

∫
g d(µ ◦ f−1) (9)

(Billingsley, 1979, Theorem 16.12).
Discussion of the other change-of-variable theorem, for densities with

respect to Lebesgue measure (the one involving Jacobian determinants),
which involves differentiation, will have to wait until differentiation has been
discussed (Section 4.4 below).

Using the same notation f−1 for the set-to-set inverse (which every func-
tion has) and the point-to-point inverse (which only invertible functions
have) is commonplace in math. It usually does not cause confusion because
it does not conflict with the forward image operation

f(B) = { f(x) : x ∈ B }

When f is an invertible function, f−1(B) is the same set, whether we apply
the set-to-set inverse notion or think of this as meaning the forward image
through the point-to-point inverse.
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4.2 Differentiation on Vector Spaces

4.2.1 Definition

The abstract theory of differentiation is less familiar to statisticians than
the abstract theory of integration, but it can also be found in functional anal-
ysis and differential geometry. Here we follow Lang (1993). The reader must
excuse the appearance of Banach spaces (complete normed vector spaces,
possibly infinite-dimensional). We will specialize to the finite-dimensional
special case as soon as the definitions are finished. The reason we introduce
the functional analysis definitions is to show that coordinates (isomorphism
to Rd) play no essential role in differentiation, contrary to the impression
one gets from multivariable calculus.

Let U and V be Banach spaces. Then L(U, V ) denotes the set of all
continuous linear maps U → V , which is itself a vector space, the operations
being given by (1a) and (1b). It is also a Banach space (Lang, 1993, pp. 65–
66) when given the norm defined by

‖f‖ = sup
x∈U
‖x‖≤1

‖f(x)‖ (10)

in which the ‖ · ‖ notation refers to three different norms: the expression
‖x‖ refers to the norm of U , the expression ‖f(x)‖ refers to the norm of V ,
and the expression ‖f‖ refers to the norm for L(U, V ) which (10) defines.

Let O be open in U and let f : O → V be a map. Then f is differentiable
at a point x ∈ O if there exists g ∈ L(U, V ) such that

lim
h→0

f(x+ h)− f(x)− g(h)

‖h‖
= 0. (11)

in which case g is the unique element of L(U, V ) having this property (Lang,
1993, p. 334) and we say that g is the derivative of f at x and write f ′(x) = g.

If f is differentiable at every point of O, then it defines a map x 7→ f ′(x)
from O to L(U, V ). If this map is continuous, we say f is continuously
differentiable (on O).

When this differentiation theory on Banach spaces is specialized to ab-
stract finite-dimensional vector spaces, it becomes simpler. On a finite-
dimensional vector space, every linear function is continuous (Section 2.4
above), so L(U, V ) consists of all linear functions U → V (one doesn’t need
to say “continuous linear function” in the finite-dimensional case). More-
over, on a finite-dimensional vector space, all norms are equivalent (Lang,
1993, Corollary 3.14 of Chapter II), meaning for any norms ‖ · ‖1 and ‖ · ‖2
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there exist constants c1 and c2 such that ‖x‖1 ≤ c2‖x‖2 and ‖x‖2 ≤ c1‖x‖1
for all x, so the choice of norm does not affect the derivative. This also
means that every norm on a finite-dimensional vector space induces the
same topology, but we already knew that. Norms induce vector topologies
and there is only one vector topology a finite-dimensional vector space can
have (Section 2.4 above).

4.2.2 Philosophy

This is very different from the conceptualization of the derivative one
gets from calculus. There the derivative of a scalar-to-scalar function is just
a number; here it is a linear function. The correspondence is that the slope
of the linear function is the derivative in the ordinary calculus sense.

In multivariate calculus the derivative of a vector-to-vector function
f : Rd → Re is the matrix of partial derivatives ∂fi(x)/∂xj (the so-called
Jacobian matrix); here it is a linear function f ′(x) : Rd → Re, the linear
function represented by the Jacobian matrix (that is, if J is the Jacobian
matrix, then the linear function is x 7→ Jx).

On an abstract finite-dimensional vector space there are no coordinates
hence no Jacobian matrix. We can introduce coordinates, but there are
many ways to do so, and each gives a different Jacobian matrix. But the
abstract derivative is a unique linear function, which does not depend on
coordinates. (Each Jacobian matrix is the representation of that unique
linear function in some coordinate system.)

4.2.3 Higher Order Derivatives

Second and higher derivatives are just derivatives of derivatives. If the
map f ′ : O → L(U, V ), where O is open in U , is differentiable at x, then we
write its derivative as f ′′(x). It is, by definition, an element of L

(
U,L(U, V )

)
.

Its value at some point h1 ∈ U , written f ′′(x)(h1) is an element of L(U, V ).
And in turn, the value of this at some point h2 ∈ U , written f ′′(x)(h1)(h2)
is an element of V .

The map (h1, h2) 7→ f ′′(x)(h1)(h2) is bilinear (linear in both arguments)
and continuous U × U → V . Thus we can also consider f ′′(x) a continu-
ous bilinear form on U (Lang, 1993, p. 343, ff.). If f is twice continuously
differentiable, meaning the map x 7→ f ′′(x) is continuous from some neigh-
borhood of x in O to L

(
U,L(U, V )

)
, then this bilinear form is symmetric,

meaning
f ′′(x)(h1)(h2) = f ′′(x)(h2)(h1), h1, h2 ∈ U.
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Similarly, a continuous third derivative can be identified with a symmetric
trilinear form, a continuous fourth derivative with a symmetric tetralinear
form, and so forth.

4.2.4 Type Theory

It is convenient to steal some notation from type theory as used in func-
tional programming (computer languages like Haskell or R) and also the
twenty-first century’s new foundations of mathematics, homotopy type the-
ory. We say the type of f ′′ is U → U → V , the interpretation being that
this notation is right associative U → (U → V ). This is easier to write and
easier to read than L(U,L(U, V )), because U → U → V reads left to right
and the other reads inside out. In U → U → V we have lost the L’s in
L(U,L(U, V )) that told us the functions are linear, so we will have to get
that from the context.

Of course, the official type of the other interpretation of f ′′ as a sym-
metric bilinear form is U × U → V . But the equivalence of these two types
is well known in functional programming, where it is called currying. The
programming language Haskell is named after the logician Haskell Curry
(1900–1982), and currying is also named after him.

Writing f ′′(x)(h1)(h2) is thinking of f ′′ in curried type U → U → V .
It is when we write it as a function of two arguments that it has the un-
curried type U × U → V . We can write it as a function of two arguments
f ′′(x)(h1, h2), but this is sloppy. To be pedantically correct (a set theorist
is a person who thinks all functions have only one argument), the uncurried
form is a function with one argument (in U × U), which is a pair, so we
should write the really ugly f ′′(x)

(
(h1, h2)

)
for it to actually have the type

U × U → V .
In Haskell and other functional programming languages the curried form

is considered prettier, so we, like the functional programmers, prefer to write
f ′′(x)(h1)(h2) for the mathematical object and U → U → V for the type.

4.2.5 More Philosophy

So higher derivatives are even more different from the conceptualiza-
tion of higher derivatives one gets from calculus. Instead of second, third,
fourth, etc. derivatives of scalar-to-scalar functions being just numbers, they
are now symmetric bilinear, trilinear, tetralinear, etc. forms (or the alter-
nate interpretation as linear functions between vector spaces). That seems
crazy, but for vector-to-vector functions it is not so crazy. Once the num-
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ber of indices gets to more than two, so partial derivatives can no longer
be laid out in a matrix, as with second derivatives of a vector-to-vector
function ∂2fi(x)/∂xj∂xk, the conventions of multivariable calculus become
inconvenient too.

Crazy or not, we will use the PhD level real analysis theory of derivatives
as linear functions or multilinear forms in the rest of this document.

4.2.6 The Constant Rule

As in ordinary calculus, and as is obvious from the definition of differ-
entiation (and uniqueness of the derivative), the derivative of a constant
function is zero.

In detail, let U and V be vector spaces and let O be open in U . If
f : O → V is a constant function, then f ′(x) is the zero function U → V for
all x ∈ O.

4.2.7 The Other Constant Rule

As in ordinary calculus, and as is obvious from the definition of differen-
tiation (and uniqueness of the derivative), constants come out of derivatives.
If h = af , where a is a scalar constant, then h′(x) = af ′(x).

4.2.8 The Addition Rule

As in ordinary calculus, and as is obvious from the definition of differ-
entiation (and uniqueness of the derivative), the derivative of a sum is the
sum of the derivatives. If h = f + g, then h′(x) = f ′(x) + g′(x).

4.2.9 The Linear Function Rule

Not as in ordinary calculus, but as is obvious from the definition of
differentiation (and uniqueness of the derivative), the derivative of a linear
function is that linear function.

If f is a linear function between vector spaces, then f ′(x) = f for all x.
Thus f ′ is a constant function, and f ′′(x) = 0 for all x.

In detail, let U and V be vector spaces, and let f : U → V be a linear
function. Then f ′(x) = f for all x ∈ U , and f ′′(x) is the zero function
U → U → V for all x ∈ U . So f ′(x)(h) = f(h) for all x, h ∈ U and
f ′′(x)(h1)(h2) = 0 for all x, h1, h2 ∈ U .
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4.2.10 Linearity of Differentiation

The combination of the properties in Sections 4.2.7 and 4.2.8 above is
sometimes called linearity of differentiation, by which it is meant that dif-
ferentiation is a linear operator on certain vector spaces.

In detail, let U and V be vector spaces and let O be open in U . Then
the set of all functions f : O → V that are differentiable at x ∈ O is itself a
vector space because it is closed under vector addition (Section 4.2.8) and
scalar multiplication (Section 4.2.7). Call that vector space F . Then the
function F → L(U, V ) defined by f 7→ f ′(x) is a linear function, again by
Sections 4.2.7 and 4.2.8 above.

And, conversely, to say that f 7→ f ′(x) is a linear function is just to say
that the properties in Sections 4.2.7 and 4.2.8 above hold.

4.2.11 The Multiplication Rule

This section is about the rule, familiar from ordinary calculus

(fg)′(x) = f ′(x)g(x) + f(x)g′(x) (12)

but it is not at all obvious what the analog could mean using our definitions
of differentiation. For one thing, there is no single notion of multiplication
of vectors, but rather several notions applicable in different situations (dot
product, inner product, outer product, cross product, matrix multiplication,
composition of linear functions, and perhaps others). Lang (1993, p. 336)
gives one formulation of the multiplication rule that applies to all of these
situations.

Let E, U , V , and W be Banach spaces, and let U × V → W be a
continuous bilinear function that we denote by juxtaposition. Let O be
open in E, and let f : O → U and g : O → V be differentiable at x ∈ O.
Then the product map fg : O → W is also differentiable at x and (12)
holds, although it is not obvious what this equation means without further
interpretation. What it means is

(fg)′(x)(h) = f ′(x)(h)g(x) + f(x)g′(x)(h), h ∈ E. (13)

In even more detail, f ′(x) is a linear function E → U , so f ′(x)(h) is an
element of U . Similarly, g′(x) is a linear function E → V , so g′(x)(h) is an
element of V . Hence both terms f ′(x)(h)g(x) and f(x)g′(x)(h) are instances
of our multiplication operation U × V →W . So the right-hand side of (13)
is an element of W and the + operation is just addition of elements of W .
On the left-hand side of (13) fg is a function O →W so (fg)′(x) is a linear
function E →W , and (fg)′(x)(h) is an element of W .
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4.2.12 The Inversion Rule

Let Lis(U, V ) denote the set of invertible linear functions U → V , and
let i : f 7→ f−1 denote the inversion function Lis(U, V )→ L(V,U), then

i′(f)(h) = −f−1 ◦ h ◦ f−1, f ∈ Lis(U, V ), h ∈ L(U, V ) (14)

(Lang, 1993, Exercise 3 of Chapter XIII, p. 357).
On the left-hand side of (14) i′(f) maps Lis(U, V )→ L(V,U) so i′(f)(h)

is an element of L(V,U). On the right-hand side of (14) we have

V U V U
f−1

h f−1

and this is also an element of L(V,U).

4.2.13 The Chain Rule

Let U , V , and W be Banach spaces, let O be open in U and P be open
in V , and let f : O → P and g : P → W be maps. Then the chain rule
says that if f is differentiable at x and g is differentiable at f(x), then the
composition h = g ◦ f is differentiable at x and its derivative is given by

h′(x) = g′
(
f(x)

)
◦ f ′(x) (15)

(Lang, 1993, p. 337). This says that h′(x) is the composition of linear
functions

U V

W

f ′(x)

h′(x)
g′
(
f(x)

)
(16)

4.2.14 The Inverse Function Theorem

We say a map f : O → V , where O is open in U , is Cp if f is continuously
differentiable p times on O. Then the inverse function theorem (Lang, 1993,
p. 361–363) says the following: if x ∈ O and f ′(x) is a topological vector
space isomorphism, then f is a local Cp isomorphism at x, meaning there
exists an open neighborhood O′ of x in O such that the restriction of f to
O′ is one-to-one on O′ and hence invertible considered as a map O′ → f(O′)
and the inverse is Cp.

Lang’s statement of the theorem does not give formulas for the deriva-
tives, but these are given in his proof. Let g : f(O′) → O′ denote the local
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inverse whose existence is asserted by the theorem and let y = f(x). Then
g′(y) is the f ′(x)−1 whose existence is assumed in the theorem, that is,

g′(y) = f ′
(
g(y)

)−1
, y ∈ f(O′) (17)

(this is the second displayed equation on p. 363 in Lang).
Higher order derivatives are arrived at by using (17), the chain rule, and

the rule for differentiating inversion. In more detail, (17) can be rewritten
as

g′ = i ◦ f ′ ◦ g

which gives g′ explicitly as the composition of differentiable maps, that is,
the diagram

U Lis(U, V )

f(O′) L(V,U)

f ′

i

g′

g

is commutative. For example, the second derivative of the local inverse
whose existence is guaranteed by the inverse function theorem if f is twice
continuously differentiable is given by

g′′(y) = i′
(
(f ′ ◦ g)(y)

)
◦ (f ′ ◦ g)′(y)

= i′
(
f ′
(
g(y)

))
◦ (f ′ ◦ g)′(y)

= i′
(
f ′
(
g(y)

))
◦ f ′′

(
g(y)

)
◦ g′(y)

Higher order derivatives are messier but still follow from combining (15),
(17), and (14).

4.2.15 Transfer

If f : Rd → Re is differentiable, then the derivative is the linear func-
tion represented by the matrix of partial derivatives (Browder, 1996, Theo-
rem 8.21). The converse statement is false (Browder, 1996, Example 8.22),
but if the partial derivatives are continuous functions, then f is continuously
differentiable (Browder, 1996, Theorem 8.23). So, as long as we restrict our
attention to continuously differentiable functions, there is no difference for
Rd → Re functions, between abstract differentiability and what we know
from multivariable calculus.

Now suppose U and V are abstract finite-dimensional vector spaces of
dimensions d and e, respectively, suppose O is open in U , and suppose

25



f : O → V is continuously differentiable. If we want to calculate using
multivariable calculus, we need isomorphisms g : U → Rd and h : V → Re.
Then the map j : Rd → Re defined by j = h ◦ f ◦ g−1 “represents” f in
multivariable calculus

Rd Re

U V

j

f

g h

Having gotten ahold of j, we can differentiate it by multivariable calculus
(represented by the matrix of partial derivatives) and, since f = h−1 ◦ j ◦ g,
the chain rule and the linear function rule gives the derivative

f ′(x) = h−1 ◦ j′
(
g(x)

)
◦ g

that is, letting y = g(x), the diagram

Rd Re

U V

j′(y)

f ′(x)

g h

is commutative. This is “transfer” for differentiation.

4.3 Differentiation on Affine Spaces

4.3.1 Definition

Differential geometry extends differentiation from vector spaces to man-
ifolds, which we need not define here. Affine spaces are a special case of
manifolds. We can see what differential geometry says about affine spaces
without knowing any differential geometry by just applying the definition of
differentiation (Section 4.2.1 above) to functions between affine spaces.

We repeat equation (11) above

lim
h→0

f(x+ h)− f(x)− g(h)

‖h‖
= 0. (11)

but now we allow f to be a function O → B where A and B are finite-
dimensional affine spaces having translation spaces U and V , respectively,
and O is an open subset of A. Now x is a point, so for x+ h to make sense
h must be a vector, and f(x + h) − f(x) is a vector, so g maps vectors to
vectors and as before we can take it to be a linear function U → V . If (11)
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holds for some linear function g, then g is unique (by the same argument as
for derivatives of functions between vector spaces given on p. 334 of Lang,
1993), and call it the derivative of f at the point x and write it f ′(x).

Hence if f is a differentiable function between finite-dimensional affine
spaces, the derivative f ′(x) is a linear function between the corresponding
translation spaces. If we look at what differential geometry says about differ-
entiation, it agrees with what we have found here except for terminology. In
differential geometry, one says tangent space rather than translation space.

Higher-order derivatives follow the same rule and are just derivatives
of derivatives. If f above is everywhere differentiable on O, then f ′ : O →
L(U, V ) is a function from an open subset of a finite-dimensional affine space
to a finite-dimensional vector space so we can apply the same definition to it,
obtaining a derivative f ′′(x) which is a linear function U → L(U, V ) having
type U → U → V .

