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1 Old Probability Theory and New

All of probability theory can be divided into two parts. I call them
master’s level and PhD level probability theory. Other terms are classical
probability theory and measure-theoretic probability theory. Historically,
the dividing line is 1933 when Grundbegriffe der Wahrscheinlichkeitsrech-
nung (Foundations of the Theory of Probability) by Andrey Kolmogorov
was published (although Kolmogorov was Russian, he wrote in German to
reach a wider audience). What Kolmogorov did was to say that the new
real analysis that had started with the PhD thesis of Henri Lebesgue (1902)
and had been rapidly generalized to integrals of real-valued functions on
arbitrary spaces by Radon, Fréchet, and others (called Lebesgue integration
or abstract integration) should also be used in probability theory.

1.1 Discrete, Continuous, and None of the Above

In master’s level probability theory we have the distinction between dis-
crete and continuous distributions. The discrete ones have probability mass
functions (PMF) and we calculate probabilities and expectations with sums;
the continuous ones have probability density functions (PDF) and we calcu-
late probabilities and expectations with integrals. We are aware that we can
have distributions that are neither — consider a random vector whose first
component is Poisson and second component is normal — but the theory
does not cater to such distributions.

One place where we discuss such things in a master’s level theory course
is Bayesian inference with discrete data x and continuous parameter θ, as
when we figure out, if x is binomial given θ and the prior for θ is beta, then
the posterior is also beta. If we fuss about this, we notice that we have a
mixed joint distribution with x discrete and θ continuous. But in deriving
the posterior we are conditioning on x, essentially treating it as fixed, so we
are really just working with a continuous distribution of one variable θ.

Another place where we discuss such things in master’s level theory is
in the discussion of distribution functions (DF). We are told that every DF
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corresponds to a distribution (and vice versa), but we are not given any way
to deal with the ones that are not discrete or continuous.

Here is an example

F (x) =


0, x < 0

(1 + x)/2, 0 ≤ x ≤ 1

1, x ≥ 1

There is an atom at zero, so the distribution is partly discrete, but otherwise
is continuous. We can describe this distribution as a 50-50 mixture of the
distribution concentrated at zero and the uniform distribution on (0, 1).
There really isn’t any mystery, but the formulas in master’s level theory
books don’t cover this situation.

Yet another place where we discuss such things in master’s level theory
is in the discussion of multivariate normal distributions. We are told that
any linear function of a normal random vector is another normal random
vector. But this gives rise to degenerate normal random vectors. We are
also told that any mean vector and any variance matrix correspond to some
multivariate normal distribution, but singular variance matrices correspond
to degenerate distributions that do not have PDF. Again, there really isn’t
any mystery. If µ is the mean vector and M is the variance matrix of a
normal random vector X, Then M is singular if and only if vTMv = 0 for
some nonzero vector v, but

vTMv = var(vTX),

and a random vector having variance zero is almost surely constant (actu-
ally this result requires measure theory, Theorem 1 below), hence vTX is
almost surely constant, and the constant has to be vTµ. Writing vi for the
components of v and similarly for X and µ, the assumption that v is nonzero
means it has at least one nonzero component, say vk, so we have

Xk = µk −
1

vk

∑
i 6=k

vi(Xi − µi) (1)

with probability one, and we can eliminate Xk from our calculations, using
(1) to deal with it. After several such steps we have partitioned our general
normal random vector into two parts, one of which has a nondegenerate
normal distribution and a PDF and the other of which is a linear function
of the first part. Clumsy, but not problematic.
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So master’s level theory can deal with many distributions that are neither
discrete nor continuous (but have some aspects of both) by ad hoc devices,
but it has no unified methodology for dealing with all such cases.

Also the notion that every DF corresponds to a probability distribution
(which comes from measure-theoretic probability theory) allows much more
bizarre distributions than master’s level theory can handle.

Here is one example. The Cantor set is defined as follows. From the
open unit interval remove the middle third leaving an open set; call it C1.
Then remove the middle third of every interval in C1 obtaining C2, and keep
on going, removing the middle third of every interval in Cn−1 to obtain Cn.
Then

C∞ =
∞⋂
i=1

Cn

is the Cantor set. We can use the same construction to make a DF. Let Fn
denote the DF of the continuous uniform distribution on Cn and then define

F∞(x) = lim
n→∞

Fn(x), for all x.

