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1 Introduction

A spatial point process is a random pattern of points, both the number
of points and their locations being random. This is unlike the stochastic
processes we have been studying, in that it is not thought of as a collection
of random variables X(t) for t ∈ T for some set T . We are only interested
in processes having the following properties

(i) At most one point of the process is observed at any location.

(ii) The probability of observing a point at any prespecified location is
zero.

(iii) The probability of observing an infinite number of points is zero.

These properties are called (i) simple, (ii) no fixed atoms, and (iii) finite. In
some contexts (iii) is replaced by the following.

(iv) The probability of observing an infinite number of points in a bounded
region is zero.

Property (iv) is called boundedly finite. So, when we use (iv) instead of (iii),
we are interested in simple, boundedly finite spatial point processes with
no fixed atoms. When we use (iii), the domain A can be an arbitrary set.
When we use (iv), the domain A must have some notion of boundedness.
This is no problem when A is a subset of Rd for some d. We just use the
usual notion of boundedness.

If we were to try to characterize the process by a Bernoulli random
variable X(t) at each location t, then property (ii) would just make all the
Bernoulli random variables almost surely zero. So that won’t work.

Another way to think about the process is that the total number of
points N is a nonnegative-integer-valued random variable and conditional
on N the locations of the N points are a random vector taking values in An.

Yet another way is to think the process as given by random variables
N(B) for B ∈ B, where B is a sigma-algebra in A. N(B) is the number of
points of the process in the region B. So this is somewhat like our previous
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notion of thinking of a stochastic process as a collection of random variables,
but B ∈ B is quite different from anything we have seen before. Just from
the definition, if B1, . . . , Bn are disjoint regions, then

N

(
n⋃
i=1

Bi

)
=

n∑
i=1

N(Bi)

so there is strong dependence among these “counts” variables.

2 Poisson Processes

Theorem 1. For a simple, boundedly finite spatial point process with no
fixed atoms in Rd suppose the following condition holds (B is the Borel sigma-
algebra for Rd).

(v) For any choice B1, B2, . . . , Bk of disjoint elements of B, the random
variables N(B1), N(B2), . . . , N(Bk) are independent.

Then the random variables N(B), B ∈ B all have Poisson distributions, and

Λ(B) = E{N(B)}, B ∈ B, (1)

defines a countably additive measure Λ on (A,B) that has no atoms.

In the conclusion of the theorem we allow degenerate Poisson distribu-
tions concentrated at zero. Indeed condition (ii) says that N({x}) is zero
almost surely for any location x.

We also allow degenerate Poisson distributions concentrated at infinity.
This is the limit as µ→∞ of Poisson distributions with mean µ. Because

Pr(X ≤ n)

Pr(X > n)
=

∑n
x=0

µx

x! e
−µ∑∞

x=n+1
µx

x! e
−µ =

∑n
x=0

µx−n

x!∑∞
x=n+1

µx−n

x!

and all the terms in the numerator on the right-hand side go to zero or are
constant when µ → ∞ while and all the terms in the denominator on the
right-hand side go to infinity, the limit distribution gives probability zero to
{0, . . . , n} for any n. Hence the limit distribution is concentrated at infinity
(if we allow ∞ as a value for the random variable). If N(B) = ∞ almost
surely, then Λ(B) = ∞ too. By assumption (iv) a necessary condition for
Λ(B) = ∞ is that B is an unbounded region, but this is not a sufficient
condition (an unbounded region can have Λ(B) finite).
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The measure Λ defined by (1) is called the parameter measure of the pro-
cess. Of course, the mean is the usual parameter of the Poisson distribution,
so N(B) is Poisson with mean Λ(B).

The Poisson process is said to be homogeneous if Λ is proportional to
Lebesgue measure (length in one dimension, area in two dimensions, volume
in three dimensions, and so forth). Otherwise it is said to be inhomogeneous.

If one wants a Poisson process in a region A that is a measurable subset
of Rd, the theorem applies if we extend the process on A to all of Rd, by
defining N(Ac) = 0 almost surely.

Daley and Vere-Jones (2003, Theorems 2.4.II, 2.4.III and 2.4.VII) prove
this theorem with the domain of the point process being a complete separable
metric space.

Proof. Define
P0(B) = P{N(B) = 0}, B ∈ B.

If the conclusion of the theorem held (which we are not assuming), then we
would have

P0(B) = e−Λ(B)

so we use this as motivation to define Λ by

Λ(B) = − logP0(B), B ∈ B (2)

(this is now our definition, not (1), which we now have to prove).
By definition of point process, if B1 and B2 are disjoint regions, the event

N(B1 ∪B2) = 0 is the same as the event N(B1) = 0 andN(B2) = 0. Hence
the multiplication rule gives

Λ(B1 ∪B2) = − log[P0(B1 ∪B2)]

= − log[P0(B1)P0(B2)]

= − logP0(B1)− logP0(B2)

= Λ(B1) + Λ(B2)

Hence Λ is finitely additive by mathematical induction.
To show that Λ is countably additive, let B1, B2, . . . be a sequence of

disjoint measurable sets, and define

Cn =

n⋃
i=1

Bi
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and

C∞ =
∞⋃
i=1

Bi

To show Λ is countably additive, we need to show Λ(Cn) ↑ Λ(C∞). Let Dn

denote the event N(Cn) = 0 and D∞ the event N(C∞) = 0. It follows from
Cn ↑ C∞ that N(Cn) ↑ N(C∞) and Dn ↓ D∞. Hence P0(Dn) ↓ P0(D∞) by
continuity of probability, and that implies Λ(Cn) ↑ Λ(C∞).

Now Λ has an atom at x if and only if Λ({x}) > 0, which happens if
and only if P0({x}) < 1, which happens if and only if P (N({x})) > 0,
which is what it means for x to be a fixed atom of the point process. Hence
assumption (ii) implies Λ has no atoms.

Fix a bounded set B, and choose a hyperrectangle

R = {x ∈ Rd : li ≤ xi < ui for all i }

that contains B. For each positive integer n define

Jn = { j ∈ Nd : 1 ≤ ji ≤ 2n for all i }

(so the cardinality of Jn is 2nd) and define

Anj =

{
x ∈ Rd : 2−n(ji − 1) ≤ xi − li

ui − li
< 2−nji for all i

}
, j ∈ Jn

(note that in Anj the index n is a scalar integer but the index j is a vector
with integer components) so for each n the sets Anj are 2nd hyperrectangles
that partition R. Moreover, these partitions are nested, meaning every
An+1,j is contained in some Anj′ .