Lemma 12. For any point x in an affine space, let sx denote the map y 7→
y − x from this affine space to its translation space. Let A and B be finite-
dimensional affine spaces having translation spaces U and V respectively.
Let O be open in A. Then a function f : O → B is differentiable at x ∈ O if
and only if the function k : (O−a)→ V defined by the commutative diagram

O B

O − a V

f

sa sb

k

is differentiable at x− a, in which case f ′(x) = k′(x− a).

Proof. With less category theory

k(u) = f(a+ u)− b

so
k(u+ h)− k(u) = f(a+ u+ h)− f(a+ u).

To say that f is differentiable at x is to assert the existence of a linear
function g : U → V such that (11) holds, in which case g is the derivative
of f at x. In that case

k(x− a+ h)− k(x− a) = f(x+ h)− f(x)

so g is also the derivative of k at x− a.
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Conversely, to say that g is the derivative of k at x − a is to assert the
existence of a linear function g : U → V such that

lim
h→0

k(x− a+ h)− k(x− a)− g(h)

‖h‖
= 0

in which case (11) holds and g is also the derivative of f at x.

Either the lemma or the definition can be used to move all of our facts
about differentiation of functions between vector spaces to the analogous
facts about differentiation of functions between affine spaces. We will just
state these without proof, since the proofs are easy.

4.3.2 The Constant Rule

The derivative of a constant function is zero. In more detail the derivative
of a constant function from an open subset of a finite-dimensional affine space
to an affine space is the only constant linear function (from the tangent space
of one to the tangent space of the other), which is everywhere equal to zero.

4.3.3 The Other Constant Rule

The rule that h = af , where a is a scalar constant, implies h′(x) = af ′(x)
only makes sense when the codomain of f is a vector space, because we only
have multiplication by scalars in vector spaces not in affine spaces. So this
rule makes sense when f goes from an open subset of a finite-dimensional
affine space to a finite-dimensional vector space.

4.3.4 The Addition Rule

The rule that h = f + g implies then h′(x) = f ′(x) + g′(x) only makes
sense when the codomain of f and g is a vector space, because we only have
addition of vectors not addition of points. So this rule makes sense when
f and g go from an open subset of a finite-dimensional affine space to a
finite-dimensional vector space.

4.3.5 The Affine Function Rule

If f is an affine function and g is its associated linear function (defined
following Theorem 4), then f ′(x) = g for all x. Hence f ′′(x) = 0 for all x.

So now we can replace the term “associated linear function” by “deriva-
tive.” Every nonempty affine function has a derivative at every point of
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its domain, and that derivative does not depend on the point where it is
evaluated. The derivative is always the associated linear function.

4.3.6 The Multiplication Rule

The multiplication rule in Section 4.2.11 above required that the multi-
plication operation be bilinear, which means it only makes sense when the
things multiplied are vectors not points.

Let U , V , and W be finite-dimensional vector spaces, and let U×V →W
be a continuous bilinear function denoted by juxtaposition. Let E be a
finite-dimensional affine space, let O be open in E, and let f : O → U and
g : O → V be differentiable at x ∈ O. Then the product map fg : O → W
is also differentiable at x and (12) holds, which is interpreted as meaning
(13) modified by replacing E with its translation space.

4.3.7 The Chain Rule

Let A, B, and C be finite-dimensional affine spaces, having translation
spaces U , V , and W , respectively. Let O be open in A and P be open in B,
and let f : O → P and g : P → C be maps. Then the chain rule says that if
f is differentiable at x and g is differentiable at f(x), then the composition
h = g ◦ f is differentiable at x and its derivative is given by (15) or (16).

4.3.8 The Inverse Function Theorem

Let A and B be finite-dimensional affine spaces, let O be an open subset
of A and let f : O → B be p times continuously differentiable. If f ′(x) is an
invertible linear function for some x ∈ O, then there exists an open set O′

such that x ∈ O′ ⊂ O and the restriction of f to domain O′ and codomain
f(O′) is invertible and the inverse is p times continuously differentiable.

Moreover, the derivative of the inverse of this restriction at the point
f(x) is the inverse of f ′(x). The comments in Section 4.2.14 above about
higher-order derivatives carry over to this setting. We do not need an in-
version rule for functions between affine spaces here. The inversion rule of
Section 4.2.12 above suffices, because we are inverting derivatives, which are
linear functions.

We say such an f is a local Cp isomorphism at x.
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4.4 Lebesgue Measure

Suppose A is a finite-dimensional affine space, V is its translation space,
f : Rd → A is an affine isomorphism, λ is Lebesgue measure on Rd, and
µ = λ◦f−1 (notation defined in Section 4.1 above). Then µ is a translation-
invariant measure meaning

µ(B + v) = µ(B), for all v ∈ V and all Borel subsets B of A.

Moreover, every nonempty open set has positive µ measure. So µ has most
of the properties of Lebesgue measure.

The only important property that is lacking is uniqueness. Different
isomorphisms f may induce different measures µ. Lebesgue measure on Rd
assigns measure one to the unit cube. In an abstract affine space there is
no notion of unit cube because there is no preferred basis for its translation
space.

To see what is happening, consider another affine isomorphism g : Rd →
A, and let ν = λ ◦ g−1. What is the relationship between µ and ν?

Let ρ = ν ◦ f = λ ◦ g−1 ◦ f . Since ρ is a measure on Rd we know
how to relate it to λ. By the change-of-variable theorem for integrals with
respect to Lebesgue measure on Rd (the theorem about Jacobians) dρ is
dλ times the Jacobian determinant of the matrix representing the affine
function f−1 ◦ g. Since every affine function has a constant derivative, the
Jacobian determinant is a scalar constant. Thus we see that ρ is just a
constant times λ. And, since µ = λ ◦ f−1 and ν = ρ ◦ f−1, it follows that µ
and ν are also constant multiples of each other.

Thus Lebesgue measure on a finite-dimensional affine space is uniquely
defined up to multiplication by positive scalars. But that is as unique as
it gets. We say each measure like µ and ν defined above is a version of
Lebesgue measure, and we consider no version in any way special.

If we want to define densities with respect to Lebesgue measure, they
have to be unnormalized densities (because no version of Lebesgue measure
is special). We can say let h be an unnormalized probability density with
respect to Lebesgue measure on A, and this means h is a nonnegative func-
tion such that

∫
h dµ is strictly positive and finite, where µ is any version

of Lebesgue measure. When we want to evaluate an expectation, it has the
form

Eh{g(X)} =

∫
g(x)h(x)µ(dx)∫
h(x)µ(dx)

where µ is any version of Lebesgue measure (the arbitrary normalization
cancels so the expectation is unique).
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Lemma 13. Suppose X is a random element of a finite dimensional affine
space A having unnormalized probability density function fX with respect
to Lebesgue measure on A. Suppose g : A → B is an affine isomorphism.
Define Y = g(X). Then

fX(x) = fY (y), whenever y = g(x)

defines an unnormalized probability density function fY of Y with respect to
Lebesgue measure on B.

We can rewrite the equation in the statement of the lemma as

fY (y) = fX
(
g−1(y)

)
, y ∈ B, (18)

or even more simply as fY = fX ◦ g−1 or as fX = fY ◦ g.

Proof. We have to apply the general change-of-variable theorem (Section 4.1
above). For any real-valued function h for which E{h(Y )} exists

E{h(Y )} =

∫
h(g(x))fX(x)λ(dx)∫

fX(x)λ(dx)

where λ is a version of Lebesgue measure on A. Note that the denominator
of the fraction is the special case of the numerator when h is the constant
function everywhere equal to one. Thus it is enough to deal with the nu-
merator ∫

h(g(x))fX(x)λ(dx) =

∫
h(y)fX(g−1(y)) (λ ◦ g−1)(dy)

(equation 9 above), but λ ◦ g−1 is a version of Lebesgue measure on B, so
fX(g−1(y)) serves as an unnormalized probability density function of Y with
respect to Lebesgue measure on B.

A function is called a Cp diffeomorphism if it is invertible and both
the function and its inverse are p-times continuously differentiable. A C1

diffeomorphism is also called a diffeomorphism (without the C1).

Theorem 14. Suppose X is a random element of a finite dimensional affine
space A having unnormalized probability density function hX with respect to
Lebesgue measure on A. Let O be an open subset of A that supports X,
let B be a finite-dimensional affine space having the same dimension as A,
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and let g : O → B be any function such that the restriction O → g(O) is a
diffeomorphism. Define Y = g(X). Then

hY (y) = hX(x)J(y), whenever y = g(x) (19)

defines an unnormalized probability density function hY of Y with respect
to Lebesgue measure on B, where J is defined as follows. Let fX : A→ Rd
and fY : B → Rd be affine isomorphisms, and define a function k by the
commutative diagram

O B

fX(O) Rd

g

fX fY

k

then k is also a diffeomorphism. Define J(y) to be the absolute value of the
determinant of the Jacobian matrix of the map k−1 evaluated at the point
z = fY (y).

Proof. We know from the lemma that

hW (w) = hX(x), whenever w = fX(x)

hZ(z) = hY (y), whenever z = fY (y)

define unnormalized probability density functions for W and Z with respect
to Lebesgue measure on Rd.

We know from the change-of-variable theorem from master’s level prob-
ability theory that

hZ(z) = hW
(
k−1(z)

)
· JWZ(z)

where JWZ(z) denotes the absolute value of the determinant of the Jacobian
matrix of the function k−1 at the point z. Putting this all together, we get

hY (y) = hZ(z) = hW (w) · JWZ(z) = hX(x) · JWZ(z),

whenever w = fX(x), y = g(x), and z = k(w) = fY (y). Thus we see we do
have (19) with J(y) = JWZ(z).

4.5 Duality

4.5.1 Definition

The dual space (Rudin, 1991, Section 3.1) of a topological vector space
V is the set of all continuous linear functionals on V , where linear functional
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means functions V → R. This set, denoted V ∗, equipped with the operations
of vector addition (1a) and scalar multiplication (1b) is itself a vector space.
The only difference for finite-dimensionality is that every linear functional
is continuous so there is no need for the word “continuous” in the definition.

4.5.2 Canonical Bilinear Form

In functional analysis a curious bracket notation (Halmos, 1974, Sec-
tion 14; Rudin, 1991, Section 4.2) is used. We write f(x) as 〈x, f〉 when
x ∈ V and f ∈ V ∗. This is to emphasize that not only is 〈 · , f〉 a linear
functional on V and hence an element of V ∗, but also 〈x, · 〉 is a linear func-
tional on V ∗ and hence an element of V ∗∗, the dual space of V ∗. The map
〈 · , · 〉 is called the canonical bilinear form that places V and V ∗ in duality.

4.5.3 Isomorphism

When V is finite-dimensional, V and V ∗ and V ∗∗ and as many more
stars as you want all have the same dimension (Halmos, 1974, Theorem 2
of Section 15). They are all isomorphic to Rd for some d. Hence there is
a tendency, if one has any nagging residual tendencies to think of finite-
dimensional vector spaces as really being Rd for some d, of thinking of them
as all the same space, but this is a mistake.

Here is a way to disabuse oneself of this mistake. If you think of V and
V ∗ as both being Rd, then you can think of 〈x, f〉 as meaning xTAf , where
A is any (fixed throughout the discussion) invertible d×d matrix. It is easy
to check that every linear functional on Rd has the the form x 7→ xTAf for
some f ∈ Rd and, conversely for every f ∈ Rd, the map x 7→ xTAf is a
linear functional. The default is to choose A to be the identify matrix so we
get 〈x, f〉 = xT f , and this looks like the usual inner product on Rd, but this
default should be resisted. There is no reason for it other than computational
convenience. The canonical bilinear form 〈 · , · 〉 is not an inner product at
all. An inner product has both arguments in the same vector space. But
(we pedantically reiterate) the arguments of the canonical bilinear form are
in different spaces V and V ∗.

4.5.4 Reflexivity

There is a special isomorphism V → V ∗∗ called the natural isomorphism,
which identifies x in V with the linear functional 〈x, · 〉 in V ∗∗ (Halmos,
1974, Section 16).
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So one can think of V and V ∗∗ as being “the same space” (in scare
quotes, because, pedantically, they are not the same) via the natural iso-
morphism. Put another way, one is using a particular representation of V ∗∗
that represents every linear functional on V ∗ as 〈x, · 〉 for some x ∈ V .

We often use this representation, in effect making V ∗∗ = V , V ∗∗∗ = V ∗,
V ∗∗∗∗ = V , and so forth. So when we say we are using the representation
V ∗∗ = V we always mean that we are using the natural isomorphism to
equate these spaces, and this also implies V ∗∗∗ = V ∗, V ∗∗∗∗ = V , and so
forth.

V and V ∗ are no more alike than they are like any other abstract vector
spaces of the same dimension. There is no special isomorphism between
them.

The section heading “reflexivity” comes from functional analysis. When
V is an infinite-dimensional topological vector space there is still a map
V → V ∗∗ that takes a vector x to the linear functional 〈x, · 〉 but this need
not be an isomorphism. So we call this the natural injection V → V ∗∗.
If the natural injection happens to be an isomorphism, then we say V is
reflexive. Hence the section heading. Every finite-dimensional vector space
is reflexive.

If V is a Hilbert space (a possibly infinite-dimensional complete inner
product space) there is a special isomorphism between V and V ∗ (given by
the Riesz representation theorem), but our vector and affine spaces have no
inner product.

4.5.5 Adjoints

Suppose U and V are finite-dimensional abstract vector spaces, and sup-
pose f : U → V is a linear function. Then there is a unique f∗ : V ∗ → U∗
satisfying

〈f(x), y〉 = 〈x, f∗(y)〉, y ∈ V ∗, x ∈ U, (20)

and f∗ is called the adjoint of f (Halmos, 1974, Section 44). Note that the
two canonical bilinear forms in (20) are different; on the left-hand side we
have the canonical bilinear form placing V and V ∗ in duality, but on the
right-hand side we have the canonical bilinear form placing U and U∗ in
duality.

Not using the bracket notation and remembering that elements of dual
spaces are actually linear functionals as well as vectors makes the existence
of the adjoint trivial, because (20) becomes

y
(
f(x)

)
= f∗(y)(x), y ∈ V ∗, x ∈ U,
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which says
f∗(y) = y ◦ f. (21)

If we specialize to U = U∗ = Rd and V = V ∗ = Re, let the canonical
bilinear forms be 〈x, y〉 = xT y, and confuse linear functions with the matrices
representing them, then the adjoint is just the matrix transpose. If M is an
e× d matrix, then the adjoint of the linear function x 7→ Mx is y 7→ MT y.
But this depends on this particular choice of canonical bilinear forms. It is
neither abstract nor general.

4.6 Points, Lines, Planes, and Hyperplanes

A point is a zero-dimensional affine space, a line is a one-dimensional
affine space, a plane is a two-dimensional affine space, a hyperplane in a
d-dimensional affine space A is an affine subspace having dimension d− 1.

If x is a point in an affine space and v is a nonzero vector in its translation
space, then

{x+ sv : s ∈ R }

is a line, and, conversely, all lines have this form.
If x and y are distinct points in an affine space, then

{x+ s(y − x) : s ∈ R }

is a line. This is two points determine a line, one of Euclid’s axioms.

Lemma 15. If a subset V of a vector space U contains the origin and
contains each line determined by any two of its points, then V is a vector
subspace of U .

Proof. If s ∈ R and v ∈ V , then 0 + sv = sv is on the line determined by
0 and v. Hence V is closed under scalar multiplication. If v1, v2 ∈ V , then
1
2v1 + 1

2v2 is on the line determined by v1 and v2 and v1 + v2 is a scalar
multiple of that. Hence V is closed under vector addition.

Theorem 16. If a subset B of an affine space A contains each line deter-
mined by any two of its points, then B is an affine subspace of A.

Proof. If B is empty or a singleton, then it is an affine subspace of A.
Otherwise choose x ∈ B, and define V = B − x. For distinct points y1 and
y2 in B and distinct vectors vi = yi− x in V , the line determined by v1 and
v2 is the set of vectors of the form

v1 + s(v2 − v1) = y1 − x+ s(y2 − y1)
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and hence is the image under the mapping y 7→ y − x of the line in B
determined by y1 and y2. Hence, by the lemma, V is a vector subspace of
the translation space of A. And B = x+ V is an affine subspace of A.

Lemma 17. If x is a point, v is a vector, s is a scalar, f is an affine
function, then

f(x+ sv) = f(x) + sf ′(x)(v)

= f(x) + s[f(x+ v)− f(x)]
(22)

Proof. Using f ′(x) = g, the associated linear function, applying (4b) above
gives f(x + sv) = f(x) + g(sv), linearity of linear functions gives g(sv) =
sg(v) and (6) above gives g(v) = f(x+ v)− f(x).

Theorem 18. Every image and preimage of an affine subspace through an
affine function is an affine subspace.

With more symbols, suppose f : A→ B is an affine function. If C is an
affine subspace of A, then f(C) is an affine subspace of B, If C is an affine
subspace of B, then f−1(C) is an affine subspace of A,

Proof. Suppose C is an affine subspace of B. If f−1(C) is the empty set
or a singleton set, then it is an affine subspace. Otherwise suppose f−1(C)
contains distinct points x and y. Then by Lemma 17

f
(
x+ s(y − x)

)
= f(x) + s[f(y)− f(x)] (23)

Since C contains every line determined by any two of its points, the right-
hand side of (23) is contained in C. Hence so is the left-hand side. Hence
x+ s(y − x) ∈ f−1(C).

Now suppose C is an affine subspace of A. If f(C) is the empty set or a
singleton set, then it is an affine subspace. Otherwise suppose f(C) contains
distinct points f(x) and f(y). We still have (23), which now shows that if
C contains every line determined by two of its points, so does f(C).