It is fairly easy to see that F∞ is a continuous function. Therefore the ran-
dom variable having this distribution is continuous in some sense, but not in
the master’s level theory sense. This distribution attributes probability zero
to each of the intervals removed, and the lengths of these intervals add up to
one. So all of the probability is concentrated on the Cantor set C∞, which
is what the measure-theoretic jargon calls a set of Lebesgue measure zero,
Lebesgue measure being the measure-theoretic analog of ordinary length.
This distribution does not have a PDF, and it is totally mysterious from the
master’s level theory point of view. The master’s level recipe for finding the
probability density function by differentiating the DF fails: F∞ is not differ-
entiable anywhere on C∞ and has derivative zero off C∞. The function F∞
is called the “devil’s staircase” because of its bizarre properties (continuous
but not differentiable), so we can call the probability distribution with DF
F∞ the devil’s staircase distribution.

So what is the point of that? Does this distribution have any applica-
tions? Why do we care? Answers: no point, no applications, and we don’t
care. The reason for inventing this stuff wasn’t to produce weird examples.
The reason was limit theorems.

1.2 Limit Theorems

In the nineteenth century mathematicians started studying limits of se-
quences of functions and right away found out that the limit of a sequence
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of continuous functions needn’t be continuous, the limit of a sequence of
differentiable functions needn’t be differentiable, the limit of a sequence of
integrable functions needn’t be integrable, and started studying conditions
under which these do hold. In particular,

lim
n→∞

fn(x) = f(x), for all x, (2)

does not imply that f is an integrable function in the sense of ordinary
calculus (so-called Riemann integrable) or even if it is that

lim
n→∞

∫
fn(x) dx→

∫
f(x) dx. (3)

At the beginning of the twentieth century mathematicians (led by Lebesgue)
remedied this situation by redefining integration. Lebesgue integration or
abstract integration gives the same result as Riemann integration when the
latter exists, so nothing you know from calculus changes, but a lot more
functions are integrable.

There are three limit theorems of abstract integration theory. Fatou’s
lemma says, if (2) holds with with all of the fn integrable and nonnegative,
then f is integrable and

lim inf
n→∞

∫
fn(x) dx ≥

∫
f(x) dx. (4)

The monotone convergence theorem says, if (2) holds with with all of the fn
integrable and the sequence monotone, that is, f1(x) ≤ f2(x) ≤ · · · for all x
or the same except with the inequalities reversed, then f is integrable and
(3) holds, possibly with +∞ or −∞ as the limit. The dominated convergence
theorem says, if (2) holds and the sequence is dominated by an integrable
function, that is, there exists an integrable function m such that |fn(x)| ≤
m(x) for all x and all n, then f is integrable and (3) holds. These limit
theorems are the only method for calculating Lebesgue integrals or abstract
integrals when they aren’t also Riemann integrals.

Now the question about applications seems different. There are lots of
applications of the limit concept. We want our use of the limit concept to
be unimpeded by needless restrictions. Removing the restrictions requires
the move from Riemann to Lebesgue integration.

Here is a truly bizarre application. Cantor discovered the rational num-
bers are countable Q = {r1, r2, . . .} for some sequence r1, r2, . . . . Define

fn(x) =

{
1, x = rm for some m ≤ n
0, otherwise
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Then we have (2) with

f(x) =

{
1, x ∈ Q
0, otherwise

Now f is discontinuous everywhere. It is certainly not Riemann integrable.
But each fn is Riemann integrable, because the value of a function at a
finite set of points does not affect a Riemann integral, and the integral is
zero. Hence by the monotone convergence theorem∫ ∞

−∞
f(x) dx = 0

if the integral is Lebesgue integration.
But integrating bizarre functions isn’t the point. The point is limit

theorems.

1.3 Discussion

Master’s level probability theory has its virtues. It requires only calculus
and not any higher level real analysis. It is the only theory that the vast
majority of people that have any training in probability theory have been
exposed to (including the vast majority of scientists). It works for many
applications. But it also has vices.

It is annoying that every time one proves something and writes down
a sum or an integral, one has to redo the whole thing with sums replacing
integrals (or vice versa) or leave the redo as an “exercise for the reader” with
just a comment that, as usual, we need different notation for the discrete
case and the continuous case. Also sometimes it is not just a matter of
different notation, for example, the conversion of DF to PMF or PDF.

