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1 Kernels

1.1 Definitions

A kernel on a measurable space (Ω,A) is a function K : Ω × A → R
having the following properties (Nummelin, 1984, Section 1.1).

(i) For each fixed A ∈ A, the function x 7→ K(x,A) is measurable.

(ii) For each fixed x ∈ Ω, the function A 7→ K(x,A) is either a positive
measure or a signed measure.

We will only be interested in kernels such that K(x, · ) is a signed measure
for each x.

A kernel is nonnegative if all of its values are nonnegative. A kernel is
substochastic if it is nonnegative and

K(x,Ω) ≤ 1, x ∈ Ω.

A kernel is stochastic or Markov if it is nonnegative and

K(x,Ω) = 1, x ∈ Ω.

If K is a stochastic kernel then K(x, · ) a probability measure for each x.
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1.2 Operations

Signed measures and kernels have the following operations (Nummelin,
1984, Section 1.1). For any signed measure λ and kernel K, we can “left
multiply” K by λ giving another signed measure, denoted µ = λK, defined
by

µ(A) =

∫
λ(dx)K(x,A), A ∈ A.

For any two kernels K1 and K2 we can “multiply” them giving another
kernel, denoted K3 = K1K2, defined by

K3(x,A) =

∫
K1(x, dy)K2(y,A), A ∈ A.

For any kernels K and measurable function f : Ω → R, we can “right
multiply” K by f giving another measurable function, denoted g = Kf ,
defined by

g(x) =

∫
K(x, dy)f(y), A ∈ A, (1)

provided the integral exists (we can only writeKf when we know the integral
exists).

The kernel which acts as an identity element for kernel multiplication is
defined by

I(x,A) =

{
1, x ∈ A
0, otherwise

Note that this combines two familiar notions. The map x 7→ I(x,A) is the
indicator function of the set A, and the map A 7→ I(x,A) is the probability
measure concentrated at the point x. It is easily checked that I does act as an
identity element, that is λ = λI when λ is a signed measure, KI = K = IK
when K is a kernel, and If = f when f is a bounded measurable function.

For any kernel K we write Kn for the product of K with itself n times.
We also write K1 = K and K0 = I, so we have KmKn = Km+n for any
nonnegative integers m and n.

1.3 Finite State Space

The notation for these operations is meant to recall the notation for ma-
trix multiplication. When Ω is a finite set, we can associate signed measures
and functions with vectors and kernels with matrices and the “multipli-
cation” operations defined above become multiplications of the associated
matrices.
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We take the vector space to be RΩ so vectors are functions Ω→ R, that
is, we are taking Ω to be the index set and writing v(x) rather than vx for
the components of a vector v. Then matrices are elements of RΩ×Ω, so they
are functions Ω×Ω→ R, that is, we are again taking Ω to be the index set
and writing m(x, y) rather than mxy for the components of a matrix M .

We can associate a signed measure λ with a vector λ̃ defined by

λ̃(x) = λ({x}), x ∈ Ω,

and can associate a kernel K with a matrix K̃ having elements defined by

k̃(x, y) = K(x, {y}), x, y ∈ Ω.

A function f : Ω→ R is a vector already. Think of signed measures as row
vectors, then the matrix multiplication λ̃K̃ is associated with the kernel λK.

Think of functions as column vectors, then the matrix multiplication
K̃f is associated with the function Kf . The matrix multiplication K̃1K̃2 is
associated with the kernel K1K2.

The matrix associated with the identity kernel is the identity matrix
with elements ĩ(x, y) = I(x, {y}).

1.4 Regular Conditional Probabilities

A Markov kernel gives a regular conditional probability, it describes the
conditional distribution of two random variables, say of Y given X. This is
often written

K(x,A) = Pr(Y ∈ A | X = x), (2)

but the right side is undefined when Pr(X = x) = 0, so the right hand side
is not really mathematics. Kernels are real mathematics.

2 Markov Chains

A stochastic process X1, X2, . . . taking values in an arbitrary measurable
space (the Xi need not be real-valued or vector-valued), which is called the
state space of the process, is a Markov chain if has the Markov property :
the conditional distribution of the future given the past and present depends
only on the present, that is, the conditional distribution of (Xn+1, Xn+2, . . .)
given (X1, . . . , Xn) depends only on Xn. A Markov chain has stationary
transition probabilities if the conditional distribution of Xn+1 given Xn does
not depend on n. We assume stationary transition probabilities without
further mention throughout this handout.
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In this handout we are interested in Markov chains on general state
spaces, where “general” does not mean completely general (sorry about
that), but means the measurable space (Ω,A) is countably generated, mean-
ing A = σ(C), where C is a countable family of subsets of Ω and σ(C) is the
smallest sigma-algebra containing C, which is the intersection of all sigma-
algebras containing C. This is the assumption made by the authoritative
books on general state space Markov chains (Nummelin, 1984; Meyn and
Tweedie, 2009). Countably generated is a very weak assumption (it applies
to the Borel sigma-algebra of Rd, for example, the Borel sigma-algebra being
σ(O), where O is the family of open subsets of Rd). We always assume it,
but will not mention it again except in Section 6.1 where the reason for this
assumption will be explained.