Corollary 19. Every image and preimage of a vector subspace through a
linear function is a vector subspace.

Proof. Apply the theorem and the fact that if f is a linear function, then
f(0) = 0.

For f : A→ B and C ⊂ A, let f̃ denote the domain-codomain restriction
of f that has domain C, codomain f(C) and rule x 7→ f(x). (The rule
remains the same, the domain and codomain are changed.)
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Lemma 20. The domain-codomain restriction f̃ described above, when f :
A → B is a vector isomorphism and C is a vector subspace of A, is also a
vector isomorphism that makes C isomorphic to f(C).

Proof. Because f is one-to-one, so is f̃ . Because f̃ is onto by definition, it
is thus invertible. So we only need to check that f̃ is linear. Because f and
f̃ have the same rule, we have f̃(x + y) = f̃(x) + f̃(y) and f̃(ax) = af̃(x).
Since f(C) is a vector space (Corollary 19 above), f̃(x) + f̃(y) and af̃(x)
are contained in f(C).

Lemma 21. The domain-codomain restriction f̃ described above, when f :
A → B is an affine isomorphism and C is an affine subspace of A, is also
an affine isomorphism that makes C isomorphic to f(C).

Proof. Because f is one-to-one, so is f̃ . Because f̃ is onto by definition, it
is thus invertible. So we only need to check that f̃ is affine.

If C is empty then so is f(C) and f̃ is the empty function, which is affine
by definition.

Otherwise, let x ∈ C, let U be the translation space of C, and define g̃
by

g̃(u) = f̃(x+ u)− f̃(x), u ∈ U.

If g is the associated linear function of f , then

g̃(u) = f̃(x+ u)− f̃(x)

= f(x+ u)− f(x)

= g(u)

So g̃ is the domain-codomain restriction of g and g(U) is the translation
space of f(C). So g̃ is a linear function by Lemma 20 above.

In particular, affine isomorphisms map empty affine spaces to empty
affine spaces, points to points, lines to lines, planes to planes, and hyper-
planes to hyperplanes.

Theorem 22. If A is a finite-dimensional affine space and f : A→ R is a
nonconstant affine function, then

{x ∈ A : f(x) = c } (24)

is a hyperplane, and, conversely, all hyperplanes have this form.
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Proof. Let g denote the associated linear function of f , then g is not the
zero function. By the rank plus nullity theorem (Halmos, 1974, Theorem 1
of Section 50), the rank of g is one, so the rank of the null space of g is d−1
where d is the rank of A and its translation space. We already know from
Theorem 18 that (24) is an affine subspace. The null space of g is its own
translation space, so (24) has dimension d− 1.

Conversely, suppose H is a hyperplane in A. Let V be the translation
space of A, let U be the translation space of H, and let x be a vector in
V \ U . By the separating hyperplane theorem (Rudin, 1991, Theorem 3.4)
there exists a linear functional g on V and a real number r such that g(x) > r
and g(u) < r for u ∈ U . Since U is a vector subspace, it contains the origin.
Hence 0 = g(0) < r. Unless U is zero-dimensional, it contains a vector u 6= 0.
Since U is closed under scalar multiplication we have sg(u) = g(su) < r for
all real numbers s. This implies g(u) = 0 for all u ∈ U . Furthermore, by the
rank plus nullity theorem (cited above) the null space of g has dimension
d − 1 so must be a hyperplane containing H, so it is H. Thus g(u) = 0 if
and only if u ∈ U .

Now let y be a point in H. Define f : A→ R by

f(x) = g(x− y) + c, x ∈ A.

Then H is given by (24).

5 Convexity

5.1 Definitions

Do our notions of convexity and concavity have to change? The basic
definitions for convexity and concavity are relative to lines (Rockafellar,
1970; Rockafellar and Wets, 1998). If the intersection of a set with each line
is convex, then the set is convex. If the restriction of a function to each
line is convex (resp. concave), then the function is convex (resp. concave).
Rockafellar and Wets only give these definitions for Rn. Others give them
for abstract vector spaces. As far as I know, no one else gives them for
abstract affine spaces. But, since we know what lines are in abstract affine
spaces, the generalization seems obvious.

The only change in our habits needed in affine spaces is the triviality
discussed in Section 3.2.3 above. If a and b are distinct vectors, the open
line segment with endpoints a and b can be written

{ sa+ (1− s)b : 0 < s < 1 }
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but the formula sa + (1 − s)b makes no sense when a and b are distinct
points, because points cannot be multiplied by scalars, only vectors can be.
As we saw in Section 4.6 above, the correct way to parameterize points on
a line is x + sv, where x is a point, v is a vector, and s is a scalar, so the
correct way to write the line segment with endpoints a and b in an affine
space is

{ a+ s(b− a) : 0 < s < 1 }

So a set S in an abstract affine space is convex if

a+ s(b− a) ∈ S, whenever a, b ∈ S and 0 < s < 1. (25)

Following Rockafellar (1970) and Rockafellar and Wets (1998) we con-
sider convex functions that are allowed to have infinite values. So the
codomain is the extended real number system R, which topologically is the
two-point compactification of the real line. The order is the obvious one
with −∞ < x < +∞ for any real number x. The topology is the order
topology. And the arithmetic is mostly obvious except it is not obvious how
to define ∞−∞ or 0 · ∞. Rockafellar and Wets (1998, Section 1.E) define
both, although they adopt different definitions of ∞−∞ in different con-
texts. We will adopt 0 ·∞ = 0, which agrees with Rockafellar and Wets and
which is widely used in probability theory, but will leave ∞−∞ undefined.
For details see Section 1.E of Rockafellar and Wets (1998).

One virtue of having R as the codomain is that one can always have a
whole affine space as the domain of convex functions (rather than a convex
subset thereof; Rockafellar and Wets, 1998, Chapter 1), and this greatly
simplifies theory, especially the theory of exponential families (Section 7.4
below).

An extended-real-valued function f on an abstract affine space A is con-
vex if

f(x+ t[y − x]) ≤ tf(x) + (1− t)f(y),

whenever x, y ∈ A and 0 < t < 1 and f(x) <∞ and f(y) <∞.

If all the conditions are satisfied, the right-hand side of the inequality is
always well defined. If f(x) and f(y) are both finite, then the right-hand
side is finite. If either f(x) or f(y) is infinite, then the only allowed value is
−∞, and the right-hand side is −∞. We call the inequality in this definition
the convexity inequality.

The set
dom f = {x ∈ V : f(x) <∞}
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is called the effective domain of the convex function f (the domain is by
definition all of the affine space on which f is defined).

A convex function is said to be proper if it nowhere takes the value −∞
and does not everywhere have the value +∞ (so the effective domain is
nonempty).

Theorem 23. The effective domain of a convex function is a convex set.

Proof. Immediate from the convexity inequality.

A proper convex function is said to be strictly convex if we have strict
inequality in the convexity inequality whenever x 6= y and f(x) and f(y)
finite.

Theorem 24. If f is a convex function and g is an affine function, and the
domain of f is the codomain of g, then f ◦ g is a convex function.

If f is an extended-real-valued function and g is an affine isomorphism,
then f is a convex function if and only if f ◦ g is a convex function.

The latter also holds when “convex” is replaced by “strictly convex”.

Proof. Write h = f ◦ g. Assume f is convex. Apply Lemma 17 obtaining

h(x+ s[y − x]) = f(g(x+ s[y − x]))

= f(g(x) + s[g(y)− g(x)])

≤ sf(g(x)) + (1− s)f(g(y))

= sh(x) + (1− s)h(y)

(26)

whenever h(x) <∞ and h(y) <∞ and 0 < s < 1. So h is convex.
Now assume h is convex and g is an isomorphism. Now we know

h(x+ s[y − x]) ≤ sh(x) + (1− s)h(y).

For any points u and v in the domain of f , which is the codomain of g, we
can define x = g−1(u) and y = g−1(v), and we have

f(u+ s[v − u]) = f(g(x) + s[g(y)− g(x)])

= h(x+ s[y − x])

≤ sh(x) + (1− s)h(y)

= sf(g(x)) + (1− s)f(g(y))

= sf(u) + (1− s)f(v)

(27)

So f is convex.
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For the assertion about strict convexity we repeat the proof above with
g an affine isomorphism. If we assume f is strictly convex and x 6= y, then
we also have g(x) 6= g(y) and hence get strict inequality in (26), so h is
also strictly convex. If we assume h is strictly convex and u 6= v, then we
also have x 6= y and hence get strict inequality in (27), so f is also strictly
convex.

We take the second and third sentences of the theorem statement to be
how transfer works for convexity and strict convexity. Rockafellar (1970)
and Rockafellar and Wets (1998) only work with convex functions on Rd.
But transfer says that f is convex if and only if f ◦ g is convex when g is an
affine isomorphism from Rd to the abstract affine space that is the domain
of f , and similarly for strictly convex.

5.2 Convexity and Optimization

Convex functions are useful in optimization because of the property that
every local minimizer is a global minimizer, which follows directly from the
convexity inequality. Ignore the trivial case where the objective function
is everywhere equal to +∞. Assume to get a contradiction that x is a
local minimizer and there exists a point y such that f(y) < f(x), then the
convexity inequality says

f
(
x+ t(y − x)

)
≤ tf(y) + (1− t)f(x) < f(x), 0 < t < 1,

which contradicts x being a local minimizer.
Proper strictly convex functions are useful in optimization because of the

property that they have at most one local minimizer (which if it exists is the
unique global minimizer). This too follows immediately from the definitions.
Assume to get a contradiction that x and y are distinct local minimizers.
We already know (from convexity) that x and y must be global minimizers,
so f(x) and f(y) are finite and equal. Then the strict convexity inequality
says

f
(
x+ t(y − x)

)
< tf(y) + (1− t)f(x) = f(x), 0 < t < 1, (28)

but this contradicts x and y being global minimizers.

5.3 Concavity

A function f is concave if −f is convex. A function f is strictly concave
if −f is strictly convex. A concave function f is proper if −f is proper. The
effective domain of a concave function f is dom(−f).
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Every local maximizer of a concave function is a global maximizer. A
proper strictly concave function has at most one local maximizer (which if
it exists is the unique global maximizer).

All the theory of concave functions follows from the theory of convex
functions (just stand on your head so concave functions look convex).

5.4 Convexity and Derivatives

We say a real-valued function on an open convex set O of a finite-
dimensional affine space A is convex if the convexity inequality holds with A
replaced by O. It is strictly convex if the convexity inequality holds strictly
with A replaced by O and x 6= y.

Theorem 25. For a real-valued function f defined on an open convex set O
in a finite-dimensional affine space, each of the following conditions is both
necessary and sufficient for f to be convex on O, assuming the derivatives
that appear in them exist.

(a) 〈y − x, f ′(y)− f ′(x)〉 ≥ 0, for all x, y ∈ O.

(b) f(y) ≥ f(x) + 〈y − x, f ′(x)〉, for all x, y ∈ O.

(c) f ′′(x) is positive semidefinite for all x ∈ O.

And each of the following conditions is both necessary and sufficient for f to
be strictly convex on O, assuming the derivatives that appear in them exist.

(d) 〈y − x, f ′(y)− f ′(x)〉 > 0, for all x, y ∈ O such that x 6= y.

(e) f(y) > f(x) + 〈y − x, f ′(x)〉, for all x, y ∈ O such that x 6= y.

The following condition is sufficient (but not necessary) for f to be strictly
convex on O, assuming the derivatives that appear in it exist.

(f) f ′′(x) is positive definite for all x ∈ O.

Proof. This is Theorem 2.14 in Rockafellar and Wets (1998) except they
state it for Rd rather than any finite-dimensional affine space and are con-
sidering f ′(x) as a vector and f ′′(x) as a matrix.

So we need to use transfer. Let A be the finite-dimensional affine space
containing O and let g be an invertible affine function Rd → A. Then g−1(O)
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is an open convex set in Rd. Fix x ∈ O, and let y = g−1(x) and h = f ◦ g.
From the chain rule

h′(y) = f ′(x) ◦ g′(y)

= f ′
(
g(y)

)
◦ g′(y)

= (f ′ ◦ g)(y) ◦ g′(y)

and from the affine function rule we know g′(y) does not actually depend
on y (it is the linear function associated with g). Let U be the translation
space of A. Then f ′(x) is a linear function U → R. Hence so is (f ′ ◦ g)(y).
The types match up

Rd U

R

g′(y)

h′(y)
(f ′◦g)(y)

It follows that f ′ ◦ g itself is a nonlinear function Rd → L(U,R).
Composition of linear functions is bilinear (linear in both arguments),

so by the multiplication rule

h′′(y)(v) = (f ′ ◦ g)′(y)(v) ◦ g′(y), v ∈ Rd

because g′′(y) = 0.
This makes sense because h has type Rd → R, so h′′(y) has type Rd →

Rd → R, and h′′(y)(v) has type Rd → R. And we just learned that f ′ ◦ g
maps Rd → L(U,R). So its derivative (f ′ ◦ g)′(y) has the same type (except
the former is nonlinear and the latter is linear), and (f ′ ◦ g)′(y)(v) is an
element of L(U,R). The types match up

Rd U

R

g′(y)

h′′(y)(v)
(f ′◦g)′(y)(v)

By the chain rule

(f ′ ◦ g)′(y) = f ′′
(
g(y)

)
◦ g′(y)

Here f ′ ◦ g maps Rd → L(U,R). So its derivative (f ′ ◦ g)′(y) does the same
(except is linear). Also f maps O → R, so its derivative f ′(x) is an element
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of L(U,R), so f ′′(x) maps U → L(U,R). The types match up

Rd U

L(U,R)

g′(y)

(f ′◦g)′(y)
f ′′(x)

So if we evaluate (f ′ ◦g)′(y) at a vector v ∈ Rd, we get an element of L(U,R)

(f ′ ◦ g)′(y)(v) = f ′′(x)
(
g′(y)(v)

)
and

h′′(y)(v) = f ′′(x)
(
g′(y)(v)

)
◦ g′(y)

and
h′′(y)(v)(w) = f ′′(x)

(
g′(y)(v)

)(
g′(y)(w)

)
Now let x1 and x2 be distinct elements of O and yi = g−1(xi). Then

h′(y1)− h′(y2) = f ′(x1) ◦ g′(y1)− f ′(x2) ◦ g′(y2)

=
(
f ′(x1)− f ′(x2)

)
◦G

where we have recalled that g′(y) does not depend on y and is a linear
function Rd → U and written g′(y) = G. So

〈y1 − y2, h
′(y1)− h′(y2)〉 =

〈
y1 − y2,

(
f ′(x1)− f ′(x2)

)
◦G
〉

=
(
f ′(x1)− f ′(x2)

)(
G(y1 − y2)

)
Because G is the linear function associated with the affine function g, by
Lemma 7 with commutative diagram

Rd A

Rd U

g

sy2 sx2

G

we have G(y1 − y2) = x1 − x2. Hence

〈y1 − y2, h
′(y1)− h′(y2)〉 = 〈x1 − x2, f

′(x1)− f ′(x2)〉

and this establishes the equivalence of statements (a) and (d) for our theorem
and the theorem in Rockafellar and Wets.
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Now

h(y2)− h(y1)− 〈y2 − y1, h
′(y1)〉 = f(x2)− f(x1)− h′(y1)(y2 − y1)

= f(x2)− f(x1)−
(
f ′(x1) ◦G

)
(y2 − y1)

= f(x2)− f(x1)− f ′(x1)
(
G(y2 − y1)

)
= f(x2)− f(x1)− f ′(x1)(x2 − x1)

= f(x2)− f(x1)− 〈x2 − x1, f
′(x1)〉

and this establishes the equivalence of statements (b) and (e) for our theorem
and the theorem in Rockafellar and Wets.

Now
h′′(y)(v1)(v2) = f ′′(x)(G(v1))(G(v2))

Since G is invertible, it follows that h′′(y) is positive definite (resp. positive
semi-definite) if and only if f ′′(x) is, and this establishes the equivalence of
statements (c) and (f) for our theorem and the theorem in Rockafellar and
Wets.

5.5 Fermat’s Principle

We know from multivariable calculus what is called Fermat’s principle: if
f is a function Rd → R that is differentiable at x, then a necessary condition
for x to be a local minimum or a local maximum is f ′(x) = 0.

This is just as true for real-valued functions on abstract affine spaces.
If f is a function A → R that is differentiable at x, where A is an abstract
finite-dimensional affine space, then a necessary condition for x to be a local
minimum or a local maximum is f ′(x) = 0.

This is obvious by transfer. Suppose g : Rd → A is an affine isomorphism,
and write y = g−1(x). Then f has a local minimum (resp. local maximum)
at x if and only if h = f ◦ g has a local minimum (resp. local maximum) at
y. By the chain rule

h′(y) = f ′(x) ◦ g

or
h′(y)(z) = f ′(x)

(
g(z)

)
.

By Fermat’s principle for Rd we have h′(y)(z) = 0, for all z ∈ Rd, and since
g is an isomorphism, that implies f ′(x)(v) = 0 for all v ∈ V .

But we get a much sharper condition from Theorem 25 (b).

Theorem 26. If f is a differentiable real-valued convex (resp. concave)
function defined on an open convex subset of a finite-dimensional affine
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space, then a necessary and sufficient condition for x to be a global min-
imizer (resp. maximizer) of f is f ′(x) = 0.

5.6 Hulls

Lemma 27. The intersection of a family of convex sets is convex. The
intersection of a family of affine subspaces is an affine subspace. The inter-
section of a family of vector subspaces is a vector subspace.