Then define Bernoulli random variables

Xnj =

{
1, N(B ∩Anj) > 0

0, otherwise

(again the subscript n is scalar but the subscript j is a vector, and for each
n there are 2nd of these random variables), and define for each n

Nn(B) =
∑
j∈Jn

Xnj . (3)

Because of the independence assumption and because the Anj for fixed n and
varying j are disjoint, the random variables summed in (3) are independent
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and the generating function of Nn(B) is

ϕn(s) = E{sNn(B)}

=
∏
j∈Jn

E{sXnj}

=
∏
j∈Jn

(
e−Λ(B∩Anj) + s

[
1− e−Λ(B∩Anj)

])
=
∏
j∈Jn

(
1 + (s− 1)

[
1− e−Λ(B∩Anj)

])
Because of assumption (iii) N(B) is almost surely finite, that is, N(B)(ω)
is finite for almost all ω in the sample space. Because of assumption (i) the
points counted by N(B)(ω) are at distinct locations. Hence for sufficiently
large n, each point is in a different Anj and Nn(B)(ω) = N(B)(ω) for that
n and all larger n. Also Nn(B)(ω) is nondecreasing in n for all ω. Hence
Nn(B) ↑ N(B) and by monotone convergence the generating function of
N(B) is

ϕ(s) = E{sN(B)}
= lim

n→∞
ϕn(s)

= lim
n→∞

∏
j∈Jn

(
1 + (s− 1)

[
1− e−Λ(B∩Anj)

])
We now claim

Λ(Anj)→ 0, as n→∞, (4)

which we prove by contradiction. Write

εn = max
j∈Jn

Λ(Anj)

so (4) is the same as εn → 0. The sequence εn is nonincreasing because
of the nesting of the partitions. Hence, if the claim is false, then there is
δ > 0 such that εn ≥ δ for all n. Hence there exists a sequence jn such that
Λ(An,jn) ≥ δ for all n. Choose xn ∈ An,jn . Then because the closure of R
is compact, there exists a convergent subsequence xnk → x. Let

Sη = { y ∈ Rd : |yi − xi| < η for all i }

So there exists an integer k such that Ank,jnk ⊂ Sη, which implies Λ(Sη) > δ.
But Sη ↓ {x} as η ↓ 0, and by continuity this implies

Λ({x}) = lim
η↓0

Λ(Sη) ≥ δ
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which contradicts Λ having no atoms, and this contradiction proves (4).
We return to our generating function calculation. The Taylor series with

remainder 1− e−δ = δ +O(δ2) implies

1− e−Λ(B∩Anj) = Λ(B ∩Anj) +O(Λ(B ∩Anj)2)

and

logϕ(s) = lim
n→∞

∑
j∈Jn

log
(

1 + (s− 1)
[
1− e−Λ(B∩Anj)

])
= lim

n→∞

∑
j∈Jn

log
(
1 + (s− 1)

[
Λ(B ∩Anj) +O(Λ(B ∩Anj)2)

])
Now use the Taylor series with remainder log(1 + δ) = δ +O(δ2)

logϕ(s) = lim
n→∞

∑
j∈Jn

log
(
1 + (s− 1)

[
Λ(B ∩Anj) +O(Λ(B ∩Anj)2)

])
= lim

n→∞

∑
j∈Jn

(s− 1)
[
Λ(B ∩Anj) +O(Λ(B ∩Anj)2)

]

= lim
n→∞

(s− 1)

Λ(B) +
∑
j∈Jn

O(Λ(B ∩Ani)2)


= (s− 1)Λ(B)

the last step being because∑
j∈Jn

Λ(B ∩Ani)2 ≤ εn
∑
j∈Jn

Λ(B ∩Ani) = εnΛ(B)

which goes to zero. Hence the generating function of N(B) is

ϕ(s) = e(s−1)Λ(B)

which is easily checked to be the generating function of the Poisson distri-
bution with mean Λ(B). Hence for bounded sets B the assertion of the
theorem follows from generating functions corresponding to unique distri-
butions (Appendix A).

For unbounded sets B the assertion of the theorem follows from what
we have already proved about bounded B. Define

Rn = {x ∈ Rd : |xi| ≤ n }
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Then N(B ∩Rn) is Poisson with mean Λ(B ∩Rn) and

N(B ∩Rn) ↑ N(B).

It follows that N(B) is Poisson with mean Λ(B), regardless of whether Λ(B)
is finite or infinite.

3 Cox Processes

A Cox process (Cressie, 1993, Section 8.5.2) is a hierarchical model in
which the lowest level is an inhomogeneous Poisson process with parameter
measure Λ, which at the next level of the hierarchy we take to be a random
measure.

Although Cox processes can have quite complicated dependence struc-
ture, none of that structure can be seen in a single realization, which is what
many, perhaps most, data sets which can be modeled by a spatial point pro-
cess comprise. If multiple independent realizations of the process were in
the data, then something could, at least in principle be inferred about the
distribution of the random measure Λ. But for one realization of the process,
you just have one realization of Λ, and you cannot infer anything about a
distribution (any distribution) from one data point.

We will not consider them further.

4 Neyman-Scott Processes

A Neyman-Scott process (Cressie, 1993, Section 8.5.3) is a hierarchical
model with three levels. The upper level is an inhomogeneous Poisson pro-
cess, the points of which are called “centers” and are not observable. In
the middle level independent and identically distributed (II) nonnegative-
integer-valued random variables are generated, which are called “counts”
and are also not observable. In the lower level, for each center x and corre-
sponding count nx, this many IID points are generated from a probability
distribution centered at x (the same distribution for each center). The ob-
served data are only the points generated in the lower layer of the hierarchy;
these points are not labeled as to which center they correspond to.

If the random number of points for each center has a Poisson distribution,
then the Neyman-Scott process is a Cox process, but not otherwise.

Cressie (1993, Section 8.4.3) shows that for a Neyman-Scott process
whose upper level is a homogeneous Poisson process, whose middle level
distribution has finite expectation, and whose lower level distribution is
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spherically symmetric, method of moments estimators of the parameters of
the three levels are available.