It is also worrying that master’s level theory does not cover all of prob-
ability theory. Maybe the devil’s staircase distribution has no applications,
but how can we be sure that there isn’t some useful application that master’s
level theory cannot handle?

Also ad hockery has its limits. It is one thing to say that master’s
level theory can deal with (some) distributions that are neither discrete nor
continuous by ad hoc methods, but it only partially deals with them. It
is not at all clear how much of master’s level theory can be applied once
one gets out of the discrete and continuous cases the theory is designed to
handle.

Measure-theoretic probability theory fixes all the vices. It deals with
all probability distributions and does so with unified methods, having no
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need for separate discussion of the discrete case and the continuous case (or
separate discussion of any special cases).

Measure-theoretic probability theory is so clean and so elegant that most
theoretical probability and statistics has been written in it for many decades.
This means that if one wants to read the research literature, one has to have
some idea what it is all about. Of course, there are still a lot of textbooks
presenting the old (master’s level) theory of probability and statistics. But
when one comes to advanced topics, the only literature available may be
measure theoretic. An example is Markov chain theory. There are master’s
level presentations of the theory of Markov chains, for example, Hoel, Port,
and Stone (1986). But they only do the discrete case: Markov chains on fi-
nite or countable state spaces. The reason is partly historical. The theory of
Markov chains on general state spaces was highly unsatisfactory until a tech-
nique was independently discovered by Nummelin (1978) and by Athreya
and Ney (1978) that made the general state space theory work as cleanly as
the countable state space theory (actually Nummelin and Athreya and Ney
proposed somewhat different techniques that do the same job). The com-
plete theory of general state space Markov chains is presented in the books
Nummelin (1984) and Meyn and Tweedie (2009). All of the this literature
uses measure-theoretic probability. No one has tried to “dumb it down” to
master’s level theory. This makes it nearly impossible to discuss the the-
ory of general state space Markov chains without using measure-theoretic
probability theory. Geyer (2011) does attempt this job, managing to discuss
some of the basic theory of Markov chains and Markov chain Monte Carlo
without measure theory, but has to give up at the end, finding it impossible
to discuss the Metropolis-Hastings-Green algorithm (Green, 1995) without
measure theory. A similar story could be told about any advanced topic
that originated long after 1933. The literature is all measure-theoretic, so
you need at least some understanding of measure-theoretic probability to
read it.

2 Measure Theory, First Try

One way to unify the discrete and continuous cases is to use the P and
E operators (and related operators like var, cov, and cor) exclusively rather
than writing sums and integrals. Of course, every master’s level theory book
uses these, but few use them as much as possible.

One problem with this is that if we are going to take P and E seriously
as operators, we have to be more careful about them. What do they operate
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on?
P gives probabilities of events, so it is a function A 7→ P (A) that maps

events to real numbers. So we need a notation A for the family of all events.
Then P : A → R is a function just like any other function in mathematics.
Such a function is called a probability measure.

Note that P is a different function for each different probability distri-
bution (this is not made clear in all treatments of master’s level theory —
if you were under the impression that there is just one P that is kind of
an abbreviation for probability, you are not alone). Since it is a different
function for every different distribution, we need notation to distinguish dif-
ferent ones. We can “decorate” P , for example, we can use Pθ to distinguish
the different distributions in a parametric family of distributions. But, as
everywhere else in mathematics, we should avoid “frozen letters.” Advanced
probability theory often uses other letters, for example, let P , Q, and R be
probability measures.

An issue that we leave hanging for now (see Sections 4.1 and 4.5 below)
is what is A? An event is a subset of the sample space, but is A all of the
subsets of the sample space or just some of them? It turns out that, for very
abstruse technical reasons, the answer is the latter. But we won’t worry
about that now.

E gives expectations of random variables, so it is a function X 7→ E(X)
that maps random variables to real numbers. There is a problem that not
every random variable has an expectation (for example, the expectation of a
Cauchy random variable does not exist). So we need a notation L1(P ) for the
family of all random variables that have expectation. Then E : L1(P )→ R
is a function just like any other function in mathematics. Such a function is
called an expectation operator.