We assume the conditional distribution of Xn+1 given Xn is given by
a Markov kernel P . The marginal distribution of X1 is called the initial
distribution. Together the initial distribution and the transition probability
kernel determine the joint distribution of the stochastic process that is the
Markov chain. Straightforwardly, they determine all the finite-dimensional
distributions, the joint distribution of X1, . . . , Xn for any n is determined
by

E{g(X1, . . . , Xn)}

=

∫
· · ·
∫
g(x1, . . . , xn)λ(dx1)P (x1, dx2)P (x2, dx3) · · ·P (xn−1, dxn),

for all bounded measurable functions g(X1, . . . , Xn). Fristedt and Gray
(1996, Sections 22.1 and 22.3) discuss the construction of the probability
measure governing the infinite sequence, showing it is determined by the
finite-dimensional distributions.

For any nonnegative integer n, the kernel Pn gives the n-step transition
probabilities of the Markov chain. In sloppy notation,

Pn(x,A) = Pr(Xn+1 ∈ A | X1 = x).

In a different sloppy notation, we can write the joint probability measure of
(X2, . . . , Xn+1) given X1 as

P (x1, dx2)P (x2, dx3) · · ·P (xn, dxn+1),

which is shorthand for

E{g(X2, . . . , Xn+1) | X1 = x1}

=

∫
· · ·
∫
g(x2, . . . , xn+1)P (x1, dx2)P (x2, dx3) · · ·P (xn, dxn+1),
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whenever g(X2, . . . , Xn+1) has expectation. So

Pr(Xn+1 ∈ A | X1 = x1)

=

∫
· · ·
∫
IA(xn+1)P (x1, dx2)P (x2, dx3) · · ·P (xn, dxn+1),

and this does indeed equal Pn(x1, A).

3 Irreducibility

Let ϕ be a strictly positive measure on the state space (Ω,A), meaning
ϕ(A) ≥ 0 for all A ∈ A and ϕ(Ω) > 0. We say a set A ∈ A is ϕ-positive
in case ϕ(A) > 0. A nonnegative kernel P on the the state space is ϕ-
irreducible if for every x ∈ Ω and ϕ-positive A ∈ A there exists a positive
integer n (which may depend on x and A) such that Pn(x,A) > 0. When
P is ϕ-irreducible, we also say ϕ is an irreducibility measure for P . We say
P is irreducible if it is ϕ-irreducible for some ϕ. We also apply these terms
to Markov chains. A Markov chain is ϕ-irreducible (resp. irreducible) if its
transition probability kernel has this property.

This definition seems quite arbitrary in that the measure ϕ is quite
arbitrary. Note, however that ϕ is used only to specify a family of null
sets, which are excluded from the test (we only have to find an n such that
Pn(x,A) > 0 for A such that ϕ(A) > 0).

3.1 Maximal Irreducibility Measures

If a kernel is ϕ-irreducible for any ϕ, then there always exists (Nummelin,
1984, Theorem 2.4) a maximal irreducibility measure ψ that specifies the
minimal family of null sets, meaning ψ(A) = 0 implies ϕ(A) = 0 for any
irreducibility measure ϕ. A maximal irreducibility measure is not unique,
but the family of null sets it specifies is unique.

3.2 Communicating Sets

A set B ∈ A is ϕ-communicating if for every x ∈ B and every ϕ-positive
A ∈ A such that A ⊂ B there exists a positive integer n (which may depend
on x and A such that Pn(x,A) > 0. Clearly, the kernel P is ϕ-irreducible if
and only if the whole state space is ϕ-communicating.
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3.3 Subsampled Chains

Suppose P is a Markov kernel and q is the probability vector for a
nonnegative-integer-valued random variable. Define

Pq(x,A) =

∞∑
n=0

qnP
n(x,A). (3)

Then it is easily seen that Pq is also a Markov kernel. If X1, X2, . . . is a
Markov chain having transition probability kernel P and N1, N2, . . . is an
independent and identically distributed (IID) sequence of random variables
having probability vector q that are also independent of X1, X2, . . . , then
X1+N1 , X1+N1+N2 , . . . is a Markov chain having transition probability kernel
Pq, which is said to be derived from the original chain by subsampling. If
the random variables N1, N2, . . . are almost surely constant, that is, if the
vector q has only one non-zero element, then we say the subsampling is
nonrandom. Otherwise, we say it is random.

Lemma 1. If Pq and Pr are subsampling kernels, then

PqPr = Pq∗r,

where q ∗ r is the convolution of the probability vectors q and r defined by

(q ∗ r)n =
n∑
k=0

qkrn−k. (4)

Proof.

(PqPr)(x,A) =

∞∑
k=0

∞∑
m=0

qkrmP
k+m(x,A)

=

∞∑
n=0

n∑
k=0

qkrn−kP
n(x,A)

(in the change of summation indices n = k +m so m = n− k).

Lemma 2. Let q be a probability vector having no elements equal to zero.
The following are equivalent (each implies the others).

(a) The set B is ϕ-communicating for the kernel P .