5 More on General Point Processes

5.1 Sets or Vectors

For any simple, finite point process taking place in a region A, the real-
izations of the process are point patterns, each of which has some number
of points. Since the points are indistinguishable, the points in a pattern
have no order. Since the process is simple, there are no duplicates. Thus
the point patterns have the properties of mathematical sets. Hence we can
think of the point patterns as finite sets

x = {x1, . . . , xn}

and use the notation of set theory for them. The point pattern having no
points we denote by ∅. If x and y are point patterns, then y ⊂ x means
every point in y is also in x. If ξ is a point and x is a point pattern, then
ξ ∈ x means ξ is one of the points in x, and so forth. In one respect we will
be a bit sloppy using this notation: if ξ is a point and x is a point pattern,
then we will write x ∪ ξ to mean the point pattern whose points are ξ and
all of the points in x, when to be fussy we should write x ∪ {ξ}.

So far, so good, but we run into trouble when we want to do integrals.
When we do multiple integrals the variables are vectors (ordered tuples in
which duplicates are allowed) rather than sets (unordered tuples in which
duplicates are not allowed). So in order to use the notation of calculus we
need to also think of point patterns as vectors (of any length, including
length zero, which is the empty point pattern ∅). When we think of the
realizations of the point process as variable length vectors rather than sets,
we can write the state space as

Ω =

∞⋃
n=0

An (5)

where A0 = {∅}, A1 = A, A2 = A× A and so forth. Note that A0 is a set
with one element (the empty point pattern).

When we say x ∈ Ω is a point pattern, that means x ∈ An for some
n, which means x can be though of as a vector of length n all of whose
components are points of A. If A is a subregion of Rd, then each point of
A requires d numbers to specify it, so thought of as a vector of numbers

8



rather than as a vector of points x has length nd rather than n, but this
complication only arises writing computer programs for point processes; it
needn’t complicate our notation.

The vector notation is wrong in the sense that it seems to indicate that
order matters when it does not. But as long as we don’t make the mistake
of thinking that order matters, it is o. k.

5.2 Integration with respect to the Poisson Process

Let P denote the probability measure of a Poisson process with param-
eter measure Λ on a region A. We assume Λ(A) is finite. The probability of
observing n points is

Λ(A)n

n!
e−Λ(A)

and the conditional distribution of x given that x has n points is

Λn(dx)

Λ(A)n

where Λn is n-fold product measure on An. Then for any measurable func-
tion h : Ω→ R we have∫

Ω
h(x)P (dx) = e−Λ(A)

∞∑
n=0

1

n!

∫
An
h(x)Λn(dx) (6)

provided the integral exists. We will actually only use the special case where
P is the probability measure of a homogeneous Poisson process, in which
case we have

Λ(A) = λv(A),

where

v(A) =

∫
A
dx

is Lebesgue measure of A (length in one dimension, area in two dimensions,
volume in three dimensions, and so forth), and

Λn(dx) = λn dξ1 · · · dξn.

Thus∫
Ω
h(x)P (dx) = e−λv(A)

[
h(∅) +

∞∑
n=1

λn

n!

∫
A
· · ·
∫
A
h(ξ1, . . . , ξn) dξ1 · · · dξn

]
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5.3 Densities with respect to the Poisson Process

We say h is an unnormalized density with respect to a Poisson pro-
cess measure P if it is nonnegative and integrates to something (called the
normalizing constant) that is nonzero and finite. Then h divided by the
normalizing constant is a proper (normalized) probability density.

Thus to specify a point process model having an unnormalized density
with respect to a Poisson process, we only need to specify a nonnegative-
real-valued function h on Ω and then check, first, that h is not zero almost
everywhere [P ] and, second, that

∫
h(x)P (dx) is finite.

5.4 Conditional Intensity Functions

An unnormalized density h with respect to a Poisson process has the
hereditary property if

h(x) > 0 and y ⊂ x implies h(y) > 0. (7)

Let h be an unnormalized density with respect to the probability measure
P of a homogeneous Poisson process on a bounded region A of Rd, and
suppose h has the hereditary property. The Papangelou conditional intensity
function of the process having density h with respect to P is

λ(ξ | x) =
h(x ∪ ξ)
h(x)

, x ∈ Ω and ξ ∈ A. (8)

The hereditary property implies that we can only have divide by zero in (8)
when both the numerator and denominator are zero, and in this case we set
λ(ξ | x) = 1 (a convention).

Since we are not interested in other kinds of conditional intensity func-
tions (Daley and Vere-Jones, 2003, Section 7.2, discuss the different kinds
of conditional intensity functions), we will just call (8) the “conditional in-
tensity function” (omitting the eponym).

6 Markov Point Processes

A Markov point process (Ripley and Kelly, 1977; Cressie, 1993, Sec-
tion 8.5.5; Daley and Vere-Jones, 2003, Section 7.1) is a spatial point process
having a characteristic property defined in terms of the conditional intensity
function.

First Ripley and Kelly define a neighbor relation ∼ among points, which
is symmetric (ξ ∼ ζ implies ζ ∼ ξ) and reflexive ξ ∼ ξ for all ξ). An example
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of a neighbor relation is ξ ∼ ζ if and only if d(ξ, ζ) ≤ ρ, where d is Euclidean
distance and ρ is a known constant called the range.

A spatial point process having unnormalized density h with respect to
a finite Poisson process has the spatial Markov property if h has the heredi-
tary property and the conditional intensity (8) actually depends on x only
through points in x that are neighbors of ξ.

If x is a point pattern and y ⊂ x, then we say y is a clique if every pair of
points in y are neighbors. Let clq(x) denote the set of all cliques in x. Note
that clq(x) is never empty, because the empty point pattern is a clique.

The so-called Hammersley-Clifford theorem for spatial point processes
(proved by Ripley and Kelly, the original Hammersley-Clifford theorem,
proved by Hammersley and Clifford, was for spatial lattice processes) is the
following.

Theorem 2. A spatial point process having unnormalized density h with
respect to a finite Poisson process has the spatial Markov property if and
only if h has the form

h(x) =
∏

y∈clq(x)

ϕ(y) (9)

for some nonnegative-valued function ϕ on Ω.