Again note that E is a different function for each different probability
distribution (and again this is not made clear in all treatments of master’s
level theory). Since it is a different function for every different distribu-
tion, we need notation to distinguish different ones. We can “decorate” E,
for example, we can use Eθ to distinguish the different distributions in a
parametric family of distributions. Avoiding “frozen letters” is harder here.
People really insist on E for expectation and not some other letter. So
decoration is the only option people tolerate.

There is, of course, a tight relation between a probability measure P and
the corresponding expectation operator E. This is apparent in the notation
L1(P ) for the domain of E. Sometimes we want to make this explicit. The
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measure theoretic notations for this are

E(X) =

∫
X dP =

∫
X(ω) dP (ω) =

∫
X(ω)P (dω), (5)

which are four different notations for exactly the same concept. The inte-
gral signs here do not mean integration in the sense of calculus (so-called
Riemann integration). For now we just take it to be another notation for
expectation. If you know what E(X) means, then you know what the other
notations in (5) mean. The actual operation may be ordinary integration
or summation or some combination of the two if the distribution is neither
discrete nor continuous or something else entirely (more on that later).

When we use P and E as actual mathematical functions and when we
can make the connections between P and E in (5), we are doing measure
theory. We don’t need to know all the technicalities to use the notations
and (hopefully) read this notation in measure-theoretic literature.

3 Measure Theory, Second Try

So what are probability measures and expectation operators? Since Kol-
mogorov (1933) it has been considered the thing to do to present probability
theory as an axiomatic theory based on the following axioms.

Recall from the preceding section, that a probability measure is a function
P : A → R, where A is the family of events. Such a function is a probability
measure if it satisfies three axioms.

(P1)
P (A) ≥ 0, A ∈ A.

(P2)
P (Ω) = 1,

where Ω is the sample space (the largest element of A).

(P3) If I is a countable set and {Ai : i ∈ I} a disjoint subfamily of A,
meaning Ai ∩Aj = ∅ whenever i 6= j, then

P

(⋃
i∈I

Ai

)
=
∑
i∈I

P (Ai).

The complicated axiom (P3) is called countable additivity. Countable addi-
tivity includes finite additivity (finite sets are countable).
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In order for (P3) to make sense, it must be a requirement on A that
if the Ai are events, then so is their union

⋃
i∈I Ai (more on this in Sec-

tion 4.1 below). A textbook of measure-theoretic probability theory, such
as Billingsley (1995) or Fristedt and Gray (1996), develops all of the theory
of probability and expectation from these three axioms. But that takes a
huge amount of work that we want to avoid.

So we just present a parallel set of axioms for expectation theory. This
is not commonly done, although one book (Whittle, 2005) does develop
probability theory along these lines.

Recall from the preceding section, that an expectation operator is a func-
tion E : L1(P )→ R, where L1(P ) is the family of random variables having
expectation. Such a function is the expectation operator associated with a
probability measure P if it satisfies five axioms.

(E1) If X and Y are random variables having expectation, then X+Y also
has expectation and

E(X + Y ) = E(X) + E(Y ).

(E2) If X is a random variable having expectation, and a is a real number,
then Y = aX, meaning Y (ω) = aX(ω) for all ω ∈ Ω, where Ω is the
sample space, also has expectation, and

E(Y ) = aE(X).

(E3) If X and Y are nonnegative random variables such that X ≤ Y , mean-
ing X(ω) ≤ Y (ω) for all ω ∈ Ω, and Y has expectation, then X also
has expectation, and

E(X) ≤ E(Y ).

(E4) If X1, X2, . . . is a monotone sequence of random variables having
expectation, meaning X1(ω) ≤ X2(ω) ≤ · · · for all ω ∈ Ω or the
same with the inequalities reversed, and X is another random variable
satisfying

X(ω) = lim
n→∞

Xn(ω), ω ∈ Ω,

then X has expectation and

E(X) = lim
n→∞

E(Xn),

provided the limit exists; otherwise X does not have expectation.
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(E5) If A is an event, then IA, the indicator function of the set A defined
by

IA(x) =

{
0, x /∈ A
1, x ∈ A

is a random variable having expectation, and

E(IA) = P (A).

and, if A is the whole sample space, then P (A) = 1.

Properties (E1) and (E2) can be used separately, but together they are
called linearity of expectation. Property (E3) is called monotonicity of ex-
pectation. Property (E4) is called monotone convergence. Property (E5) is
the relationship between probability and expectation.