Proof. Suppose C is a family of convex subsets of the same affine space. Any
points x and y in

⋂
C are contained in every element of C. Hence the line

segment (x, y) having end points x and y is contained in every element of C.
Hence (x, y) is contained in

⋂
C.

A similar argument shows that if A is a family of affine subspaces of
the same affine space, and x and y are distinct points in

⋂
A, then the line

determined by x and y is in
⋂
A.

So if V is a family of vector subspaces of the same vector space we already
know that

⋂
V is a affine subspace. But since

⋂
V must also contain the

origin, it is a vector subspace.

From the lemma we learn that for any set S there is a smallest convex
set containing it (the intersection of all convex sets containing it) and simi-
larly a smallest affine subspace containing it and a smallest vector subspace
containing it. These are denoted con(S), aff(S), and span(S), respectively.
Note that con(∅) and aff(∅) are empty, but span(∅) is the zero subspace
{0}.

5.7 Topology

The relative interior of a convex set C is the interior of C relative to
aff(C), that is, the interior of C considered as a subset of the topological
space aff(C). The relative interior of C is denoted ri(C).

Lemma 28. Every image and preimage of a convex set through an affine
function is a convex set.

Proof. The proof is the same as the proof of Theorem 18 except for only
considering line segments rather than lines.

Theorem 29. In a finite-dimensional affine space, the closure of a con-
vex set is convex, the relative interior of a convex set is convex, and every
nonempty convex set has a nonempty relative interior.

46



Proof. For convex sets in Rd, these assertions are found in Propositions 2.32
and 2.40 in Rockafellar and Wets (1998). They are transferred to any finite-
dimensional affine space by affine isomorphism because closure and relative
interior are topological affine space operations.

6 Probability Theory

6.1 Random Vectors

In any topological vector space V , a random vector is a random object
described by a Borel probability measure on V . Thus this concept also
extends far beyond finite-dimensional vector spaces.

6.2 Ordinary Moments

In Rd the mean of a random vector X is the vector whose components
are the means of the components of X. In an abstract vector space, vectors
have no components (they can be given components by a choice of basis, but
every different choice of basis leads to a different notion of components).

The good analog of components in Rd in an abstract vector space V
is all of the 〈X, η〉 for all η ∈ V ∗. This gives us an infinite number of
“components” 〈X, η〉, but, of course, since V ∗ is finite-dimensional, this
infinite number of “components” are determined by 〈X, ηi〉 where η1, . . . ,
ηd are a basis for V ∗. This analogy also works the other way. In Rd the
map y 7→ yi, where yi denotes a component of y, is a linear functional (a
vector-to-scalar linear function), hence an element of the dual space of Rd,
hence 〈 · , η〉, where η is another notation for the function y 7→ yi.

Having got the right analogy, it is fairly obvious how moments should
be defined (and we get confirmation when we consider moment generating
functions in Section 6.11 below).

If X is a random vector in an abstract finite-dimensional vector space
V , then the first ordinary moment is the unilinear form V ∗ → R defined by

α1(η) = E(〈X, η〉), η ∈ V ∗

provided all of the expectations exist. When E(〈X, η〉) does not exist for
some η, we say the mean of X does not exist. “Unilinear form” is not a
term we use often; it means the same thing as “linear functional” but goes
with the terms we use for higher moments.
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The second ordinary moment is the symmetric bilinear form V ∗ → V ∗ →
R defined by

α2(η1)(η2) = E(〈X, η1〉〈X, η2〉), η1, η2 ∈ V ∗

provided all of the expectations exist (otherwise, we say the second ordinary
moment does not exist).

The third ordinary moment is the symmetric trilinear form V ∗ → V ∗ →
V ∗ → R defined by

α3(η1)(η2)(η3) = E(〈X, η1〉〈X, η2〉〈X, η3〉), η1, η2, η3 ∈ V ∗

provided all of the expectations exist (otherwise, we say the third ordinary
moment does not exist).

And so on (you get the general idea, we hope, although we actually won’t
be interested in higher than second moments in this document).

The “ordinary” in “ordinary moment” is not a widespread usage. Your
humble author uses it to contrast ordinary moments and central moments
(Section 6.7 below). Most people say “moment” instead of “ordinary mo-
ment.”

6.3 Mean

The first ordinary moment is also called the mean. So we, like everybody
else, also use the notation µ for mean instead of α1 for first ordinary moment.

As we said in the preceding section, if X is a random vector in V , then
its mean µ is a unilinear form on V ∗, which is the same thing as saying µ is
a linear functional on V ∗, which is the same thing as saying µ ∈ V ∗∗.

When V is finite-dimensional, we have the natural isomorphism that
makes V ∗∗ = V , that allows us to consider µ an element of V , the same
space where X lives.

6.4 Random Elements of Topological Affine Spaces

In any topological affine space A, a random element of A, also called a
random point, is described by a Borel probability measure on A.

An empty affine space cannot support a probability measure because the
measure of the empty set must be zero for any measure but the empty set is
the whole space so must have probability one for any probability measure.
Thus to say that X is a random point in an affine space A automatically
implies that A is nonempty.
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6.5 Supports

A topological space is second countable if there is a countable basis,
which is a countable family B of open sets such that every open set is a
union of elements of B.

Lemma 30. For any Borel probability measure P on a second countable
topological space, there is a smallest closed set C such that P (C) = 1.

The set C that the lemma asserts the existence of is called the support
of P .

Proof. Let B be the countable basis, let

B0 = {B ∈ B : P (B) = 0 },

and let W =
⋃
B0. Then by countable subadditivity, P (W ) = 0. So if we

let C be the complement of W , we have P (C) = 1.
Any open set U larger than W cannot have P (U) = 0, because otherwise

U would be a countable union of elements of B0, and U ⊂ W contrary to
the assumption that U is larger. Hence W is the largest open set having
probability zero, and C is the smallest closed set having probability one.

Any finite-dimensional affine space A given the topology described in
Section 3.4 above is a second-countable topological space. Let f : Rd → A
be an affine isomorphism. As is well known, Rd is second countable (the set
of open balls having centers having rational coordinates and having rational
radii is a countable basis). If B is a countable basis for Rd, then

{ f(B) : B ∈ B }

is a countable basis for A. Similarly, for any finite-dimensional vector space.
Let cl denote the closure operator for topological spaces.

Theorem 31. Suppose A is a finite-dimensional affine space and P is a
Borel probability measure on A. Let C be the support of P . Then cl(con(C))
is the smallest closed convex set having P -probability one, aff(C) is the
smallest affine subspace having P -probability one, and span(C) is the small-
est vector subspace having P -probability one.

Consequently, we say cl(con(C)) is the convex support of P , we say aff(C)
is the affine support of P , and we say span(C) is the vector support of P .
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Proof. The closure of a convex set is a convex set (Theorem 29 above).
Hence cl(con(C)) is closed and convex and has P -probability one. If D is
any other closed convex set such that P (D) = 1, then we must have C ⊂ D,
hence con(C) ⊂ D, hence cl(con(C)) ⊂ D.

By Corollary 3, aff(C) is closed and affine, so a similar argument works
for it.

Also span(C) is a closed vector subspace, so a similar argument works
for it.

6.6 The Mean of a Random Element of an Affine Space

In general, ordinary moments make no sense for random elements of
affine spaces because there is no dual space, double dual, etc. However,
there ought to be a mean, and we define it as follows.

Theorem 32. Suppose X is a random element of a finite-dimensional affine
space A and E{f(X)} exists for every affine function f : A→ R. Then there
exists a unique µ ∈ A, such that

E{f(X)} = f(µ), for every affine function f : A→ R.

Under the condition of the theorem we say that the µ asserted to exist
by the theorem is the mean of X. Otherwise, we say the mean of X does
not exist.

Proof. Let U be the translation space of A, and for any affine function
f : A→ R let f̃ : U → R be the associated linear function. Fix a ∈ A. Then

f(X) = f(a) + f̃(X − a)

= f(a) + 〈X − a, f̃〉

Hence

E{f(X)} = f(a) + E{〈X − a, f̃〉}
= f(a) + 〈E{X − a}, f̃〉
= f(a) + 〈µX−a, f̃〉

where µX−a is the mean of the random vector X − a, which exists because
E{〈X − a, f̃〉} = E{f(X)} − f(a) and the right-hand side is always finite
by assumption of the theorem.
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Taking µX−a to be an element of U rather than U∗∗ using the natural
isomorphism, define µ = a+ µX−a. Then

f(a) + 〈µX−a, f̃〉 = f(a) + f̃(µX−a)

= f(a) + f̃(µ− a)

= f(µ)

As the proof shows, we already had a definition of the mean of a random
vector as an element of the vector space where it lives, and this agrees with
our new definition in this section.

We say a family of functions F from A to B separates points of A if
whenever x and y are distinct points of A there exists an f ∈ F such that
f(x) 6= f(y).

Corollary 33. The family of all real-valued affine functions on a finite-
dimensional affine space A separates points of A.

Proof. Consider the random variable X concentrated at the single point x
in A. Then E(X) = x, and the theorem asserts that there is no other
point y in A such that E{f(X)} = f(y) for all real-valued affine functions
f on A. Since we know that E{f(X)} = f(x), this says it is not true that
f(x) = f(y) for all real-valued affine functions f on A. And this says the
family real-valued affine functions on A separates points of A.

Corollary 34. Suppose A and B are finite-dimensional affine spaces, X is
a random element of A having mean µ, and f : A→ B is an affine function.
Then Y = f(X) has mean f(µ).

Proof. For any affine function g : B → R, the function h = g ◦ f is affine
so by definition E{h(X)} = E{g(Y )} exists. So by the theorem there is a
unique point ν ∈ B such that

E{g(Y )} = g(ν)

for all affine functions g : B → R, and by definition ν = E(Y ). We also have

g(ν) = g(f(µ))

for all affine functions g : B → R. So, by Corollary 33, ν = f(µ).
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6.7 Central Moments of Random Vectors

If X is a random element of an abstract finite-dimensional vector space
V having mean µ, then the first central moment of X is the unilinear form
V ∗ → R defined by

µ1(η) = E(〈X − µ, η〉), η ∈ V ∗,

the second central moment is the symmetric bilinear form V ∗ → V ∗ → R
defined by

µ2(η1)(η2) = E(〈X − µ, η1〉〈X − µ, η2〉), η1, η2 ∈ V ∗, (29)

the third central moment is the symmetric trilinear form V ∗ → V ∗ → V ∗ →
R defined by

µ3(η1)(η2)(η3) = E(〈X − µ, η1〉〈X − µ, η2〉〈X − µ, η3〉), η1, η2, η3 ∈ V ∗,

and so forth. Again, these definitions assume that all expectations involved
exist. When some expectation involved in the definition does not exist, then
that central moment does not exist.

It is customary to use µ without subscripts for the mean and µ with
subscripts for central moments, which can be confusing, but in this document
we will have little possibility of confusion because we will only be interested
in the second central moment and will give it a special name and notation.

The first central moment µ1 is weird because, by linearity of expectation,

µ1(η) = E(〈X − µ, η〉) = E(〈X, η〉)− 〈µ, η〉 = 〈µ, η〉 − 〈µ, η〉 = 0

so µ1 is just another name for the zero unilinear form. We could have started
the definitions with µ2, but chose not to because it is sometimes nice to use
the notation µ1 to preserve symmetry of formulas (but we won’t see that in
this document).

It might appear at first sight that because of the appearance of X − µ
in the formulas for central moments that this concept relies on the repre-
sentation V ∗∗ = V for the double dual (unless µ ∈ V we cannot do the
subtraction X − µ). But appearances are deceiving because

〈X − µ, η〉 = 〈X, η〉 − 〈µ, η〉

and we can always consider the right-hand side to be well defined even if we
consider µ to be an element of V ∗∗. In that case, the two canonical bilinear
forms on the right-hand side are different. In 〈X, η〉, it is the one placing V
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and V ∗ in duality. In 〈µ, η〉, which we should perhaps now write 〈η, µ〉, it
is the the one placing V ∗ and V ∗∗ in duality. Thus we could write

µ2(η1)(η2) = E([〈X, η1〉 − 〈η1, µ〉][〈X, η2〉 − 〈η2, µ〉])

and so forth to avoid reliance on V ∗∗ = V . This seems a little too pedantic
for us, so we won’t bother to fuss about this issue.

Also this technicality does not carry over to affine spaces. There we
have only one definition of the mean: the mean of a random element of an
affine space A is a point of A (Section 6.6). It cannot be an element of
the double dual because an affine space has no double dual. Its translation
space has a double dual, but there is no natural isomorphism between an
affine space and the double dual of its translation space. If A is a finite-
dimensional affine space having translation space V , there is of course the
natural isomorphism V → V ∗∗ but there is no natural isomorphism A→ V .
There are many isomorphisms, none of them more special than any other.

6.8 Central Moments of Random Elements of Affine Spaces

Having defined the mean µ of a random element X of a finite-dimensional
affine space as in Section 6.6, central moments ofX are by definition ordinary
moments of the random vector X − µ. So the theory for this is all already
done.

If X is a random element of a finite-dimensional affine space A having
translation space V , then the first central moment, if it exists, is the zero
unilinear form on V ∗, the second central moment, if it exists, is a symmetric
bilinear form on V ∗, the third central moment, if it exists, is a symmetric
trilinear form on V ∗, and so forth.

6.9 Variance

6.9.1 Generalities

The second central moment is also called the variance, and we also use
the notation Σ for variance instead of µ2 for second central moment.

As we said in the preceding section, if A is a finite-dimensional affine
space having translation space V , and X is a random element of A, then its
variance Σ is a symmetric bilinear form on V ∗, which is the same thing as
saying Σ has type V ∗ → V ∗ → R, but every linear function V ∗ → R is a
linear functional on V ∗, hence an element of V ∗∗, so the type can also be
written V ∗ → V ∗∗. When we are using the representation V ∗∗ = V , the
type is also V ∗ → V .
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Thus we can consider variance to be either a symmetric bilinear form on
V ∗ or a linear function V ∗ → V . Considered as a bilinear form, it is

Σ(η1)(η2) = E{〈X − µ, η1〉, 〈X − µ, η2〉}, η1, η2 ∈ V ∗. (30)

Considered as a linear function, it maps η1 ∈ V ∗ to the unique x ∈ V such
that 〈x, · 〉 is the linear function on V ∗ that is also denoted Σ(η1). If Σ
denotes this linear function, then we can also write the bilinear form

(η1, η2) 7→ 〈Σ(η1), η2〉. (31)

If we take V and V ∗ to both be Rd and the canonical bilinear form to
be 〈x, y〉 = xT y, the usual conventions for probability theory on Rd, then
variance is usually defined to be a matrix M having components

mij = cov(Xi, Xj) (32)

In this case, the corresponding bilinear form is (x, y) 7→ xTMy, and the
corresponding linear function is x 7→ Mx. A square matrix can represent
either a bilinear form or a linear function.

Many people do not like the term “variance matrix” for the matrix hav-
ing components (32) because it involves covariances. Some call it the “co-
variance matrix” but that is really bad terminology, because what then do
you call the covariance of two random vectors? Others call it the “variance-
covariance matrix.” Others call it the “dispersion matrix.” But your humble
author always uses “variance matrix” on the grounds that it is the vector
analogue of the variance of a random scalar. This is seen in the formulas for
the change of mean and variance under a linear transformation (Section 6.10
below), in the central limit theorem and the delta method (Sections 6.16
and 6.17 below), and in many other places. Hence we also call Σ defined by
(30) the “variance” (considered as either a symmetric bilinear form or as a
linear function).

6.9.2 Symmetric and Positive Semidefinite

A variance matrix is symmetric and positive semidefinite and every sym-
metric and positive semidefinite matrix is a variance matrix (there is, for
example, a normal random vector with that variance matrix). Moreover, the
variance matrix fails to be positive definite if and only if its random vector
is concentrated on a hyperplane. Moreover, the variance matrix fails to be
positive definite if and only if it is not invertible. What are the analogs of
these properties in the abstract picture?
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6.9.3 Symmetry and Adjoints

First we consider variance as a bilinear form, in which case symmetric
refers to the bilinear form. We have

Σ(η)(η) = E{〈X − µ, η〉2} ≥ 0,

and this is the positive semi-definiteness property. A symmetric bilinear
form Σ : V ∗ × V ∗ → R is positive semidefinite if

Σ(η)(η) ≥ 0, η ∈ V ∗. (33)

It is positive definite if

Σ(η)(η) > 0, η ∈ V ∗, η 6= 0. (34)

Positive definiteness fails if there is an η 6= 0 such that

Σ(η)(η) = E{〈X − µ, η〉2} = 0,

which happens if and only if 〈X−µ, η〉 = 0 almost surely, which is the same
as saying that X is concentrated on the hyperplane

H = {x ∈ A : 〈x− µ, η〉 = 0 }. (35)

When we think of Σ as a linear function V ∗ → V , the corresponding
bilinear form is (31), and symmetry of this bilinear form says

〈η1,Σ
∗(η2)〉 = 〈Σ(η1), η2〉 = 〈Σ(η2), η1〉 (36)

And this leads to the following.

Theorem 35. If we are using the representation V ∗∗ = V , then a symmet-
ric bilinear form, when considered as a linear operator, is its own adjoint.