Proof. If h has the form (9) and h(x) > 0 then

λ(ξ | x) =
∏

y⊂clq(x∪ξ)
y 6⊂clq(x)

ϕ(y)

and every element of every y on the right-hand side is a neighbor of ξ. If
h(x) = 0 then λ(ξ | x) = 1 by convention and does not depend on x. That
proves one direction.

Now suppose h has the spatial Markov property. We must have h(∅) > 0
because h(x) cannot be zero for all x and h(x) > 0 for any x implies h(∅) > 0
by the hereditary property. In order to have (9) we must define

ϕ(∅) = h(∅). (10)

Now define ϕ(x) for nonempty cliques x inductively by

ϕ(x) = 0, if h(x) = 0, (11a)

and

ϕ(x) =
h(x)∏
y(x ϕ(y)

, if h(x) > 0. (11b)
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In order for this definition to make sense, we must show that the denominator
in (11b) is always nonzero. This follows from mathematical induction on the
number of points in x. The induction hypothesis is x is a clique and h(x) > 0
imply ϕ(y) > 0 for all y ( x. Call that IH(x). The base of the induction
is when x contains a single point, in which case the only proper subset of x
is the empty pattern, and we already know ϕ(∅) > 0. The induction step
must prove that IH(x) from the assumption that IH(y) holds for all y ( x.
If x is not a clique or h(x) = 0, then IH(x) holds vacuously. So assume x
is a clique and h(x) > 0. Then for y ( x we know that h(y) > 0 by the
hereditary property and the denominator in

ϕ(y) =
h(y)∏
z(y ϕ(z)

is nonzero by IH(y). Hence ϕ(y) > 0.
Now we prove that (9) holds for our definition of ϕ. This too we prove

by mathematical induction on the number of points in x. It is clear that (9)
holds whenever x has zero or one points by (10) and

ϕ(x) =
h(x)

ϕ(∅)

when x has one point. When x has two or more points, there are two cases.
If x is a clique, then (11a) and (11b) obviously imply (9). If x is not a
clique, then there are ξ and ζ in x such that ξ 6∼ ζ. Write z = x \ {ξ, ζ} so
x = z ∪ ξ ∪ ζ. If h(x) = 0, then (11a) implies (9). So we are left with the
case h(x) > 0, which implies h(z) > 0 by the hereditary property. And

h(x) = h(z ∪ ξ)λ(ζ | z ∪ ξ)
= h(z ∪ ξ)λ(ζ | z)

=
h(z ∪ ξ)h(z ∪ ζ)

h(z)

because λ(ζ | x∪ξ) only depends on neighbors of ζ and ξ is not a neighbor of
ζ. The induction hypothesis assumes that (9) holds for all sets of cardinality
less than x, hence

h(x) =

 ∏
y∈clq(z∪ξ)

ϕ(y)

 ∏
y∈clq(z∪ζ)

ϕ(y)

/ ∏
y∈clq(z)

ϕ(y)


=

∏
y∈clq(x)

ϕ(y)

and we are done.
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7 Strauss Process

The Strauss process (Strauss, 1975) is a spatial point process that uses
the neighbor relation ξ ∼ ζ if and only if d(ξ, ζ) ≤ ρ, where d is Euclidean
distance and ρ > 0 is a fixed constant, and uses only cliques of size 2 or less
in the Hammersley-Clifford expansion. For any x ∈ Ω, let

� t1(x) denote the number of points in x and

� t2(x) denote the number of unordered pairs of distinct points in x that
are neighbors.

Then the Strauss process is the exponential family of distributions having
t1(x) and t2(x) as its canonical statistics, which means the unnormalized
density is

hθ(x) = et1(x)θ1+t2(x)θ2 = e〈t(x),θ〉

where in the last expression t(x) and θ are vectors of length 2.
We are specifying a family of probability distributions (a statistical

model) with parameter vector θ (the canonical parameter vector of this
exponential family). Since we have a family of densities, the normalizing
“constant” is a function of θ (but not a function of x)

c(θ) =

∫
Ω
hθ(x)P (dx)

= e−λv(A)
∞∑
n=0

λn

n!

∫
A
· · ·
∫
A
enθ1+t2(x1,...,xn)θ2 dx1 · · · dxn

= e−λv(A)
∞∑
n=0

λnenθ1

n!

∫
A
· · ·
∫
A
et2(x1,...,xn)θ2 dx1 · · · dxn

(12)

It was a slight embarrassment for Strauss that the title of Strauss (1975)
is “a model for clustering” but, as pointed out by Kelly and Ripley (1976),
the Strauss process is not “a model for clustering” but only a model for anti-
clustering because of the following theorem. (Not a major embarrassment
because Strauss did propose the first Markov spatial point process widely
used for real data.)

Theorem 3. The integral (12) exists if and only if θ2 ≤ 0.

Proof. First, suppose θ2 ≤ 0. Then, since t2(x) ≥ 0, we have∫
A
· · ·
∫
A
et2(x1,...,xn)θ2 dx1 · · · dxn ≤

∫
A
· · ·
∫
A
dx1 · · · dxn = v(A)n
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and
∞∑
n=0

λnenθ1v(A)n

n!
= elog(λ)+θ1+log v(A)

Hence c(θ) <∞.
Second, suppose θ2 > 0, and consider a subset B of A having nonzero

Lebesgue measure and diameter less than or equal to ρ. Then x ∈ Bn

implies t2(x) = n(n−1)/2 (every pair of points of x is a neighbor pair), and∫
A
· · ·
∫
A
et2(x1,...,xn)θ2 dx1 · · · dxn ≥ en(n−1)θ2/2

∫
B
· · ·
∫
B
dx1 · · · dxn

= en(n−1)θ2/2v(B)n

and

c(θ) ≥ e−λv(A)
∞∑
n=0

λnen(n−1)θ2/2v(B)n

n!

and this infinite sum is not finite because Stirling’s approximation says

log(n!) = n log(n)− n+O
(
log(n)

)
so

log

(
λnen(n−1)θ2/2v(B)n

n!

)

≥ n log λ+
n(n− 1)θ2

2
+ n log v(B)− n log n+ n+O

(
log(n)

)
and this goes to infinity as n → ∞, hence so do the terms of the infinite
sum, which consequently cannot converge.