Properties (E1) and (E2) imply that L1(P ) is a vector space (closed
under addition and scalar multiplication) so we can also think of random
variables that have expectation as elements of the vector space L1(P ). This
is not particularly helpful, since this vector space is infinite-dimensional
unless the sample space is finite.

Properties (E2), (E3), and (E5) imply that every bounded random vari-
able has expectation. Many unbounded random variables have expectation,
but there are usually some unbounded random variables that do not have
expectation whenever the sample space is infinite.

Properties (E2), (E3), and (E5) also imply 0 ≤ P (A) ≤ 1 for all events
A.

4 Measure Theory, Third Try

4.1 Sigma-Algebras

Let Ω be an arbitrary set. A sigma-algebra for Ω is a family A of subsets
of Ω that contains Ω and is closed under complements and countable unions
and intersections. De Morgan’s laws say (∪iAi)c = ∩iAci and (∩iAi)c = ∪iAci
and imply that closed under complements and countable unions implies
closed under countable intersections, and the same holds with unions and
intersections swapped, so the definition given above is redundant, but we
don’t wish to privilege unions over intersections or vice versa. Another term
for sigma-algebra is sigma-field. These terms are usually written σ-algebra
and σ-field by those who like their writing ugly.
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The smallest sigma-algebra is {∅,Ω}. It must contain Ω by definition,
and it must contain ∅ because it is Ωc. Unions and intersections of Ω and
∅ give us the same sets back, no new sets.

The largest sigma-algebra is the set of all subsets of Ω, called the power
set of Ω.

4.2 Measurable Spaces

A set Ω equipped with a sigma-algebra A is called a measurable space
and usually denoted as a pair (Ω,A). In this context, the elements of A are
called measurable sets.

4.3 Measures

For various reasons, we want to generalize the concept of probability
measure. So now we drop axiom (P2) and perhaps also (P1) keeping only
the notion of countable additivity (P3).

4.3.1 Positive Measures

When we drop only (P2) but retain (P1), we get the concept of a positive
measure. In this context, it is useful to allow values of ∞ for the measure,
with the convention that x+∞ =∞.

A positive measure on a measurable space (Ω,A) is a function µ : A →
R ∪ {∞} that satisfies

µ(A) ≥ 0, A ∈ A,

and, if I is a countable set and {Ai : i ∈ I} a disjoint subfamily of A,
meaning Ai ∩Aj = ∅ whenever i 6= j, then

µ

(⋃
i∈I

Ai

)
=
∑
i∈I

µ(Ai), (6)

this property being called countable additivity.

4.3.2 Signed Measures

When we drop both (P1) and (P2), we get the concept of a signed mea-
sure. In this context, it is not useful to allow infinite values because there
would be no reasonable definition for ∞−∞ if both positive and negative
infinite values were allowed.
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A signed measure on a measurable space (Ω,A) is a function µ : A → R
that is countably additive, that is, satisfies (6) and the restrictions on I and
Ai given just above it.

4.3.3 Examples

Example 4.1.
Counting measure is a positive measure that counts the number of points
in a set: µ(A) is the number of points in A. If Ω is infinite then µ(A) =∞
when A is any infinite subset of Ω.

Example 4.2.
Lebesgue measure on R corresponds to the dx of ordinary calculus:

µ(A) =

∫
A
dx (7)

whenever A is a set over which the Riemann integral is defined. For other
sets, we have to use countable additivity to extend the measure from Rie-
mann measurable sets to Lebesgue measurable sets.

If we take Ω to be the whole real line, then µ(Ω) = ∞. So again, we
need to allow ∞ as a value.

The same idea works for Rn. Just take the integrals in (7) to be multiple
integrals.

Example 4.3.
If P and Q are probability measures, then P −Q is a signed measure, so we
need signed measures to compare probability measures.

If µ and ν are signed measures and a and b are real numbers, then aµ+bν
is a signed measure, so the family of all signed measures on a measurable
space is a vector space.

The latter explains why signed measures are of interest in real analysis.
The former explains why they are of interest in probability theory.

4.4 Measure Spaces

A measurable space (Ω,A) equipped with a measure µ, either a positive
measure or a signed measure, is called a measure space and usually denoted
as a triple (Ω,A, µ).