Proof. We need to be careful about (36) says. If we are fussy about which
slot in 〈 · , · 〉 is in the dual space, says the dual space to the right, then (36)
becomes

〈Σ∗(η2), η1〉
V×V ∗

= 〈η1,Σ
∗(η2)〉

V ∗×V ∗∗
= 〈Σ(η1), η2〉

V×V ∗
= 〈Σ(η2), η1〉

V×V ∗

where we have added another equality on the left that is not in (36), and
reading from end to end gives Σ∗ = Σ. But the first and second equalities
just above are explicitly using V ∗∗ = V .

If we don’t use V ∗∗ = V , then Σ : V ∗ → V ∗∗ and Σ∗ : V ∗∗∗ → V ∗∗
don’t even have the same type.
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6.9.4 Positive Definiteness and Invertibility

A one-to-one linear function going between finite-dimensional vector
spaces is invertible only if it goes between vector spaces of the same di-
mension (Section 2.2 above). By definition, a function (linear or nonlinear)
is invertible if and only if it is injective and surjective (one-to-one and onto).
A linear function going between finite-dimensional vector spaces of the same
dimension is injective if and only if it is surjective (Halmos, 1974, Theorem 1
of Section 50). Thus a necessary condition for a morphism in the category
of finite-dimensional vector spaces to be iso is that its domain and codomain
have the same dimension. And a sufficient condition is that it be injective.
And another sufficient condition is that it be surjective.

Theorem 36. A variance considered as a bilinear form is positive definite
if and only if it is invertible considered as a linear function.

Proof. If we consider a variance Σ as a bilinear form V ∗ → V ∗ → R, then it
fails to be positive definite if and only if there exists a nonzero η such that
〈X − µ, η〉 = 0 almost surely. But then

Σ(η)(η2) = E{〈X − µ, η〉, 〈X − µ, η2〉} = 0

for all η2 which implies Σ(η) = 0 because linear functionals separate points
(Corollary 33 above).

Conversely Σ(η) = 0 obviously implies Σ(η)(η2) = 0.

6.9.5 Comparison with the Rd Picture

If we treat V and V ∗ as both being Rd for some d and take the canonical
bilinear form to be 〈x, η〉 = xTAη for some (fixed throughout the discussion)
symmetric positive definite matrix A, then the matrix corresponding to the
linear function Σ will be a symmetric positive semidefinite matrix. But,
as we said in Section 4.5.3 above, any invertible matrix A will do here,
not necessarily either symmetric or positive definite. And then the matrix
corresponding to Σ need not be symmetric or positive semidefinite. Of
course, for practical calculations, one wouldn’t do that because it would be
confusing. But one could do that, which shows that (beating a dead horse
here) abstract vector spaces aren’t really Rd for some d, and linear functions
between them aren’t really matrices, and there is no unique way to associate
matrices with them.
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6.10 Change of Mean and Variance under Affine Functions

Theorem 37. Suppose A and B are finite-dimensional abstract affine spaces
and f is an affine function A → B. Suppose X is a random element of A
and Y = f(X). Let µX and µY denote the means of X and Y , and let ΣX

and ΣY denote the variances of X and Y . Then

µY = f(µX) (37)

and when variances are considered as bilinear forms

ΣY (η1)(η2) = ΣX

(
g∗(η1)

)(
g∗(η2)

)
(38)

where g is the linear function associated with f and when variances are
considered as linear functions

ΣY = g ◦ ΣX ◦ g∗ (39)

The commutative diagram for (39) is

V ∗ U∗ U V
g∗

ΣY

ΣX g
(40)

where U is the translation space of A where V is the translation space of B.
Using the equivalence of “associated linear function” and “derivative,”

we can also rewrite (39) as

ΣY = f ′(x) ◦ ΣX ◦ f ′(x)∗ (41)

with the implicit understanding that f ′(x) does not depend on x.

Proof. Equation (37) follows from Theorem 32.
Equation (38) is derived as follows.

ΣY (η1)(η2) = E{〈Y − µY , η1〉〈Y − µY , η2〉}
= E{〈f(X)− f(µX), η1〉, 〈f(X)− f(µX), η2〉}
= E{〈g(X − µX), η1〉, 〈g(X − µX), η2〉}
= E{〈X − µX , g∗(η1)〉〈X − µX , g∗(η2)〉}
= ΣX

(
g∗(η1)

)(
g∗(η2)

)
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Then (39) is derived as follows.〈
ΣY (η1), η2

〉
=
〈
ΣX

(
g∗(η1)

)
, g∗(η2)

〉
=
〈
g
(

ΣX

(
g∗(η1)

))
, η2

〉
That this holds for all η2 means

ΣY (η1) = g
(

ΣX

(
g∗(η1)

))
= (g ◦ ΣX ◦ g∗)(η1)

by Corollary 33, and this holding for all η1 gives (39).

The formulas in this section generalize the analogous formulas familiar
from undergraduate probability theory. If Y = a+BX where X and Y are
random vectors, a is a constant vector, and B is a constant matrix, then

E(Y ) = a+BE(X)

var(Y ) = B var(X)BT

6.11 Moment Generating Functions

For an random vector X in an abstract finite-dimensional vector space
V define an extended-real-valued function M on V ∗ defined by

M(η) = E
{
e〈X,η〉

}
, η ∈ V ∗

where we take this to mean M(η) =∞ at η such that the expectation does
not exist. If M is finite on a neighborhood of zero, then we say M is the
moment generating function (MGF) of X. Otherwise we say that X does
not have an MGF.

The reason for the name is that derivatives of M evaluated at zero are
the ordinary moments of X, that is,

M ′(0) = α1

M ′′(0) = α2

M ′′′(0) = α3

and so forth (in the first line both sides are unilinear forms on V ∗, in the
second line both sides are symmetric bilinear forms on V ∗, and so forth). If
M is an MGF, then it is infinitely differentiable, and X has moments of all
orders.
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All of this is provable by transfer. Let X be a random vector in an
abstract finite-dimensional vector space V , let f : Rd → V be a vector space
isomorphism, and let Y = f−1(X). Letting MX and MY denote the MGF’s
of X and Y , if they exist, we have

MX(η) = E
{
e〈f(Y ),η〉}

= E
{
e〈Y,f

∗(η)〉}
= MY

(
f∗(η)

)
so MX = MY ◦ f∗. Hence X has an MGF if and only if Y does, and if they
do, the derivatives of MX are given by

M ′X(η)(ζ) = M ′Y
(
f∗(η)

)(
f∗(ζ)

)
M ′′X(η)(ζ1)(ζ2) = M ′′Y

(
f∗(η)

)(
f∗(ζ1)

)(
f∗(ζ2)

)
and so forth. So

M ′X(0)(ζ) = M ′Y (0)
(
f∗(ζ)

)
= E

{
〈Y, f∗(ζ)〉

}
= E

{
〈f(Y ), ζ〉

}
= E

{
〈X, ζ〉

}
M ′′X(0)(ζ1)(ζ2) = M ′′Y (0)

(
f∗(ζ1)

)(
f∗(ζ2)

)
= E

{
〈Y, f∗(ζ1)〉〈Y, f∗(ζ2)〉

}
= E

{
〈X, ζ1〉〈X, ζ2〉

}
and so forth.

Since MGF involve ordinary moments, which do not make sense on affine
spaces, MGF are inherently a vector space tool. Of course, if X is a random
element of an affine space and a is a nonrandom point in that space, then
X − a is a random vector (in the translation space of that affine space)
so X − a may have an MGF, which, if it exists, can be used to calculate
moments of X − a. And if we choose a to be the mean of X, these will be
the central moments of X.

6.12 Cumulant Generating Functions

The log of the MGF of X, if it exists, is called the cumulant generating
function (CGF) of X. Derivatives of the CGF evaluated at zero are called
the cumulants of X.
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Cumulants of order m are polynomial functions of the ordinary moments
up to order m and vice versa (Cramér, 1951, Section 15.10). Here we will
only be interested in the first two cumulants, which are the mean and the
variance. If M is the MGF and K is the CGF, then

K ′(η)(ζ) =
M ′(η)(ζ)

M(η)

K ′′(η)(ζ1)(ζ2) =
M ′′(η)(ζ1)(ζ2)

M(η)
− M ′(η)(ζ1)

M(η)
· M

′(η)(ζ2)

M(η)

so, since M(0) = 1,

K ′(0)(ζ) = M ′(0)(ζ)

K ′′(0)(ζ1)(ζ2) = M ′′(0)(ζ1)(ζ2)−M ′(0)(ζ1) ·M ′(0)(ζ2)

and this together with

µ2(ζ1)(ζ2) = α2(ζ1)(ζ2)− α1(ζ1) · α1(ζ2),

which is the vector analog of var(X) = E(X2) − E(X)2 and is proved the
same way, by linearity of expectation, finishes the proof that the first two
cumulants are mean and variance.

6.13 Law of Large Numbers

Theorem 38. If X1, X2, . . . is a sequence of IID random elements of an
abstract finite-dimensional affine space having mean µ, and

Xn = µ+
1

n

n∑
i=1

(Xi − µ) (42)

then
Xn → µ, almost surely, as n→∞.

The only surprise is that we define Xn differently than we would in a
vector space as explained in Section 3.2.3 above. Of course, we could also
define

Xn = a+
1

n

n∑
i=1

(Xi − a) (43)

for any point a (Lemma 1 above).
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Proof. We prove by transfer from the standard LLN for Rd. Let A denote
the affine space where X1, X2, . . . , and µ live, let f : A → Rd be an affine
isomorphism, and define Yi = f(Xi) for all i, then we know Y1, Y2, . . . is a
sequence of IID random vectors having mean f(µ), and

Y n → f(µ), almost surely, as n→∞,

where

Y n =
1

n

n∑
i=1

Yi (44)

by the standard LLN. Let g be the linear function associated with f . Then

Y n − f(µ) =
1

n

n∑
i=1

[
f(Xi)− f(µ)

]
=

1

n

n∑
i=1

g(Xi − µ) = g

(
1

n

n∑
i=1

(Xi − µ)

)
by linearity. Hence

Xn − µ =
1

n

n∑
i=1

(Xi − µ) = g−1
(
Y n − f(µ)

)
converges almost surely to zero because g−1 is continuous.

6.14 Normal Distributions

The standard normal distribution on R is the continuous distribution
having unnormalized probability density with respect to Lebesgue measure
z 7→ exp(−z2/2).

The standard normal distribution on Rd is the continuous distribution
of a random vector having IID standard normal components. It has unnor-
malized density with respect to Lebesgue measure z 7→ exp(−zT z/2).

A general normal distribution on an abstract finite-dimensional affine
space A is the image of a standard normal distribution on Rd for some d
under an affine function Rd → A

Like general normal distributions on Rd, general normal distributions on
an abstract finite-dimensional affine space come in two kinds. Degenerate
normal distributions are concentrated on hyperplanes. They cannot have un-
normalized densities with respect to Lebesgue measure. They are the ones
whose variances, considered as bilinear forms, are not positive definite (Sec-
tion 6.9 above). Nondegenerate normal distributions are not concentrated
on any proper affine subspace. They give positive probability to any open
set and do have unnormalized densities with respect to Lebesgue measure.
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We know the unnormalized density of a general normal distribution on
Rd having mean µ and variance Σ, written in matrix notation, is

x 7→ exp
(
−(x− µ)TΣ−1(x− µ)/2

)
.

Our notation is
(x− µ)TΣ−1(x− µ)

when we think of x, µ, and Σ as matrices. Our notation is

〈x− µ,Σ−1(x− µ)〉

when we think of x and µ as points, so x− µ is a vector, and Σ as a linear
function whose inverse linear function is Σ−1. Our notation is

Σ−1(x− µ)(x− µ)

when we think of x and µ as points and Σ−1 as the bilinear form that
corresponds to Σ−1 thought of as a linear function.

Now suppose X is a nondegenerate normal random element of an ab-
stract finite-dimensional affine space A; suppose f : Rd → A is an affine
isomorphism, and let g denote the linear function associated with f defined
by (4a). Then Y = f−1(X) is a nondegenerate normal random vector, and
the variances of X and Y are related by (39). By X = f(Y ) and the change
of variable theorem in Section 4.4 above we get that the unnormalized den-
sity of X is given by

hX(x) = hY (f(x)) = exp
(
−〈f(x)− µY ,Σ−1

Y (f(x)− µY )〉/2
)

and

〈f(x)− µY ,Σ−1
Y (f(x)− µY )〉 = 〈f(x)− f(µX),Σ−1

Y [f(x)− f(µY )]〉
= 〈g(x− µX),Σ−1

Y g(x− µY )〉
= 〈x− µX , (g∗ ◦ Σ−1

Y ◦ g)(x− µY )〉

the second equality being linearity of g, and

(g∗ ◦ Σ−1
Y ◦ g)

−1
= g−1 ◦ ΣY ◦ (g∗)−1

= g−1 ◦ ΣY ◦ (g−1)∗

= ΣX
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the second equality being the inverse of an adjoint is the adjoint of the
inverse (Halmos, 1974, Section 44) and (39). Hence

hX(x) = exp
(
−Σ−1

X (x− µX)(x− µX)/2
)

(45)

gives an unnormalized probability density with respect to Lebesgue measure
on an abstract finite-dimensional affine space. (This is transfer for densities
with respect to Lebesgue measure.) Densities have the same form on ab-
stract finite-dimensional affine spaces as on Rd. We just have to write them
using the correct notation.

Now suppose X is a degenerate normal random element of an abstract
finite-dimensional affine space A. Let B be the affine support of X. Let Y
be the restriction of X to B. Then Y is a nondegenerate normal random
element of B, and the preceding discussion says (45) is an unnormalized
probability density of Y with respect to Lebesgue measure on B.

Let i : B → A denote the natural injection x 7→ x. Then X = i(Y ).
This i is an affine function (the proof is similar to the proof that the identity
function is an affine function; Section 3.8 above). Let j be the linear function
associated with i. Let U and V be the translation spaces of A and B,
respectively. Then j is the natural injection V → U given by x 7→ x.

From Section 6.10 above,

µX = i(µY ) = µY

and, when variances are interpreted as linear functions,

ΣX = j ◦ ΣY ◦ j∗

and, when variances are interpreted as bilinear forms,

ΣX(η1)(η2) = ΣY (j∗(η1))(j∗(η2)) = ΣY (η1 ◦ j)(η2 ◦ j)

(if η is a linear functional on U , then j∗(η) is the linear functional on V that
is the restriction of η to V ). This says µX and µY are the same, and ΣX and
ΣY are almost the same. But ΣX is not invertible. Only ΣY is invertible
and gives an unnormalized probability density.

6.15 Convergence in Distribution

If X1, X2, . . . is a sequence of random elements of a finite-dimensional
affine space A and X is another random element of A, then we say the
sequence converges in distribution to X if

E{f(Xn)} → E{f(X)}
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for every bounded continuous function f : A → R, and to indicate this we
write

Xn
D−→ X.

Convergence in distribution is also called convergence in law and weak con-
vergence.

Some readers may not recognize this definition, being instead familiar
with a definition involving convergence of distribution functions (Ferguson,
1996, Definition 1 of Chapter 1). However, our definition is equivalent to
that one by a result known as the Helly-Bray theorem (Ferguson, 1996,
Theorem 3 of Chapter 3). The definition adopted here is more general being
the one always used in general complete separable metric spaces (Billingsley,
1999, Chapter 1).

One might wonder why we are using this definition for abstract finite-
dimensional affine spaces, which don’t have a metric. But they can be given
a metric. There is just no unique way to do so. But the definition of
convergence in distribution only depends on the topology (which is unique,
Section 3.4 above), because the topology determines which functions are
continuous (those for which inverse images of open sets are open). So the
definition of convergence in distribution only depends on the topology not
on the metric.

Our basic tool for working with convergence in distribution is the contin-
uous mapping theorem (Billingsley, 1999, Theorem 2.7), which says that if

Xn
D−→ X and g is a continuous function, then g(Xn)

D−→ g(X). (Actually
the theorem says more than that. It is enough for g to be continuous on
a set having probability one under the distribution of X. But we will not
need this refinement.)

6.16 The Central Limit Theorem

Theorem 39. Suppose X1, X2, . . . is a sequence of IID random elements
of a finite-dimensional affine space having mean µ and variance Σ. Then

√
n(Xn − µ)

D−→ Normal(0,Σ), (46)

where Xn is defined by (42) or (43).

Proof. This is proved by transfer, which is just like transfer for the LLN
mutatis mutandis.

Let A denote the affine space where X1, X2, . . . , and µ live, let f : A→
Rd be an affine isomorphism, let g denote the linear function associated with
f defined by (4a), and define Yi = f(Xi) for all i.
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Then Y1, Y2, . . . is a sequence of IID random vectors having mean µY =
f(µ) and variance ΣY given by (39). Define Y n in the usual way (44).

The CLT for Rd tells us

√
n(Y n − µY )

D−→ Z,

where Z has a normal distribution with mean zero and variance ΣY . By
linearity of g

√
n(Y n − µY ) =

√
n

([
1

n

n∑
i=1

f(Xi)

]
− f(µ)

)

=
√
n

(
1

n

n∑
i=1

[f(Xi)− f(µ)]

)

=
√
n

(
1

n

n∑
i=1

g(Xi − µ)

)

= g

(
√
n

[
1

n

n∑
i=1

(Xi − µ)

])
= g

(√
n
[
Xn − µX

])
so √

n(Xn − µX) = g−1
(√
n(Y n − µY )

) D−→ g−1(Z)

by the continuous mapping theorem. And g−1(Z) is a linear function of
multivariate normal, hence multivariate normal. Its mean is g−1(0) = 0.
and its variance is given by (39)

g−1 ◦ ΣY ◦ (g−1)∗ = g−1 ◦ g ◦ ΣX ◦ g∗ ◦ (g−1)∗

= g−1 ◦ g ◦ ΣX ◦ g∗ ◦ (g∗)−1

= ΣX

6.17 The Delta Method

Theorem 40. Let X1, X2, . . . be a sequence of random elements of a finite-
dimensional affine space A, let ζ be a nonrandom element of A, and let an
be a sequence of real numbers going to infinity. Assume

an(Xn − ξ)
D−→ Y (47)
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Suppose g is a function from an open subset O of A to another finite-
dimensional affine space B, and suppose g is differentiable at ξ. Then

an
(
g(Xn)− g(ξ)

) D−→ g′(ξ)(Y ). (48)

It is part of the assertion of this theorem that when Xn is not concentrated on
O, then g(Xn) can be defined to be an arbitrary element of B when Xn /∈ O.
This does not affect the limit because Pr(Xn ∈ O)→ 1 as n→∞.