Thus the canonical parameter space of the full exponential family for the
Strauss process is

Θ = { θ ∈ R2 : θ2 ≤ 0 } (13)

This and related models (Section 10 below) are the only examples of non-
regular exponential families that I know of that arise in actual applications.

An exponential family is regular (Barndorff-Nielsen, 1978, p. 116) if its
full canonical parameter space Θ is an open set, which (13) is not. The point
of regularity, is that it implies that the maximum likelihood estimate (MLE),
if it exists, is any point where the first derivative of the log likelihood is zero
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(Barndorff-Nielsen, 1978, Theorems 9.13 and 9.14). When the boundary
of Θ is nonempty, as in (13), then if a boundary point is the MLE, the
first derivative is not even defined there, and one has to use the methods of
constrained optimization (Geyer and Møller, 1994).

For the Strauss process, the boundary points (where θ2 = 0) are homo-
geneous Poisson processes because for such θ we have

c(θ) = e−λv(A)
∞∑
n=0

λnenθ1

n!

∫
A
· · ·
∫
A
dx1 · · · dxn

= e−λv(A)
∞∑
n=0

λnenθ1v(A)n

n!

= e−λv(A)+λv(A)eθ1

and for any measurable function f we have

Eθ{f(x)} =
e−λv(A)

c(θ)

∞∑
n=0

λnenθ1

n!

∫
A
· · ·
∫
A
f(x1, . . . , xn) dx1 · · · dxn

= e−λv(A)eθ1
∞∑
n=0

λnenθ1

n!

∫
A
· · ·
∫
A
f(x1, . . . , xn) dx1 · · · dxn

and this is the same formula as for a Poisson process, the only difference is
that the rate parameter λ has been replaced by λeθ1 .

From the theory of exponential families (Barndorff-Nielsen, 1978, Theo-
rem 8.2)

Eθ{t(x)} = ∇ log c(θ)

varθ{t(x)} = ∇2 log c(θ)

Consequently,

∂Eθ{t2(x)}
∂θ2

=
∂2c(θ)

∂θ2
2

= varθ{t2(x)} > 0

Thus decreasing θ2 decreases the expectation of t2(x), and a Strauss process
with θ2 < 0 has fewer neighbor pairs on average than expected for a Poisson
processes (the θ2 = 0 case).
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8 The Hard Core Process

Geyer (2009), generalizing the theory in Barndorff-Nielsen (1978) and
Brown (1986) constructs the completion of an exponential family by tak-
ing limits as parameters go to infinity. The limit in a direction δ exists
(Geyer, 2009, Theorem 6) if and only if δ is a direction of recession of the
family, which is characterized by Theorem 3 in Geyer (2009). A vector δ is
a direction of recession if and only if there exists a constant M such that
〈t(x), δ〉 ≤M for all x ∈ Ω, in which case the limiting distributions (the lim-
iting conditional model (LCM)) are the distributions in the original family
conditioned on the event

〈t(x), δ〉 = max
y∈Ω
〈t(y), δ〉

For the Strauss process t2(x) is bounded below by zero. The LCM in the
direction (0,−1), which conditions on t2(x) having its minimum value, is
called the hard core process. It is the Strauss process conditioned on the
event t2(x) = 0, that is, there are no neighbor pairs, every point is separated
by a distance of at least ρ from every other point.

Unlike the Poisson process and the Strauss process, the hard core process
cannot have an arbitrarily large number of points. When the region A in
which the process takes place is bounded, then there is a maximum number
of points that can be crammed into A while maintaining a separation of
at least ρ (this maximum number may be difficult to calculate, but it does
exist).

In taking the limit to form the LCM one loses a parameter. For the hard
core process the value of θ2 is irrelevant. It controls the mean value of t2(x),
but we are fixing t2(x) at zero, leaving nothing for θ2 to do. (More formally,
if we calculate the conditional distributions, we see that θ2 drops out of the
formulas.)

Thus the hard core process is a one-parameter exponential family. Unlike
the Strauss process, it is a regular exponential family. The full canonical
parameter space is the whole real line.

We can continue the process of taking limits. If we take the limit as
θ1 → −∞ we get the empty process, that has no points with probability
one (and no parameters). If we take the limit as θ1 → +∞ we get the
Poisson process conditioned on t2(x) = 0 and t1(x) conditioned on having
its maximal value (which we said was difficult to calculate). Again this has
no parameters, if n is the maximal number of points that can be crammed
into A while maintaining a separation of at least ρ, then this process is the
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distribution of n points uniformly distributed in A conditioned on the event
t2(x) = 0.

9 MCMC Simulation

Geyer and Møller (1994) proposed an MCMC simulation method for
spatial point processes. Later on, it turned out to be a special case of
the Metropolis-Hastings-Green (MHG) algorithm (Green, 1995), but rather
than present all of the theory of the general MHG algorithm, we will just
prove what we want to prove about the algorithm of Geyer and Møller.

Here is the method. Suppose we want to simulate a spatial point process
that has an unnormalized density h with respect to the Poisson process on
a region A that has parameter measure Λ, and suppose h has the hereditary
property. We describe one iteration of the Markov chain starting at x (a
point pattern). This is an equal mixture of two Metropolis-like updates,
which we call up moves and down moves. These work as follows. The up
move.

� Generate a point ξ having distribution Λ( · )/Λ(A). Set y = x ∪ ξ.

� Calculate

Rup =
h(y)Λ(A)

h(x)(n+ 1)
(14)

where n is the number of points in x.

� Generate U uniform on (0, 1). If U < Rup the state of the Markov
chain at the next time is y. Otherwise, the state at the next time is x.

And the down move.

� If x = ∅, do nothing. The chain stays at x.

� If x 6= ∅ do the following.

– Choose a point ξ ∈ x uniformly at random. Set y = x \ ξ.
– Calculate

Rdown =
h(y)(n+ 1)

h(x)Λ(A)
(15)

where n is the number of points in y.