Probability measures are special cases of both positive measures and
signed measures. If µ is a probability measure, then (Ω,A, µ) is called a
probability space.
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Again, the elements of A are called measurable sets. If more specificity
is required, µ-measurable sets.

4.5 Existence

Does Lebesgue measure exist? Of course it does; otherwise a very large
area of mathematics would be nonsense. But the existence question turns
out to be very tricky.

According to the widely accepted (but not universally accepted) ax-
iomatic set theory foundations of mathematics, Zermelo-Fraenkel set theory
with the axiom of choice (ZFC), Lebesgue measure does not exist if the
sigma-algebra is taken to be the set of all subsets of the real line (the power
set of R).

According to the Banach-Tarski theorem (also called the Banach-Tarski
paradox because the whole point of the theorem is to show that ZFC has
bizarre consequences), a solid sphere in 3 dimensions can be divided into
five pieces that can rotated, translated, and reassembled to make two solid
spheres of the same size. This violates countable additivity. It even violates
finite additivity. Rotating and translating sets does not change their Rie-
mann measure, so it should not change their Lebesgue measure. But here
it does. Thus the “paradox.”

According to the Carathéodory extension theorem, any measure on an
algebra can be extended to one on some sigma-algebra containing it, where
an algebra for Ω is is only required to contain Ω and be closed under com-
plements and finite unions and intersections. The set of all finite unions of
intervals, including degenerate intervals (single points) is an algebra. And
we can evaluate (7) for each set in this algebra (it is just the sum of the
lengths of the intervals that make up the set). Now the Carathéodory ex-
tension theorem says that Lebesgue measure exists, but the sigma-algebra,
called the sigma-algebra of Lebesgue measurable sets, is not the whole power
set of R. The Banach-Tarski theorem tells us it cannot be (the five pieces of
the sphere that the theorem claims exist cannot be Lebesgue measurable).

Could I show you an example of a set that is not Lebesgue measurable?
No. They are literally indescribable. Any set that could be obtained by
starting with intervals and applying a countable sequence of operations is
Lebesgue measurable. The axiom of choice implies nonmeasurable sets exist,
but the assertion is completely nonconstructive. There is no way to actually
describe one.
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5 Integration Theory

5.1 Measurable Functions

A function f from one measurable space (S,A) to another (T,B) is mea-
surable if

f−1(B) ∈ A, B ∈ B,

where
f−1(B) = {x ∈ A : f(x) ∈ B }.

You might think it is hard to verify that a function is measurable, and, in
general, it is. But the task becomes easier when the target space is the real
numbers. Then it is a theorem that is only moderately difficult to prove
that it is enough to check

f−1
(
(−∞, t)

)
∈ A, t ∈ R.

5.2 Abstract Integrals

If (Ω,A, µ) is a measure space and f is a real-valued measurable function
on Ω, we want to define the integral of f , which is usually written

∫
f dµ or∫

f(x) dµ(x) or
∫
f(x)µ(dx). We usually use the latter (it goes better with

Markov chain theory).
We want this new kind of integral to have all the familiar properties of

integrals from calculus (Riemann integrals) and to obey the limit theorems,
that is, for positive measures we want (E1), (E2), (E3), (E4), and (E5) to
hold, and for signed measures we want all of these except (E3) to hold.

Let IA denote the indicator function of the set A. Then IA is a measur-
able function if and only if A is a measurable set (an element of A). And
we define ∫

IA(x)µ(dx) = µ(A).

(This is the analog of (E5) for general measures.) Then we want this new
kind of integral to have the linearity properties (E1) and (E2), so if f is a
measurable function having a finite set of values, so we can write

f(x) =
n∑
i=1

biIAi(x)
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for some positive integer n, some real numbers b1, . . . , bn, and some mea-
surable sets A1, . . . , An, we define∫

f(x)µ(dx) =

n∑
i=1

biµ(Ai).

Then we extend this by monotone convergence to all nonnegative-valued
measurable functions that have expectation. Given a nonnegative-valued
measurable function f and a positive integer n, define a function fn by

fn(x) =

{
(k − 1)/n, (k − 1)/n ≤ f(x) < k/n and k = 1, . . . , n2

n, f(x) ≥ n

Then we know how to integrate each fn and we have fn ↑ f , so monotone
convergence says

∫
fn dµ→

∫
f dµ, provided the limit exists.