Necessarily Y is a random element of the translation space of A, and the
right-hand side of (48) is a random element of the translation space of B.

Proof. Let e : Rd → A be an affine isomorphism, let f be its associated linear
function, which is a linear isomorphism, let Wn = e−1(Xn), let ω = e−1(ξ),
and let Z = f−1(Y ). Then, by assumption (47),

an
(
e(Wn)− e(ω)

)
= an(Xn − ξ)

D−→ Y = f(Z).

Write h = g ◦ e. Then by the Rd case of the delta method (Ferguson, 1996,
Theorem 7 of Chapter 7) we have

an
(
g(Xn)− g(ξ)

)
= an

(
h(Wn)− h(ω)

) D−→ h′(ω)(Z)

And by the chain rule and the affine function rule

h′(ω) = g′(ξ) ◦ e′(ω) = g′(ξ) ◦ f,

so
h′(ω)(Z) = g′(ξ)

(
f(Z)) = g′(ξ)

(
Y )

7 Exponential Families: The Vector Picture

7.1 Definitions

We are now ready for what Geyer (1990) calls the “vector picture” of
exponential families. We will mix this with the definition of exponential
families from Geyer (2009) which avoids the distinction between “standard”
exponential families and “general” exponential families (see Geyer, 1990,
Sections 1.2 and 1.3, for what the distinction is).
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An exponential family of distributions is a statistical model (family of
probability distributions) having log likelihood of the form

l(θ) = 〈y, θ〉 − c(θ) (49)

where y is a vector-valued statistic taking values in some abstract finite-
dimensional vector space V , where θ is a vector-valued parameter taking
values in V ∗, and where any additive terms not involving the parameter
have been dropped from the log likelihood, such terms having no effect on
either likelihood inference or Bayesian inference.

Either a change-of-variable or change-of-parameter (or both) may be
necessary to get the log likelihood into the form (49). To recognize this
the special statistic y and the special parameter θ that occur in (49) are
called the canonical statistic and canonical parameter (also called the natu-
ral statistic and parameter). The function c appearing in (49) is called the
cumulant function of the family.

The canonical statistic, canonical parameter, and cumulant function are
not unique. Any one-to-one affine function of a canonical statistic is an-
other canonical statistic, any one-to-one affine function of a canonical pa-
rameter is another canonical parameter, and any cumulant function plus
any (real-valued) affine function is another cumulant function. These alter-
ations are not algebraically independent. Changing any one requires changes
in the others to maintain the form (49). Usually no fuss is made about this
nonuniqueness. One fixes a choice of canonical statistic, canonical parame-
ter, and cumulant function and leaves it at that. But we should keep this
nonuniqueness in the back of our minds. Anything that depends on a par-
ticular choice of y, θ, and c is wrongheaded, not a general concept.

7.2 Philosophy

Distinguishing V and V ∗ is very important in exponential family the-
ory. V is where the canonical statistic lives, and V ∗ is where the canonical
parameter lives. So distinguishing V and V ∗ is just keeping straight the
difference between statistics and parameters.

7.3 Full and Regular Families

Implicit in the definition is that the family has densities fθ with respect
to some sigma-finite measure λ on the underlying measurable space, and the
log likelihood has the form

l(θ) = log fθ(ω)− term not containing θ
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where ω is the variable ranging over the underlying measurable space, that
is, we have

fθ(ω) = e〈y(ω),θ〉−c(θ)+h(ω) (50)

where h(ω) is the “term not containing θ” we are allowed to drop from the
log likelihood.

For future reference we record the probability density of the distribution
having canonical parameter value θ with respect to the distribution having
canonical parameter value ψ, which is given by

fθ,ψ(ω) = e〈Y (ω),θ−ψ〉−c(θ)+c(ψ). (51)

Since these probability densities are everywhere positive, every distribution
in the family has the same support.

Since densities must integrate to one, we have

1 =

∫
fθ(ω)λ(dω)

=

∫
e〈y(ω),θ〉−c(θ)+h(ω)λ(dω)

= e−c(θ)
∫
e〈y(ω),θ〉+h(ω)λ(dω)

or

ec(θ) =

∫
e〈y(ω),θ〉+h(ω)λ(dω)

=

∫
e〈y(ω),θ−ψ〉+c(ψ)fψ(ω)λ(dω)

= ec(ψ)

∫
e〈y(ω),θ−ψ〉fψ(ω)λ(dω)

= ec(ψ)Eψ
{
e〈y,θ−ψ〉

}
or

c(θ) = c(ψ) + logEψ
{
e〈Y,θ−ψ〉

}
(52)

It is useful to take (52) to define c on all of V ∗ up to an arbitrary constant
c(ψ), which does not matter (adding a constant to a cumulant function
gives another cumulant function for the same family with the same canonical
statistic and parameter), thinking of θ as the variable and ψ as fixed (at any
arbitrarily chosen point in the canonical parameter space). At points θ such
that the expectation in (52) does not exist we write c(θ) = ∞. Since the
integrand in (52) is strictly positive, the integral (expectation) must also
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be strictly positive, and we do not have to worry about the existence of
logarithms (we are using log(∞) =∞).

The exponential family is said to be full if the canonical parameter space
is

Θ = { θ ∈ V ∗ : c(θ) <∞} (53)

which is thus referred to as the canonical parameter space of the full family
or as the full canonical parameter space. If the family is not full, then it can
be enlarged to be a full family. For all θ ∈ Θ, where Θ is given by (53), there
is a density with respect to λ given by (50), and the collection of all these
densities makes a full exponential family. This construction can obviously
start with a single distribution, say the one corresponding to parameter value
ψ, in which case we say that this distribution and canonical statistic generate
the exponential family. Since ψ was arbitrary, we see that any probability
distribution combined with any vector-valued statistic y generates a full
exponential family with y as the canonical statistic. This construction is
not always interesting. For example, a Cauchy distribution with the usual
variable considered the canonical statistic generates only the trivial family
with only one distribution because (52) is infinite unless θ = ψ.

The full family is said to be regular if the full canonical parameter space
(53) is an open set (in the only vector topology the finite-dimensional vector
space V ∗ can have (Section 2.4)).

7.4 Convexity of Cumulant Functions

Theorem 41. A cumulant function defined on a whole vector space by (52)
is a lower semicontinuous proper convex function.

Proof. Convexity is Hölder’s inequality. Lower semicontinuity is Fatou’s
lemma.

The lower semicontinuity property will not be used in this document. It
is only important on the boundary of the effective domain of the cumulant
function (the boundary of the full canonical parameter space of the expo-
nential family), because every convex function on a finite-dimensional affine
space is continuous on the interior of its effective domain (Rockafellar, 1970,
Theorem 10.1). Cumulant functions, of course, are infinitely differentiable
on the interior of their effective domains, a stronger property than mere
continuity.

Corollary 42. The effective domain of a cumulant function (the full canon-
ical parameter space) is a convex set.
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7.5 Derivatives of Cumulant Functions

The moment generating function (MGF) of the distribution of the canon-
ical statistic corresponding to the parameter θ is

Mθ(t) = Eθ
{
e〈Y,t〉

}
=

∫
e〈y(ω),t〉fθ(ω)λ(dω)

=

∫
e〈y(ω),θ+t〉−c(θ)+h(ω)λ(dω)

=

∫
e〈y(ω),θ−ψ+t〉−c(θ)+c(ψ)fψ(ω)λ(dω)

= e−c(θ)+c(ψ)

∫
e〈y(ω),θ−ψ+t〉fψ(ω)λ(dω)

= e−c(θ)+c(ψ)Eψ
{
e〈y,θ−ψ+t〉}

= ec(θ+t)−c(θ)

provided that this satisfies the condition to be an MGF, which is that it be
finite on a neighborhood of zero. And Mθ(t) is finite for all t in a neigh-
borhood of zero when c(η) is finite for all η in a neighborhood of θ, that is,
when θ is an interior point of the full canonical parameter space (53). So
for a regular full family (when every point in the full canonical parameter
space is an interior point), every distribution in the family has an MGF,
and, consequently, moments of all orders determined by the MGF.

Distributions corresponding to canonical parameter values on the bound-
ary of the full canonical parameter space (53) do not have moment generat-
ing functions and hence need not have moments of all orders or, indeed, any
moments at all. The exponential family generated by the Cauchy distribu-
tion, mentioned above, is an example. The full canonical parameter space
of this family is a single point, hence it has an empty interior and is its own
boundary, and the single distribution in the family has no moments of any
order.

For a slightly less trivial example of a nonregular exponential family,
consider the one-dimensional exponential family generated by the left half
Cauchy distribution, which has PDF

f0(x) =
2

π(1 + x2)
, x < 0, (54)

and the usual variable is the canonical statistic. The PDF of this family are

fθ(x) =
exθ

(1 + x2)[Ci(θ) sin(θ)− Si(θ) cos(θ) + π cos(θ)/2]
, x < 0, (55)
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where Si and Ci denote the so-called sine and cosine integral functions (not
well known to statisticians, they are in the GNU scientific library, CRAN
package gsl, Hankin, 2006; Hankin, et al., 2023). The full canonical param-
eter space is { θ : θ ≥ 0 }. The expression (55) does not work when θ = 0
because Ci(0) = −∞, but, of course, the PDF for θ = 0 is (54). Every
distribution for θ > 0 has a moment generating function and moments of all
orders. The distribution for θ = 0 (54) does not have a moment generating
function and does not have any moments of any order.

An example of a nonregular exponential family that could be used in
real applications, is the Strauss process, which is a two-parameter exponen-
tial family, whose canonical parameter space is the closed left half space
{ θ : θ2 ≤ 0 }. See Geyer and Møller (1994) and references cited therein for
details.

The cumulant generating function (CGF) of the distribution correspond-
ing to the parameter θ is

Kθ(t) = c(θ + t)− c(θ)

provided that this satisfies the condition to be a CGF, which is that it be
finite on a neighborhood of zero, that is, when θ is an interior point of the
full canonical parameter space (53). Derivatives of the CGF evaluated at
zero (the cumulants) are derivatives of the cumulant function evaluated at
θ, hence the name “cumulant function.”

The first two cumulants are

Eθ(Y ) = c′(θ) (56a)

varθ(Y ) = c′′(θ) (56b)

when θ is in the interior of the full canonical parameter space (Section 6.12
above).

7.6 Identifiability

7.6.1 Canonical Parameter

Following Section 2.2 in Geyer (1990) and Theorem 1 in Geyer (2009)
we present the following theorem about identifiability of the canonical pa-
rameter of an exponential family.

Theorem 43. For a full exponential family having canonical statistic Y tak-
ing values in an abstract finite-dimensional vector space V and full canonical
parameter space Θ, which is a subset of V ∗, and for some vector δ ∈ V ∗,
the following statements are equivalent.
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(a) The parameter values θ and θ + sδ correspond to the same probability
distribution for some θ ∈ Θ and some s 6= 0.

(b) The parameter values θ and θ + sδ correspond to the same probability
distribution for all θ ∈ Θ and all real s.

(c) The statistic 〈Y, δ〉 is almost surely constant for some distribution in
the family.

(d) The statistic 〈Y, δ〉 is almost surely constant for all distributions in the
family.

It is part of the assertion (b) that if θ ∈ Θ then the whole line

{ θ + sδ : s ∈ R }

is contained in Θ.

Proof. For any θ ∈ Θ, let Pθ correspond to the distribution having parameter
value θ. Suppose (a). Then by (51) the probability density of Pθ+sδ with
respect Pθ is given by

fθ+sδ,θ(ω) = es〈Y (ω),δ〉−c(θ+sδ)+c(θ). (57)

In order for Pθ = Pθ+sδ to hold, we must have fθ+sδ,θ = 1 almost surely with
respect to Pθ. This implies 〈Y, δ〉 is constant almost surely with respect to
Pθ. Thus (c) holds.

Now assume (c). Then (d) holds because all distributions in the family
have the same support, as was noted following (51). And (a) holds because
this implies (57) is constant almost everywhere with respect to Pθ. So now
we know that (a), (c), and (d) are equivalent.

Now (d) implies (b) because (d) implies that (57) is constant almost
everywhere with respect to every distribution in the family and for all θ ∈ Θ
and all real s. And (b) trivially implies (a).

A vector δ satisfying any of the conditions of the theorem is called a
direction of constancy of the family. It is clear from (c) or (d) of the theorem
that the set of all directions of constancy is a vector subspace of V ∗. It is
called the constancy space of the family.
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7.6.2 Mean Value Parameter

Theorem 44. In an exponential family, different distributions have different
means for the canonical statistic if these means exist.

It follows that in a regular full exponential family, where the mean of
the canonical statistic exists for every distribution, the means parameterize
the family. Furthermore, this parameterization of the family is identifiable
because no distribution can have two different means. Even if the family is
not regular so not all distributions need have means, means of the canonical
statistic still provide an identifiable parameterization for the subfamily of
distributions such that these means exist (if there are any). This parame-
terization is called the mean value parameterization.

Proof. Suppose θ1 and θ2 are canonical parameter values of distributions
in the family having means µ1 and µ2. We consider the subfamily having
canonical parameter values in

Θsub = { sθ1 + (1− s)θ2 : 0 ≤ s ≤ 1 }.

This is contained in the full canonical parameter space by Corollary 42.
From (51) we have

fsθ1+(1−s)θ2,θ2(ω) = es〈Y (ω),θ1−θ2〉−c(sθ1+(1−s)θ2)+c(θ2)

This shows us that the subfamily is a one-parameter exponential family
having canonical statistic 〈Y, θ1 − θ2〉, canonical parameter s, canonical pa-
rameter space 0 ≤ s ≤ 1, and cumulant function given by

csub(s) = c(sθ1 + (1− s)θ2)− c(θ2)

This subfamily need not be full, but s such that 0 < s < 1 are in the
interior of the (one-dimensional) full canonical parameter space of the full
exponential family generated by this subfamily canonical statistic. Thus for
0 < s < 1 we have by (56a) and (56b), the chain rule, and the affine function
rule

Esθ1+(1−s)θ2(〈Y, θ1 − θ2〉) = c′sub(s)

= c′(sθ1 + (1− s)θ2)(θ1 − θ2)

varsθ1+(1−s)θ2(〈Y, θ1 − θ2〉) = c′′sub(s)

= c′′(sθ1 + (1− s)θ2)(θ1 − θ2)(θ1 − θ2)
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(compare with the second derivative calculation in the proof of Theorem 25
above to see that the second derivative is correct).

Now we have two cases. If the variance above is zero, then 〈Y, θ1 − θ2〉
is almost surely constant and 1 is a direction of constancy of this subfamily
(considered a one-dimensional vector in the one-dimensional vector space R
that contains Θsub), so every distribution in the subfamily is the same, and
θ1− θ2 is a direction of constancy of the original family, and µ1 = µ2. But if
the variance above is not zero for a particular s, then it is not zero for any
s. It follows that Esθ1+(1−s)θ2(〈Y, θ1 − θ2〉) is a strictly increasing function
of s on the open interval (0, 1), and θ1 − θ2 is not a direction of constancy
of the original family.

Now we have to deal with the end points of the interval. In

Esθ1+(1−s)θ2(〈Y, θ1 − θ2〉) =

∫
〈Y (ω), θ1 − θ2〉fsθ1+(1−s)θ2,θ2(ω)Pθ2(dω)

= Eθ2

[
〈Y, θ1 − θ2〉es〈Y,θ1−θ2〉−c(sθ1+(1−s)θ2)+c(θ2)

]
= e−c(sθ1+(1−s)θ2)+c(θ2)Eθ2

[
〈Y, θ1 − θ2〉es〈Y,θ1−θ2〉

]
the argument of the last expectation is a nondecreasing function of s for all
values of Y (if a > 0, then aesa is an increasing function of s; if a < 0, then
aesa is again an increasing function of s). Hence by monotone convergence

lim
s↓0

Esθ1+(1−s)θ2(〈Y, θ1 − θ2〉) = Eθ2(〈Y, θ1 − θ2〉) = 〈µ2, θ1 − θ2〉

lim
s↑1

Esθ1+(1−s)θ2(〈Y, θ1 − θ2〉) = Eθ1(〈Y, θ1 − θ2〉) = 〈µ1, θ1 − θ2〉

Hence, if θ1−θ2 is not a direction of constancy, then Esθ1+(1−s)θ2(〈Y, θ1−θ2〉)
is a strictly increasing function of s on the closed interval [0, 1], and hence
µ1 6= µ2.