– Generate U uniform on (0, 1). If U < Rdown the state of the
Markov chain at the next time is y. Otherwise, the state at the
next time is x.
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Those familiar with the Metropolis algorithm will notice that this algorithm
is quite similar. There is a proposal (y), a ratio Rup or Rdown is calculated,
and “Metropolis rejection” is done based on the ratio. The only differences
from the Metropolis algorithm are that x and y have different dimensions
and (14) and (15) are not the Metropolis ratio, although they are Green
ratios that occur in the general MHG algorithm.

If the current state x is possible under the Poisson process and satisfies
h(x) > 0, then so will the next state. In (14) we have h(x) > 0 by assumption
and, if h(y) = 0, then the proposal y is accepted with probability zero and
cannot be the next state. Hence the next state must (with probability one)
satisfy h(y) > 0. In (15) we have h(x) > 0 by assumption and h(y) > 0 by
the hereditary property. Thus, if started in a state x that is possible under
the Poisson process and satisfies h(x) > 0, the chain satisfies this condition
at all times, and there can never be divide by zero in (14) or (15).

Theorem 4. An invariant distribution of the sampler described above is the
distribution that has an unnormalized density h with respect to the Poisson
process on A that has parameter measure Λ.

Proof. The transition probability kernel of the sampler is

P (x,B) =
1

2
I(∅, B) +

1

2

∞∑
n=0

Pn(x,B)

where Pn describes the up move from n points to n+ 1 points and the down
move from n+ 1 points to n points.

We will show that every Pn is reversible with respect to the desired
invariant distribution. Since the identity kernel is reversible with respect to
every distribution, and the sum of reversible is reversible, this implies P is
reversible with respect to the desired invariant distribution. Since reversible
with respect to a distribution implies that distribution is invariant, that
proves the assertion of the theorem. Thus it only remains to show that each
Pn is reversible.

Now

Pn(x,B) = rn(x)I(x,B) +

∫
B
Qn(x, dy)an(x, y)

where Qn is the conditional distribution of the proposal y given the current
state x for moves between n and n+1 points, where an(x, y) is the acceptance
probability in the Metropolis rejection, either min(1, Rup) for up moves or
min(1, Rdown) for down moves, and where

rn(x) = 1−
∫
Qn(x, dy)an(x, y)
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Let µ denote the measure of the Poisson process. Then reversibility is for
any bounded measurable function f∫∫

f(x, y)h(x)µ(dx)Pn(x, dy)

is unchanged if f(x, y) is replaced by f(y, x). Using (6) and taking account
of the fact that Pn(x,B) is zero unless x has n or n+ 1 points, we get∫∫

f(x, y)h(x)µ(dx)Pn(x, dy)

= e−Λ(A)
n+1∑
m=n

1

m!

∫
Am

∫
Ω
f(x, y)h(x)Λm(dx)Pn(x, dy)

we can divide out the constants e−Λ(A) and n! without affecting the re-
versibility verification. Hence it remains to show that∫

An

∫
Ω
f(x, y)h(x)Λn(dx)Pn(x, dy)

+
1

n+ 1

∫
An+1

∫
Ω
f(x, y)h(x)Λn+1(dx)Pn(x, dy)

is unchanged if f(x, y) is replaced by f(y, x). Now

Qn(x,B) = Λ(B)/Λ(A), x ∈ An

and
Qn(y ∪ ξ,B) = I(y,B), y ∈ An and ξ ∈ A

(Why is there not a factor of 1/(n + 1) because we are deleting a point ξ
chosen “at random” from among the points of y ∪ ξ? Because the points
are indistinguishable. Another way to think of this is that the operation
of permuting the points preserves every distribution, so could do a random
permutation of the points at the beginning of each iteration of the Markov
chain without changing any invariant distributions the chain has. Then
when we delete a particular point, say the last one, it is already random.)
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Hence∫
An

∫
Ω
f(x, y)h(x)Λn(dx)Pn(x, dy)

=

∫
An

∫
Ω
f(x, y)h(x)Λn(dx) [rn(x)I(x, dy) + an(x, y)Qn(x, dy)]

=

∫
An
f(x, x)h(x)rn(x)Λn(dx)

+
1

Λ(A)

∫
An

∫
A
f(x, x ∪ ξ)h(x)an(x, x ∪ ξ)Λn(dx)Λ(dξ)

and the first term on the right-hand side is unchanged when the arguments
of f are swapped, so we don’t need to worry about it further. And hence∫

An+1

∫
Ω
f(x, y)h(x)Λn+1(dx)Pn(x, dy)

=

∫
An+1

∫
Ω
f(x, y)h(x)Λn+1(dx) [rn(x)I(x, dy) + an(x, y)Qn(x, dy)]

=

∫
An+1

f(x, x)h(x)rn(x)Λn+1(dx)

+

∫
An

∫
A
f(y ∪ ξ, y)h(y ∪ ξ)an(y ∪ ξ, y)Λn(dy)Λ(dξ)

and, again, the first term on the right-hand side is unchanged when the
arguments of f are swapped, so we don’t need to worry about it further.
Now what remains to be shown is that

1

Λ(A)

∫
An

∫
A
f(x, x ∪ ξ)h(x)an(x, x ∪ ξ)Λn(dx)Λ(dξ)

+
1

n+ 1

∫
An

∫
A
f(x ∪ ξ, x)h(x ∪ ξ)an(x ∪ ξ, x)Λn(dx)Λ(dξ)

is unchanged when the arguments of f are swapped, and this will be the
case if it is true of the integrands, that is, if

1

Λ(A)
f(x, x∪ ξ)h(x)an(x, x∪ ξ) +

1

n+ 1
f(x∪ ξ, x)h(x∪ ξ)an(x∪ ξ, x) (16)

is unchanged when the arguments of f are swapped for all x ∈ An and ξ ∈ A
such that there is no divide by zero in the calculation of an (since we already
know that happens with probability zero). Now we note that (14) and (15)
are reciprocals so long as both h(x) > 0 and h(y) > 0. Thus we may assume

20



h(x) > 0 and h(x ∪ ξ) > 0 when verifying that (16) is unchanged when
the arguments of f are swapped. Now we have two cases. First, suppose
an(x, x ∪ ξ) = 1. Then (16) is

1

Λ(A)
f(x, x ∪ ξ)h(x) +

1

n+ 1
f(x ∪ ξ, x)h(x ∪ ξ) · h(x)(n+ 1)

h(x ∪ ξ)Λ(A)

and this is unchanged when the arguments of f are swapped. Second, sup-
pose an(x ∪ ξ, x) = 1. Then (16) is

1

Λ(A)
f(x, x ∪ ξ)h(x) · h(x ∪ ξ)Λ(A)

h(x)(n+ 1)
+

1

n+ 1
f(x ∪ ξ, x)h(x ∪ ξ)

and this is unchanged when the arguments of f are swapped.