If
∫
fn dµ → ∞, then we say, strictly speaking, that f is not integrable

and the integral does not exist, but we also say, loosely speaking, that the
integral has the value ∞.

We then deal with arbitrary real-valued functions by decomposing them
into positive and negative parts

f+(x) =

{
f(x), f(x) ≥ 0

0, otherwise

f−(x) =

{
−f(x), f(x) ≤ 0

0, otherwise

Then f = f+ − f− and we already know how to integrate f+ and f−, and
in order to maintain the linearity properties we must define∫

f dµ =

∫
f+ dµ−

∫
f− dµ, (8)

and we do define it this way when f+ and f− are both integrable. Oth-
erwise, we say, strictly speaking, that the integral does not exist and f is
not integrable. When either f+ or f− is integrable, we can still, loosely
speaking, use (8) with the conventions r − ∞ = −∞ and ∞ − r = +∞
for r ∈ R. When neither f+ or f− is integrable, we are stuck, there is no
sensible definition of∞−∞ in this context, and we have to say the integral
of f does not exist, even loosely speaking.

Now the hard work starts. We have to show that the integral so defined
obeys the linearity properties and also obeys the convergence theorems.
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As this takes weeks in a PhD level real analysis course or in a PhD level
probability theory course, we won’t try. (As the jargon says, it is “beyond
the scope of this course.”)

Another thing we have to show is that the integral with respect to count-
ing measure is summation. If µ is counting measure on a set Ω, then∫

f dµ =
∑
ω∈Ω

f(ω).

Another thing we have to show is that the integral with respect to Lebesgue
measure is Riemann integration, when the latter exists: if µ is Lebesgue
measure on R and f is a Lebesgue measurable real-valued function of one
real variable, then ∫

f dµ =

∫
f(x) dx,

and, more generally, if f is Lebesgue measure on Rd and f is a Lebesgue
measurable function of d real variables, then∫

f dµ =

∫∫
. . .

∫
f(x1, . . . , xd) dx1 . . . dxd.

But these are also “beyond the scope of this course.”
We merely make one more comment before finishing with this subject.

It is clear from (8) that f is integrable, strictly speaking, if and only if |f |
is integrable, in other words, f is integrable if and only if it is absolutely
integrable. Thus abstract integration theory has no concept like conditional
convergence in ordinary calculus (integrable but not absolutely integrable
or summable but not absolutely summable for infinite series).

6 A Theorem

Here is one example of the use of these axioms, just to show some of the
flavor of measure-theoretic argument.

Theorem 1. If X is a nonnegative random variable, then E(X) = 0 if and
only if X = 0 with probability one.

Proof. Suppose E(X) = 0. Then for any ε > 0 the set

Aε = {ω ∈ Ω : X(ω) ≥ ε }
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is measurable and εIAε ≤ X. Hence by axioms (E2), (E3), and (E5)

εP (Aε) = E(εIAε) ≤ E(X) = 0,

from which we conclude that P (Aε) = 0. The sequence of random variables
IA1/n

, n = 1, 2, . . . is monotone and increases to IA0 , where

A0 =

∞⋃
n=1

A1/n

hence P (A0) = 0 by axiom (E4). And ω ∈ A0 if and only if X(ω) > 0. This
proves one direction.

Now assume X = 0 with probability one, which means, if we define

A0 = {ω ∈ Ω : X(ω) > 0 },

then P (A0) = 0. For any positive integer n, define Xn by

Xn(ω) =

{
X(ω), X(ω) ≤ n
n, otherwise

Then by axioms (E2), (E3), and (E5) we have

E(Xn) ≤ nP (IA0) + 0 · P (IAc
0
) = 0

and Xn is clearly a monotone sequence increasing to X, so E(X) = 0 by
axiom (E4).

We actually need the monotone convergence theorem (which we are tak-
ing as an axiom) to get this result. There is a subject called finitely additive
probability theory which replaces axiom P3 with the weaker axiom of finite
additivity, which is P3 with finite sets replacing countable sets. In finitely
additive probability theory, Theorem 1 does not hold. We can reason as far
as X ≥ 0 and E(X) = 0 implies P (X ≥ ε) = 0 for every ε > 0. But we
can go no farther without the monotone convergence theorem (which is a
consequence of countable additivity but not of mere finite additivity).
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