7.7 Minimality

An exponential family has minimal representation or is just minimal for
short if the dimensions of the canonical statistic vector and canonical pa-
rameter vector are as small as possible. By Theorem 43 this implies the
canonical parameterization is identifiable (there are no directions of con-
stancy). By Theorem 43 this implies the canonical parameterization is not
concentrated on a hyperplane. By Theorem 29 this implies the interior of the
full canonical parameter space is nonempty, because, as we shall presently
see, otherwise we could find a canonical parameter space of lower dimension.
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We now show that if the originally given canonical statistic vector and
canonical parameter vector do not have minimal dimension, we can always
find a minimal representation.

As usual, consider an exponential family with canonical statistic Y tak-
ing values in the abstract vector space V , canonical parameter θ taking
values in V ∗, and cumulant function c given by (52).

Let Θ defined by (53) be the full canonical parameter space. We want
Θ to have full dimension. If it does not, let ψ be an arbitrary element of
Θ, define a new canonical parameter δ = θ − ψ and its new full canonical
parameter space

∆ = Θ− ψ = { θ − ψ : θ ∈ Θ },

and let U be the vector subspace of V ∗ spanned by ∆. The log likelihood
for the parameter δ is now

lnew(δ) = 〈y, ψ + δ〉 − c(ψ + δ)

= 〈y, ψ〉+ 〈y, δ〉 − c(ψ + δ)

and we may drop the term that does not contain the parameter δ obtaining

lnew(δ) = 〈y, δ〉 − c(ψ + δ)

= 〈y, δ〉 − cnew(δ)

And now we want to consider the canonical parameter δ to have full di-
mension, so we want to consider it living in the vector space U . But this
means we need to define a new canonical statistic taking values in U∗. The
formalism of abstract vector spaces does this automatically for us. For each
data value ω, the linear functional δ 7→ 〈Y (ω), δ〉 is an element of U∗ when
we allow δ to range over U . So that is our new canonical statistic

X(ω) = 〈Y (ω), · 〉

and our log likelihood is now

lnew(δ) = 〈x, δ〉 − cnew(δ)

where now 〈 · , · 〉 is the canonical bilinear form that places U and U∗ in
duality. So now we have an exponential family with parameter δ that has
full dimension (in U).

To avoid even more annoying changes of notation, we return to having
an exponential family with canonical statistic y taking values in the abstract
vector space V , canonical parameter θ taking values in V ∗, and cumulant
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function c given by (52). But now we assume that Θ has full dimension
(possibly because we have gone through the procedure outlined above).

Now we consider the dimension of the canonical statistic. Let A be the
affine support of the canonical statistic for any distribution in the family
(Section 6.5 above). This is the affine support of every distribution in the
family because every distribution in the family has the same support. Let
U be the translation space of A. Fix an arbitrary point a ∈ A. Then we
define a new canonical statistic by

X(ω) = Y (ω)− a

and consider X to take values in U rather than V . This may require that
we change the underlying probability space to delete the set

{ω : Y (ω)− a /∈ U }

which has probability zero under every distribution in the family. Now we
need a new canonical parameter taking values in U∗. To do this we simply
apply (52)

cnew(θ) = logEψ
{
e〈X,θ〉

}
, θ ∈ U∗.

Then we have a new exponential family with minimal representation having
canonical statistic vector X taking values in U , cumulant function cnew, and
full canonical parameter space dom cnew, which is a subset of U∗.

7.8 Asymptotics of Maximum Likelihood

For a minimal regular full exponential family the mapping from canonical
to mean value parameter is a function h defined by

h(θ) = c′(θ) (58)

which has derivative defined by

h′(θ) = c′′(θ)

(that we take c′(θ) to have type V ∗ → V rather than type V ∗ → V ∗∗, using
the natural isomorphism of V and V ∗∗, is used everywhere in this section).

Lemma 45. Let c be the cumulant function and Θ the canonical parameter
space of a regular full exponential family. The following are equivalent.

(a) c′′(θ) is invertible for some θ ∈ Θ.
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(b) c′′(θ) is invertible for all θ ∈ Θ.

(c) c′′(θ) is positive definite for some θ ∈ Θ.

(d) c′′(θ) is positive definite for all θ ∈ Θ.

(e) The family has no nonzero directions of constancy.

Proof. It follows from Theorem 36 that (a) and (c) are equivalent and (b)
and (d) are equivalent. It follows from (29) and (56b) that

varθ(Y )(δ)(δ) = varθ{〈Y, δ〉} = c′′(θ)(δ)(δ) (59)

and this is zero for some nonzero δ if and only if (c) is false and if and only
if 〈Y, δ〉 is almost surely constant with respect to the distribution for pa-
rameter value θ. But (51) shows all distributions in the family are mutually
absolutely continuous with respect to each other. Hence (59) is false for
some θ if and only if it is false for all θ. Thus (e) is equivalent to all of the
others.

Theorem 46. For a regular full exponential family having minimal repre-
sentation the map from canonical to mean value parameter is invertible and
its derivative at any parameter value is also invertible.

Proof. A minimal representation guarantees no nonzero directions of con-
stancy. Hence the rest follows from the lemma.

The derivative of (49) is

l′(θ) = 〈y, · 〉 − c′(θ)

Since the log likelihood is a function Θ → R, its derivative is a function
V ∗ → R, but each such function is an element of V ∗∗. Again using V ∗∗ = V
via the natural isomorphism, we can also write

l′(θ) = y − c′(θ)

where now both y and c′(θ) are taken to be elements of V . This makes sense
because

c′(θ) = Eθ(Y ) = µ

the mean value parameter corresponding to θ. Thus we can also write

l′(θ) = y − µ
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with the understanding µ = c′(θ).
One definition of Fisher information is the variance of the score (first

derivative of the log likelihood function). For the parameter θ that is

varθ(Y − µ) = varθ(Y ) = c′′(θ)

And, as we already know, we can take this either to be a bilinear form
V ∗ → V ∗ → R or a linear function V ∗ → V (which again uses V ∗∗ = V ).
As in (58), let h denote the map from canonical to mean value parameter,
so h(θ) = c′(θ) and h′(θ) = c′′(θ). When we have an identifiable canonical
parameterization, h is invertible considered as a function from its domain
(the full canonical parameter space) to its range. Let j denote this inverse.
Then from the inverse function theorem it follows that j is infinitely dif-
ferentiable at all points (because h is) and that its derivative is the inverse
of the derivative of h, that is, if µ = c′(θ), then h′(θ) and j′(µ) are inverse
linear functions

V V ∗
j′(µ)

h′(θ)

so either composition of these two functions is an identity function.
The log likelihood for µ is l ◦ j. Its derivative is, by the chain rule

(l ◦ j)′(µ) = l′(θ) ◦ j′(µ) (60)

(still assuming µ = c′(θ)), the diagram for this being

V V ∗ Rj′(µ) l′(θ)

The value of this derivative at a vector ξ ∈ V can be written

〈y − µ, j′(µ)(ξ)〉

This makes sense because y − µ ∈ V and j′(µ)(ξ) ∈ V ∗. Now Fisher
information for µ is

varθ{(l ◦ j)′(µ)}

If we think of this variance as a bilinear form, we can write it as

varθ{(l ◦ j)′(µ)}(ξ)(ζ) = Eθ{〈y − µ, j′(µ)(ξ)〉〈y − µ, j′(µ)(ζ)〉}
= c′′(θ)

(
j′(µ)(ξ)

)(
j′(µ)(ζ)

) (61)

and this makes sense because this bilinear form has type V → V → R and
c′′(θ) considered as a bilinear form has type V ∗ → V ∗ → R, and j′(µ) maps
V → V ∗.
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But now we need to take into account that c′′(θ) and j′(µ) are inverse
functions so c′′(θ) ◦ j′(µ) = idV

V V ∗ V
j′(µ) c′′(θ)

so
c′′(θ)

(
j′(µ)(ξ)

)
= ξ (62)

for all ξ ∈ V . But this is a bit confusing because in in (61) we are considering
c′′(θ) as a bilinear form and in (62) we are considering c′′(θ) as a linear
function. We can get the bilinear form back as

varθ{(l ◦ j)′(µ)}(ξ)(ζ) = 〈ξ, j′(µ)(ζ)〉

And this tells us Fisher information for µ is

varθ{(l ◦ j)′(µ)} = j′(µ)

considered as a linear function V → V ∗.
We summarize the calculations above as a theorem.

Theorem 47. For a regular full exponential family, Fisher information for
the canonical parameter is c′′(θ), and Fisher information for the mean value
parameter is j′(µ) = [c′′(θ)]−1.

Theorem 47 is a bit disingenuous because it silently relies on the rep-
resentation V ∗∗ = V . If we don’t do that, then c′′(θ) and h′(θ) have type
V ∗ → V ∗∗. So j′(µ) = [h′(θ)]−1 = [c′′(θ)]−1 has type V ∗∗ → V ∗. And (60)
has type

V ∗∗ V ∗ Rj′(µ) l′(θ)

that is V ∗∗ → R which is V ∗∗∗. So its variance has type V ∗∗∗∗ → V ∗∗∗∗ →
R = V ∗∗∗∗ → V ∗∗∗∗∗. And this matches the type of j′(µ) only if we use
V ∗∗ = V .

Theorem 48. For IID sampling from a minimal regular full exponential
family, if θ̂n is the MLE for the canonical parameter vector θ sample size n
and µ̂n is the MLE for the mean value parameter vector µ for sample size
n, then

√
n(µ̂n − µ)

D−→ N (0, c′′(θ)) (63)
√
n(θ̂n − θ)

D−→ N (0, j′(µ)) (64)

(this uses V ∗∗ = V ).
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Proof. The log likelihood for IID sampling is

ln(θ) =
n∑
i=1

[
〈yi, θ〉 − c(θ)

]
=

〈
n∑
i=1

yi, θ

〉
− nc(θ)

= 〈nȳn, θ〉 − nc(θ)
= n[〈ȳn, θ〉 − c(θ)]

where y1, y2, . . . are IID random vectors having the distribution for canonical
parameter θ and mean value parameter µ from the exponential family under
discussion and (as usual)

ȳn =
1

n

n∑
i=1

yi

This log likelihood is concave for the same reasons that l1 is concave. Hence
any θ such that the first derivative is equal to zero is an MLE but the MLE
is unique by minimality. Since

l′n(θ) = n[ȳn − c′(θ)] = n[ȳn − h(θ)] (65)

the unique MLE for θ is
θ̂n = j(ȳn)

provided ȳn is in dom(j) = h(Θ). It can happen that the MLE does not
exist (this happens, for example, for the binomial distribution when ȳn = 0
or ȳn = 1). But we can add another point not in Θ to be the MLE when
ȳn /∈ dom(j). It does not matter what this point is because µ ∈ dom(j) and
ȳn → µ (in probability and almost surely). So ȳn ∈ dom(j) for sufficiently
large n with arbitrarily high probability. For more pedantic discussion of
this issue, see Geyer (2013, Section 3.5). And by invariance of maximum
likelihood the unique MLE for µ is

µ̂n = h(θ̂n) = (h ◦ j)(ȳn) = ȳn

(again provided ȳn ∈ dom(j) because otherwise ȳn is not a possible mean
value).

Now the CLT applied to the latter gives (63) because µ̂n = ȳn with
probability converging to one as n → ∞ and Eθ(yi) = µ and varθ(yi) =
c′′(θ).
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Then (64) follows by the delta method because of

θ̂n − θ = j(ȳn)− j(µ)

so by the delta method
√
n[θ̂n − θ] =

√
n[j(ȳn)− j(µ)]

D−→ N (0, j′(µ) ◦ c′′(θ) ◦ j′(µ)∗)

applying Theorem 40 and Section 6.10. But j′(µ) ◦ c′′(θ) is the identity
operator on V ∗, and j′(µ)∗ = j′(µ) by Theorem 35, so that gives (64).

Let us check that these make sense. If we do not use V ∗∗ = V , then
(65) has type V ∗ → R or V ∗∗. Thus ȳn and µ must be elements of V ∗∗.
And the variance must have type V ∗∗∗ → V ∗∗∗ → R or V ∗∗∗ → V ∗∗∗∗.
But c′′(θ) has type V ∗ → V ∗ → R, So we already need to use V ∗∗ = V to
make (63) correct.

If we wanted (63) to be correct without assuming V ∗∗ = V , we would
need to replace c′′(θ) by c′′(θ)∗∗.

Alternatively, we can take ȳn and µ to be elements of V except then that
makes l′(θ) given by (65) a point of V , hence not a linear function, which
disagrees with the PhD level view of differentiation explicated in Section 4.2
above. So this step, by itself, is already using V ∗∗ = V . (See also Section 6.3
about considering µ to be in V also assuming V ∗∗ = V .)

Moving on to (64) and still avoiding assuming V ∗∗ = V , we have µ̂n in
V ∗∗ and h = c′ mapping Θ → V ∗∗ so its inverse j maps h(Θ) ⊂ V ∗∗ to
Θ. So j′(µ) maps V ∗∗ → V ∗. But the variance or asymptotic variance of
θ̂n− θ must have type V ∗∗ → V ∗∗ → R or V ∗∗ → V ∗∗∗. So again we need
to use V ∗∗ = V to make (64) correct.

If we did not want to use V ∗∗ = V , then the proof shows we would have
to replace j′(µ) with j′(µ)∗ in (64). This does give the correct types

V ∗∗ V ∗j′(µ)

hence

V ∗∗∗ V ∗∗j′(µ)∗

8 The Category of Exponential Families

8.1 Questions

What is the category (in the sense of category theory) of exponential
families? The category of exponential families is a category in which the
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objects are exponential families and the morphisms are what? Some sort of
map or map-like thingummy between exponential families.

8.2 Objects of the Category

8.2.1 Densities

To answer these questions we need to know what an exponential family
is. Combining the logic of Section 1.4 and Chapter 4 of Geyer (1990) with
Section 3.1 of Geyer (2009), an exponential family of (probability) distri-
butions is a statistical model having log probability density functions with
respect to some sigma-finite positive measure (on some measurable space) of
the form h◦y where h is an affine function on some finite-dimensional affine
space (a different affine function for each distribution in the family) and y
is a statistic, called the canonical statistic, (the same for all distributions in
the family).

So an exponential family involves three spaces, and two functions

(Ω,A, λ)
y−−−−→ B

h−−−−→ R (66)

(Ω,A, λ) is the sigma-finite measure space, B is the finite-dimensional affine
space, y is the canonical statistic (which does not vary), and h the affine
function (which varies to give the different distributions in the family).

This description is unsatisfactory because it does not explicitly indicate
the family H of affine functions B → R which h varies over. So we will
rewrite our diagram as

(Ω,A, λ)
y−−−−→ B

H−−−−→ R (67)

But both diagrams are intended to indicate the same thing. For each h ∈ H
there is the composition h◦y and exp ◦h◦y is a probability density function
with respect to λ, that is, ∫

eh◦y dλ = 1. (68)

8.2.2 Measures

Actually, (67) is also unsatisfactory in that it does not incorporate the
usual abstract nonsense of measure theory. We want an exponential family
of distributions not of densities.

Thus we consider (67) a characterization or representation of the object
rather than the object itself. The object is the family of probability measures

{Ph : h ∈ H}, (69)
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where Ph is a probability measure on (Ω,A) given by

Ph(A) =

∫
A
eh◦y dλ, A ∈ A. (70)

We consider the objects equal if the families of probability measures are
equal.

8.3 Morphisms of the Category

8.3.1 Densities

Morphisms between these objects consist of a pair of functions f and g
going from parts of the source object (of the category) to parts of the target
object such that the diagram

(Ω,A, λ)
y−−−−→ B

H−−−−→ Ryf yg
(Ω′,A′, λ′) y′−−−−→ B′

H′−−−−→ R

(71)

has the following properties

(i) f is measurable, that is,

f−1(A′) ∈ A, A′ ∈ A′,

(ii) λ′ = λ ◦ f−1, that is,

λ′(A′) = λ
(
f−1(A′)

)
, A′ ∈ A′,

(iii) g is affine,

(iv) g ◦ y = y′ ◦ f almost everywhere with respect to λ, and

(v) the target object is a submodel of the source object, that is, for every
h′ ∈ H′ there exists h ∈ H such that h◦y = h′◦y′◦f almost everywhere
with respect to λ.

Items (i) and (ii) go together. The notation λ′ = λ ◦ f−1 is not even defined
unless f is measurable. For short, we say that item (iv) says the rectangle
in the diagram (71) commutes.
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8.3.2 Measures

The morphism (71) induces a mapping from the target object (expo-
nential family of distributions) to the source object (exponential family of
distributions). In the target object, the probability measure on (Ω′,A′) hav-
ing density h′ ◦y′ with respect to λ′ is mapped to the probability measure in
the source object on (Ω,A) having density h′ ◦y′ ◦f or density h′ ◦g ◦y with
respect to λ. Item (iv) says these two densities are densities of the same
probability measure. Item (v) says this probability measure also has density
h ◦ y for some h ∈ H. So this is a measure in the source object. Of course,
h′ ◦ y′ ◦ f and h′ ◦ g ◦ y and h ◦ y may be three different functions. But they
must be equal almost everywhere with respect to λ and hence densities of
the same probability measure (characterized by (70)).

We will consider this mapping between measures to be the morphism. So
the pair (f, g) only represents or characterizes the morphism. So morphisms
are equal if they are the same map of measures (this section). They do not
have to have the same (f, g).