Theorem 5. The sampler described above is irreducible if h has the hered-
itary property.

Recall that the hereditary property is (7).

Proof. We have to show the sampler is ϕ-irreducible for some positive mea-
sure ϕ that is not the zero measure. We choose ϕ to be concentrated at
the empty point pattern. Thus we need to show that the sampler can get
from any point pattern x to the empty point pattern in a finite number of
steps. We claim if x has n points that it can do so in n steps. The sampler
can do a down move in each of the n steps with positive probability, and
each of those proposals is accepted with positive probability because of the
hereditary property: if h(x) > 0 then h(y) > 0 for all y ⊂ x so (15) is never
zero.

So now we know that h is the unnormalized density of the unique invari-
ant distribution.

Theorem 6. The sampler described above is geometrically ergodic if the dis-
tribution having unnormalized density h has bounded conditional intensity.

Recall that the conditional intensity is (8), the assumption of the theorem
is that there exists a constant M such that

h(x ∪ ξ) ≤Mh(x), x ∈ Ω and ξ ∈ A. (17)

Proof. First note that (17) implies that h has the hereditary property.
Next we claim that every set consisting of point patterns having at most

n points is a small set in the terminology of Markov chain theory (Meyn
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and Tweedie, 2009, Section 5.2): a set C is small if there exists a positive
measure ν that is not the zero measure and an integer m such that

Pm(x,B) ≥ ν(B), x ∈ C, B ∈ B,

where P is the transition probability kernel of the Markov chain and B is
the sigma-algebra for the state space. Here we take ν to be concentrated
at the empty point pattern and m = n. The proof is just like the proof of
Theorem 5 except for using (17). Again we know that every down step is
possible, so the chain can go from having n points to having zero points in
n steps. Now we calculate the probability of a down move is

1

2
· h(y)(m+ 1)

h(x)Λ(A)
≥ 1

2MΛ(A)

where m is the number of points in y, so long as the right-hand side is less
than one, which we can assure by increasing M if necessary (since, if (17)
holds, then it also holds if M is increased). Hence the probability of going
from n points to zero points in n steps is at least 1/[2MΛ(A)]n. If we take
ν to be the measure having that mass concentrated at zero, then we satisfy
the small set condition.

Now we verify the geometric drift condition

PV (x) ≤ λV (x) + L

for some λ < 1, some constant L, and some function V on the state space
having the property that every sublevel set {x ∈ Ω : V (x) ≤ α } is small,
where P is the transition probability kernel of the Markov chain. This proves
geometric ergodicity Meyn and Tweedie (2009, Proposition 5.5.3, definition
of unbounded off petite sets on p. 189, Theorem 15.0.1, and Lemma 15.2.8).

We choose V (x) = rn(x), where n(x) is the number of points in x and
r > 1 is a constant to be named later. Clearly V has small level sets. Then
if x has n points

PV (x) = pdown(x)rn−1 + psame(x)rn + pup(x)rn+1

where the pdown(x) is the probability the sampler accepts a down step when
at x, where the pup(x) is the probability the sampler accepts an up step when
at x, and psame = 1 − pdown(x) − pup(x). Choose r > 1 and r > MΛ(A).
Then

pup(x) = min

(
1,
h(x ∪ ξ)λ(A)

h(x)(n+ 1)

)
≤ Mλ(A)

n+ 1
(18)
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For 0 < ε < 1 we have (18) less than ε when n(x) ≥ Kε = MΛ(A)/ε. And

pdown(x) = min

(
1,
nh(x \ ξ)
λ(A)h(x)

)
≥ 1 (19)

when n(x) ≥ Kε. Hence being a probability ≥ 1 it must be equal to one.
Hence

PV (x) ≤
[

1

2r
+

1− ε
2

+
εr

2

]
V (x).

Since the term in square brackets converges to (1 + 1/r)/2 < 1 as ε→ 0 we
can choose ε so that the term in square brackets is strictly less than 1; call
it λε. Then we have

PV (x) ≤ λεV (x), n(x) ≥ Kε.

and we have
PV (x) ≤ rn(x) ≤ rKε , n(x) < Kε;

call the right hand side Lε. Then we have

PV (x) ≤ λεV (x) + Lε, for all x,

and we are done.

Now, as an application, we want to show that the Strauss process has
bounded conditional intensity. We have

h(x ∪ ξ)
h(x)

= eθ1+[t2(x∪ξ)−t2(x)]θ2 ≤ eθ1

when θ2 ≤ 0. So the sampler for the Strauss process is geometrically ergodic.

Theorem 7. If a putative unnormalized density h with respect to a Poisson
process having probability measure P has bounded conditional intensity, then
its integral with respect to P (6) is finite, so h is in fact an unnormalized
density of a spatial point process unless it is zero almost everywhere [P ].

Proof. Suppose (17) holds. If n(x) is the number of points in x, then (17)
implies

h(x) ≤Mn(x)h(∅), x ∈ Ω,
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and (6) is ∫
Ω
h(x)P (dx) = e−Λ(A)

∞∑
n=0

1

n!

∫
An
h(x)Λn(dx)

≤ e−Λ(A)
∞∑
n=0

Mnh(∅)Λ(A)n

n!

= h(∅)e(M−1)Λ(A)

Thus in the future, we just want to show that a process has bounded
conditional intensity. We do not need a separate proof that the process
exists, since that follows from bounded conditional intensity by Theorem 7.
Hence if we had proved bounded conditional intensity first, we would not
have needed one direction of the proof of Theorem 3. But we still need the
other direction, proving when the process does not exist.

10 The Triplets Process

The next step after the Strauss process, going from cliques of size 2 to
cliques of size 3, is what Geyer (1999) called the triplets process. This is
a spatial point process that uses the same neighbor relation as the Strauss
process, ξ ∼ ζ if and only if d(ξ, ζ) ≤ ρ, where d is Euclidean distance and
ρ > 0 is a fixed constant. For any x ∈ Ω, let

� t1(x) denote the number of points in x, which is the number of cliques
of size one in x.

� t2(x) denote the number of unordered pairs of distinct points in x that
are neighbors, which is the number of cliques of size two in x

� t3(x) denote the number of unordered triplets of distinct points in x
that are all neighbors, which is the number of cliques of size three in
x.

Then the triplets process is the exponential family of distributions having
t1(x), t2(x), t3(x) as its canonical statistics, which means the unnormalized
density is

hθ(x) = et1(x)θ1+t2(x)θ2+t3(x)θ3 = e〈t(x),θ〉

where in the last expression t(x) and θ are vectors of length 3.
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Theorem 8. The full canonical parameter space for the triplets process is

Θ = { θ ∈ R3 : θ3 < 0 or (θ3 = 0 and θ2 ≤ 0) }. (20)

The process has bounded conditional intensity for θ ∈ Θ.

Since (20) is not an open set, the triplets process (like the Strauss pro-
cess) is not a regular exponential family. Since (20) is not a closed set
either, maximum likelihood for the triplets process is even trickier than for
the Strauss process (Geyer, 1999).

Proof. First, we do bounded conditional intensity.
In case θ3 = 0 the process becomes a Strauss process, and we know from

Theorem 3 that the process then exists if and only if θ2 ≤ 0.
Now for the case θ3 < 0. Fix a point ξ and let Sξ denote the closed

ball centered at ξ having radius ρ. For ζ ∈ Sξ, let Wζ denote the open ball
having radius ρ/2 centered at ζ. The sets Wζ , ζ ∈ Sξ are an open cover of
Sξ. Hence, since Sξ is a compact set, there is a finite subcover Wζ1 , Wζ2 ,
. . . , Wζk . Now define recursively

B1 = Sξ ∩Wζ1

and
Bj = (Sξ ∩Wζj ) \ (B1 ∪ · · · ∪Bj−1), for j ≥ 2

Then B1, . . . , Bk partition Sξ, and every pair of points in one of these Bi
are neighbors (their separation is less than ρ, because they are contained of
some ball of radius ρ/2) and every point in one of these Bi is a neighbor of
ξ (because it is contained in Sξ). Let ni(x) denote the number of points in
x that are in Bi.

For any point pattern x not containing ξ

t2(x ∪ ξ)− t2(x) = n1(x) + · · ·+ nk(x)

and

t3(x ∪ ξ)− t3(x) ≥
k∑
i=1

ni(x)[ni(x)− 1]

2

hence

log
hθ(x ∪ ξ)
hθ(x)

≤ θ1 +

k∑
i=1

[
ni(x)θ2 +

ni(x)[ni(x)− 1]θ3

2

]
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The function

n 7→ nθ2 +
n(n− 1)θ3

2

is quadratic with negative leading coefficient, hence it achieves its maximum
and thus is bounded.

Now for the non-existence part. For the case θ3 = 0 and θ2 > 0 we know
the process does not exist by Theorem 3. For the case θ3 > 0, we do a proof
very similar to that in Theorem 3.

Consider a subset B of A having nonzero Lebesgue measure and diameter
less than or equal to ρ. Then x ∈ Bn implies

t2(x) = n(n− 1)/2

t3(x) = n(n− 1)(n− 2)/6

and ∫
Ω
hθ(x)P (dx) = e−Λ(A)

∞∑
n=0

1

n!

∫
An
h(x)Λn(dx)

≥ e−Λ(A)
∞∑
n=0

1

n!

∫
Bn
h(x)Λn(dx)

≥ e−Λ(A)

[
1 + eθ1Λ(B)

+
∞∑
n=2

enθ1+n(n−1)θ2/2+n(n−1)(n−2)θ3/6Λ(B)n

n!

]

and, as in the proof of Theorem 3, the terms of the infinite sum go to infinity
as n→∞, hence the sum does not converge.

Unlike the Strauss process, the triplets process really is a “model for
clustering.” With slightly negative θ3 and highly positive θ2 the process will
have much larger expectation of t2(x) than a Poisson process with the same
expectation of t1(x). Geyer (1999) shows specific examples.

11 The Saturation Process

Inventing non-Poisson Markov spatial point processes having bounded
conditional intensity is (IMHO) fairly easy. Here is another one (Geyer,
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1999). The motivation for it does not come from Hammersley-Clifford rep-
resentation. The unnormalized density isn’t a function of cliques of certain
sizes.

As with the Strauss process and the triplets process, it is an exponential
family. As with the Strauss process and the triplets process, the first canon-
ical statistic t1(x) is the number of points in x. For each point pattern x
and each ξ ∈ x, let mξ(x) denote the number of neighbors of ξ in x. Then∑

ξ∈xmξ(x) would be 2t2(x) for the t2(x) used for the Strauss and triplets
processes. But we don’t go there. Let σ be a known constant called the
saturation parameter, and define

t2(x) =
∑
ξ∈x

min
(
σ,mξ(x)

)
The story is that t2(x) only counts neighbors of ξ up to a certain level σ
after which ξ has all the neighbors it can handle and any more are irrelevant.
Clearly, t2(x) ≤ σt1(x), and

log
hθ(x ∪ ξ)
hθ(x)

≤ θ1 + σθ2

so the process has bounded conditional intensities for all values of the pa-
rameter, the full canonical parameter space is Θ = R2, and this is a regular
exponential family.

A Generating Functions

The generating function of the nonnegative-integer-valued random vari-
able X having probability mass function f is

ϕ(s) = E{sX} =
∞∑
x=0

f(x)sx = f(0) +
∞∑
x=1

f(x)sx

where we write ϕ(s) =∞ if the infinite sum diverges.
Since the terms of the infinite sum are all nonnegative and s 7→ sx is

strictly increasing for x > 0, the generating function is strictly increasing on
the interval { s > 0 : ϕ(s) <∞}. Since ϕ(1) = 1, we know the radius of con-
vergence of the power series defining the moment generating function is at
least one. Since every function defined by a power series with a positive ra-
dius of convergence uniquely determines the power series (f(x) = ϕ(x)(0)/x!)
(Browder, 1996, Corollary 4.37). Hence each moment generating function
corresponds to a unique distribution.
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