We do not have an explicit formula for this map of measures. As usual,
we work mostly with densities, but only measures are unique. If we wanted
we could write

O1
m−−−−→ O2

where O1 and O2 are objects of the category, which are exponential families
of distributions, and m is the morphism. Note that m corresponds to a
function O2 → O1, but which way the arrows go in a category is an arbitrary
choice. We have chosen to say the arrows go the way the functions go in (71)
rather than the way the function that maps measures to measures goes (and
we still don’t have a notation for that function because m is the morphism,
which is denoted by an arrow going the opposite way of the function, so m
isn’t exactly that function).

Also note that the map of measures is not just any map. As described
above, it is the map that takes the measure having log density h′ ◦ y′ with
respect to λ′ to the measure having log density h′ ◦ g ◦ y with respect to λ.
And that is a very special map that embeds one exponential family O2 into
another exponential family O1 as a canonical affine submodel (Sections 8.8
and 8.9 below).

8.4 Is This a Category?

In order for the foregoing to specify a category, we need to say

� what the identity morphisms are,
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� what composition of morphisms means, and

� show that the identity laws and associativity of composition law are
satisfied.

The identity morphism for the object (66) is

(Ω,A, λ)
y−−−−→ B

H−−−−→ Ryf yg
(Ω,A, λ′) y′−−−−→ B′

H′−−−−→ R

(72)

satisfying our conditions to be a morphism and also

(vi) the source and target objects are equal (families of probability mea-
sures) and mapping of probability measures to probability measures
described in Section 8.3.2 is the identity function.

Note that in (72) Ω and A are the same in both objects, so that the
families of distributions are on the same measurable space (Ω,A). But the
other parts of the specification may differ. Note also that

(Ω,A, λ)
y−−−−→ B

H−−−−→ RyidΩ

yidB

(Ω,A, λ)
y−−−−→ B

H−−−−→ R
is always one representation of the identity morphism. The point of (72) is
that it is not the only representation.

And a composition of morphisms (represented by)

(Ω,A, λ)
y−−−−→ B

H−−−−→ Ryf yg
(Ω′,A′, λ′) y′−−−−→ B′

H′−−−−→ Ryf ′ yg′
(Ω′′,A′′, λ′′) y′′−−−−→ B′′

H′′−−−−→ R

(73)

is the morphism (represented by)

(Ω,A, λ)
y−−−−→ B

H−−−−→ Ryf ′◦f yg′◦g
(Ω′′,A′′, λ′′) y′′−−−−→ B′′

H′′−−−−→ R
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It should be clear that the identity and associativity laws for the mor-
phisms defined here follow from the identity and associativity laws for the
category of sets and functions.

8.5 Full Families

An exponential family (67) is full if H is the set of all affine functions
h : B → R such that (68) holds (that is, h ◦ y is a log probability density
with respect to λ).

Clearly, any exponential family can be enlarged to make it full with-
out changing parts of the specification (67) except for the family of affine
functions H.

8.6 Canonical Parameters

Section 1.4 of Geyer (1990) says that a canonical parameterization of
an exponential family in the “affine picture” (which is what the category
of exponential families formalizes) is given by the derivatives of the affine
functions. So we define for the object (67) of the category, the canonical
parameter space

Θ = ∇H = {∇h(y) : h ∈ H} (74)

and say the distribution in the exponential family having log density h ◦ y
with respect to λ has canonical parameter θ = ∇h(y). We are now using
∇ for derivatives rather than primes because we are using primes to denote
different objects of the same type (objects or morphisms of the category).
And (Section 4.3.5 above) the derivative ∇h(y) does not depend on y. It is
the associated linear function of the affine function h.

Since h is an affine function B → R, its derivative θ is a linear function
V → R, where V is the translation space (tangent space) of B. And a linear
function V → R is an element of the dual space V ∗. Thus (74) is a subset
of V ∗.

When we compare what was just said with the vector picture, we see
that it agrees. When we differentiate 〈y, θ〉 − c(θ) with respect to y, we get
〈 · , θ〉 but this is just another notation for θ. Hence θ as described above is
the canonical parameter that is dual to the canonical statistic y.

We rewrite Theorem 43 so it applies to the affine picture rather than the
vector picture.

Theorem 49. For an object (67) in the category of exponential families the
following statements are equivalent.

86



(a) The affine functions h1 and h2 in H correspond to the same probability
distribution.

(b) The affine function h1−h2 is constant on the affine support of λ◦y−1

for all real s.

(c) The function [sh1 − (1− s)h2] ◦ y is an unnormalized probability den-
sity with respect to λ for all real s, and all correspond to the same
probability distribution.

Let θ1 = ∇h1(y) and θ2 = ∇h2(y), then δ = θ1 − θ2 is a direction of
constancy of the exponential family. And this definition agrees with that of
Section 7.6.1 in case the family is full. In case the family is non-full, we only
obtain directions of constancy corresponding to θ1 − θ2 that actually occur
in the family, whereas Theorem 43 insists the family in question is full. So
we obtain the same directions of constancy as Theorem 43 if we start with
a full exponential family.

8.7 Regular Full Families

As in the vector picture, a full family is regular if its canonical parameter
space (74) is an open subset of the vector space containing it.

8.8 Canonical Affine Submodels

In the diagram (71) we have two exponential families of distributions.
The first of these (the source) has

� canonical statistic y and

� canonical parameter θ ranging over the

� canonical parameter space (74).

The second of these (the target) has

� canonical statistic g ◦ y and

� canonical parameter θ′ ranging over the

� canonical parameter space Θ′ = ∇H′.
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From item (v) of our axioms for morphisms we have for every h′ ∈ H′
there exists an h ∈ H such that h′ ◦ g ◦ y = h ◦ y almost everywhere with
respect to λ, hence h′ ◦ g = h everywhere on the support of λ ◦ y−1.

And this implies θ = ∇h(y) and θ′ = ∇h′(y′)◦∇g(y) differ by a direction
of constancy (because they correspond to the same probability measure).

If we insist the source family is full, then the mapping h′ 7→ h′ ◦ g maps
H′ → H.

Now from (21) we have θ = (∇g(y))∗(θ′) where θ is the canonical pa-
rameter of the source model and θ′ is the canonical parameter of the target
model. Thus we see that the target object is a canonical affine submodel
of the the source object. And we see that we have captured the important
concept of canonical affine submodel in our use of category theory here.
(We can choose g to make (∇g(y))∗ be any linear function we want it to be.
Hence we can express any canonical affine submodel this way.)

The other mapping for a canonical affine submodel, the one for mean
value parameters is just g. From item (iv) of our axioms for morphisms we
have g ◦ y = y′ ◦ f almost everywhere, which we interpret as

g(canonical statistic of source family)

= canonical statistic of target family

and hence g(µ) = µ′ where µ and µ′ are the mean value parameter vectors
of the source and target families, respectively.

8.9 Morphisms Instead of Elements and Subsets

It may seem strange that a canonical affine submodel is not literally a
subset of the supermodel it is a submodel of, but this is the way category
theory works in general.

In the category of sets and functions, there is no element-of operation,
but morphisms can take the place of elements. If 1 denotes some singleton
set (it does not matter which one), then functions x : 1 → S pick out
elements of S. So “elements are a special case of functions” (Leinster, 2014,
Section 1). And function evaluation is a special case of composition:

1
x−−−−→ S

f−−−−→ T

takes the place of the evaluation f(x). There is no subset-of operation either.
We just take injective functions A→ B to treat A as a subset of B (Leinster,
2014, bottom of p. 409).

So this suggests the following.
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Theorem 50. The function mapping probability measures to probability
measures described in Section 8.3.2 (what morphisms of the category really
are) is always injective.

Proof. In diagram (71) let h1 and h2 be elements of H′ such that h1 ◦ g ◦
y = h2 ◦ g ◦ y almost surely with respect to λ. Then by item (iv) of our
characterization of morphisms we also have h1 ◦ y′ ◦ f = h2 ◦ y′ ◦ f almost
surely with respect to λ. Hence h1 ◦ y′ = h2 ◦ y′ almost surely with respect
to λ′.

So we are just following the way category theory works in general. There
are no subsets, just injective morphisms. So we should not think of statistical
submodels as subsets but rather as injective morphisms, as we do here. (Of
course, the theorem says all morphisms are injective in this category.)

8.10 Isomorphisms of the Category

In light of the preceding section, two exponential families of distributions
are isomorphic in the sense of category theory (with the category as defined
above) if each is a canonical affine submodel of the other.

Another way to say this is that an isomorphism of the category is a
morphism that does not do dimension reduction.

8.11 Identifiability

We rewrite Section 7.7 above to show that it becomes entirely trivial in
the affine picture. In this we follow Geyer (1990, Section 1.5).

For an exponential family (67), let L denote the affine support of the
measure λ ◦ y−1. Then log densities h1 and h2 in H that agree on L cor-
respond to the same distribution. Hence if we replace B by L and restrict
all of the densities to L, this will give us an identifiable canonical param-
eterization. (This may require us to delete a set of measure zero from the
measure space (Ω,A, λ).)

Simple. The vector picture makes the discussion of this subject messy.

8.12 Minimality

We still have the problem that even after we have done the above (so
the affine support of λ ◦ y−1 is B), we still have the problem that the full
canonical parameter space has empty interior because it is contained in a
proper affine subspace of the vector space in which it lives (the dual space
of the translation space of B).
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An example of this is the exponential family generated by the Cauchy
distribution with the usual variable as the canonical statistic. The support
of the canonical statistic is the whole real line, but the canonical parame-
ter space is zero-dimensional. This issue never arises in practice but is a
theoretical consideration.

The affine picture is no help here. We have to follow the procedure
described in Section 7.7. But as we shall see in Section 9, we do not need
minimality in the affine picture.

8.13 Standard Exponential Families

Geyer (1990), following Barndorff-Nielsen (1978), stressed standard ex-
ponential families: a standard exponential family of probability densities
with respect to a positive Borel measure on a finite-dimensional affine space
is one such that the log densities are affine functions.

We could make a category of standard exponential families by putting
the measures on the affine spaces

(B, λ)
H−−−−→ R (75)

where B is still an affine space, λ is a positive Borel measure on B, and H
is still a family of affine functions.

Then the theory of the category is developed as above, mutatis mutandis.
But Geyer (2009) avoids standard exponential families, and we have also
done so here. There are many reasons for this.

� We have lost track of the canonical statistic y. We can say it is the
identity function on B. But this seems weird to many statisticians.
Also it does not allow y to be a dimension reduction.

� The measure λ can seem weird to many statisticians. For example, if
we want a binomial family of distributions with sample size n, we must
take λ to put mass

(
n
y

)
at the points y = 0, 1, . . . , n. We cannot use

counting measure. That would not give densities eh for affine functions
h.

� Probability theory in general is not fussy about the underlying proba-
bility space. Use whatever is convenient. But here we are insisting on
an affine space.

These are different aspects of the same problem. Hence the category of
exponential families is defined the way we do above, with arbitrary measure
spaces and canonical statistics.
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8.14 Cumulant Functions

Cumulant functions are inherently a vector space tool, so we have to go
to the vector picture to get them. We replace (52) with

c(θ) = c(ψ) + logEψ
{
e〈Y−y0,θ−ψ〉} (76)

where y0 is an arbitrary point in the affine space where the canonical statistic
takes values.

We have to do this because we need Y − y0 to be a vector. And, of
course, c′(θ) no longer gives the mean of Y but rather the mean of Y − y0.
So the mean value parameter is µ = y0 + c′(θ).

But then everything else is OK. We can write the log likelihood as

l(θ) = 〈Y − y0, θ〉 − c(θ), θ ∈ Θ

(but we cannot take the minus sign out of the angle brackets).

9 Category of Closures of Exponential Families

9.1 Definition

Almost nothing needs to be done to the theory of Section 8. Simply
replace families of affine functions H, H′, and so forth with families of gen-
eralized affine functions (Geyer, 1990, Chapters 3 and 4).

9.2 Generalized Affine Functions

Generalized affine functions on finite-dimensional affine spaces are point-
wise limits of sequences of real-valued affine functions when −∞ and +∞
are allowed as limits. (This is not the definition of generalized affine func-
tion given in Section 3.1 of Geyer (1990), but it is a characterization of
them, Section 3.3 of Geyer (1990). The definition is an extended-real-valued
function that is both convex and concave.)

9.3 Subprobability Density Functions

One issue is that when one takes limits of sequences of probability den-
sities, one needn’t have a probability density limit. If hn → h pointwise,
exp ◦hn ◦ y being a probability density for each n, then Fatou’s lemma only
guarantees ∫

eh◦y dλ ≤ 1. (77)
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So we have to replace equation (68) in Section 8 with (77) when we use
generalized affine functions.

In (77) we are using the conventions e−∞ = 0 and e+∞ = +∞. One
might ask how an integral with possibly infinite-valued integrand can have
a finite integral. Simple. The set where the integrand has infinite value has
measure zero, and the conventions of probability theory say 0×∞ = 0. We
say the integrand in (77) is a subprobability density with respect to λ.

Since the set where h ◦ y is −∞ has probability density zero, and the set
where it is +∞ has measure zero. The distribution having log density h ◦ y
is concentrated on the set where it is finite, which we write as (h ◦ y)−1(R).

If we start with a full exponential family, then the MLE in the completion
is always a probability density (not sub) but the argument for that is long
and complicated (Geyer, 1990, most of Chapter 2). But maximum likelihood
in a non-full exponential family can give rise to subprobability MLE (Geyer,
1990, Examples 4.2 through 4.8).

9.4 Maximum Likelihood Estimation

Let H be a family of affine functions such that (68) holds, so (67) repre-
sents an exponential family. Then the log likelihood is given by

l(h) = h(y), h ∈ H,

where y is the observed value of the canonical statistic. Define

m(y) = sup
h∈H

h(y), y ∈ B.

Call it the log likelihood supremum function. Then m is a convex function
(a lower-semicontinuous, proper convex function Geyer, 1990, Theorem 4.2).
Hence its effective domain

M = { y ∈ B : m(y) <∞} (78)

is a convex set. If the family we started with was full, then clM is the convex
support of λ◦y−1, but in any case clM is a support of λ◦y−1 (Geyer, 1990,
Theorem 4.2).

MLE always exist in the closure of the family. The space of generalized
affine functions on a finite-dimensional affine space is sequentially compact
in the topology of pointwise convergence (every sequence has a convergent
subsequence) (Geyer, 1990, Section 3.3). Hence, for any y ∈ B, there is a
sequence hn in H such that hn(y) → m(y) as n → ∞. And this sequence
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has a pointwise convergent subsequence, say hnk
→ ĥ. Then ĥ(y) = m(y),

so ĥ is an MLE, when y is the observed value of the canonical statistic.
Such an MLE may be a subprobability density and need not be unique.

In a non-full family, non-uniqueness is typical. Consider the binomial model
having only two distributions, with usual parameter π either 1/4 or 3/4.
And suppose we observe y = n/2 (which requires even n). Then the MLE
in the full family is π̂ = 1/2, but the MLE in the non-full family is either
1/4 or 3/4 or both (if you don’t mind set-valued estimators). If you want
non-full, you have to accept non-unique. As mentioned above, Examples 4.2
through 4.8 in Geyer (1990) show MLE that are subprobability distributions.

A subprobability distribution may even be the zero measure (that gives
measure zero to every event). This will always be the case when the observed
data y has m(y) = +∞. So this is even more unsatisfactory than other
subprobability MLE.

The closure of a full exponential family (considered as in this section) is
in a sense (more on exactly what sense later) a union of exponential families.
This is why Brown (1986) calls it an aggregate exponential family.

9.5 Faces of Convex Sets

A nonempty face of a convex set M is the set of points where some gen-
eralized affine function h achieves its supremum over M and that supremum
is finite (Geyer, 1990, Theorem 3.9). The empty set is always a face too (by
definition). And M is always a face, (the set where constant affine functions
achieve their maximum over M).

The M we are interested in is the set (78) where the supremum of the
log likelihood is finite. Let F be the family of nonempty faces of M .

9.5.1 Aggregate Exponential Families

Suppose now that H in (67) is a family of generalized affine functions
closed in the topology of pointwise convergence (so the object of the category
is now a generalized exponential family of subprobability measures).

For F ∈ F define

HF = {h ∈ H : h−1(R) = aff F and
∫
eh◦y dλ = 1 }

Then the probability distributions having log density h ∈ HF with respect
to λ ◦ y−1 are concentrated on aff F . So if we think of HF as being a family
of affine functions on aff F , it is itself an exponential family of distributions

(Ω,A, λ)
y−−−−→ aff F

HF−−−−→ R (79)
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so long as HF is nonempty (emptiness is possible). This (79) is what Geyer
(2009) calls a limiting conditional model because one can obtain it by con-
ditioning the original family on aff F rather than by taking limits. And the
union of all the HF (thought of as exponential families) for F ∈ F is what
Brown (1986) calls an aggregate exponential family, what Geyer (1990) calls
the relative closure of an exponential family, and what Geyer (2009) calls
the Barndorff-Nielsen completion of an exponential family (although that
really only makes sense for full families).

9.5.2 Aggregate Exponential Subprobability Families

If one allows non-full families, then (as was discussed above) one must
also allow subprobability densities. Then one defines

HF = {h ∈ H : h−1(R) = aff F }

(not worrying about whether densities integrate to one). Then, of course,
theHF can no longer be thought of as exponential families of probability dis-
tributions but rather (if nonempty) as exponential families of subprobability
distributions. Such are the complications of non-full families.

9.5.3 Conclusion

This section has been a bit sketchy. But Chapters 3 and 4 of Geyer
(1990) have all the details and are fully rigorous. We included it both for
generality, and to show where the affine picture really shines. It would be
much messier to try to explain everything discussed here using the vector
picture (and horribly messier using the Rd picture).
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