(b) The set B is ϕ-communicating for the kernel Pq.
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(c) Pq(x,A) > 0 for every x ∈ B and every ϕ-positive A ⊂ B.

Proof. That (a) implies (c) implies (b) is clear. It remains only to be shown
that (b) implies (a). So assume (b). Then for any x ∈ B and A ⊂ B
such that ϕ(A) > 0 there exists an n such that Pnq (x,A) > 0. Suppose r
is another probability vector having no zero elements. It is clear from (4)
that q ∗ r has no zero elements either. Let s be the n-fold convolution of q
with itself, then (by mathematical induction) Pnq = Ps and s has no zero
elements. Hence

Ps(x,A) =
∞∑
n=0

snP
n(x,A) > 0, (5)

hence some term in (5) must be nonzero, hence Pn(x,A) > 0 for some n,
and this holding for all x and all ϕ-positive A implies (a).

3.4 Separable Metric Spaces

Verifying irreducibility can be quite easy or exceedingly difficult. Here
is a case when it is easy. An open set is said to be connected when it is not
a union of a pair of disjoint open sets. A basis for a topological space is a
family of open sets B such that every open set is a union of a subfamily of
B. A topological space is said to be second countable if it has a countable
basis. Every separable metric space is second countable (balls having radii
1/n for integer n centered on points in the countable dense set form a basis).

Theorem 3. Suppose a Markov chain with state space Ω has the following
properties.

(a) Ω is a connected second countable topological space.

(b) Every nonempty open subset of Ω is ϕ-positive.

(c) Every point in Ω has a ϕ-communicating neighborhood.

Then the Markov chain is ϕ-irreducible.

Proof. Let U be a countable basis for Ω, and let B be the family of ϕ-
communicating elements of U . We claim that B is also a countable basis for
Ω. To prove this, consider an arbitrary open set W in Ω. Then for each
x ∈W , there there exists Ux ∈ U satisfying x ∈ Ux ⊂W . By assumption x
also has a ϕ-communicating neighborhood Nx whose interior N◦x contains x.
Then there also exists Bx ∈ U satisfying satisfying x ∈ Bx ⊂ Ux∩N◦x . Since
subsets of ϕ-communicating sets are themselves ϕ-communicating, Bx ∈ B.
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This shows an arbitrary open set W is a union of elements of B, so B is a
basis.

Consider a sequence C1, C2, . . . of sets defined inductively as follows.
First, C1 is an arbitrary element of B. Then, assuming C1, . . . , Cn have
been defined, we define

Cn+1 =
⋃
{B ∈ B : B ∩ Cn 6= ∅ }.

We show each Cn is ϕ-communicating by mathematical induction. The
base of the induction, that C1 is ϕ-communicating is true by definition. To
complete the induction we assume Cn is ϕ-communicating and must show
Cn+1 is ϕ-communicating. By (b) of Lemma 2 we may use a kernel Pq to
show this.

So suppose x ∈ Cn+1 and A ⊂ Cn+1 is ϕ-positive. Because B is count-
able, there must exist B ∈ B such that B ⊂ Cn+1 and ϕ(A∩B) > 0. More-
over we must have B ∩Cn 6= ∅ by definition of Cn+1. Hence ϕ(B ∩Cn) > 0
by assumption (b) of the theorem. Also we must have x ∈ Bx for some
Bx ∈ B such that Bx ⊂ Cn+1 and Bx ∩ Cn 6= ∅. Hence ϕ(Bx ∩ Cn) > 0 by
assumption (b) of the theorem. Then

P 3
q (x,A ∩B) =

∫∫
Pq(x, dy)Pq(y, dz)Pq(z,A ∩B)

is strictly positive because Pq(z,A ∩ B) > 0 for all z ∈ B because B is
ϕ-communicating, and Pq(y,B ∩ Cn) > 0 for all y ∈ Cn, because Cn is
ϕ-communicating and B ∩ Cn is ϕ-positive, and this implies that∫

Pq(y, dz)Pq(z,A ∩B)

is strictly positive for all y ∈ Cn, and Pq(x,Bx ∩ Cn) > 0 because Bx is
ϕ-communicating and Bx ∩ Cn is ϕ-positive, and this implies that∫

Pq(x, dy)

∫
Pq(y, dz)Pq(z,A ∩B)

is strictly positive. This finishes the proof that each Cn is ϕ-communicating.
Let

C∞ =

∞⋃
k=1

Ck.

Then C∞ is ϕ-communicating, because any for x ∈ C∞ and ϕ-positive A ⊂
C∞ there is a k such that x ∈ Ck and ϕ(A∩Ck) > 0. Hence Pq(x,A∩Ck) > 0
because because Ck is ϕ-communicating.
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Now let
Bleftovers = {B ∈ B : B 6⊂ C∞ }.

Any B ∈ Bleftovers is actually disjoint from C∞ because otherwise it would
have to intersect some Cn and hence be contained in Cn+1. Thus the open
set Cleftovers =

⋃
Bleftovers and the open set C∞ are disjoint and their union

is Ω. By the assumption that Ω is topologically connected Cleftovers must be
empty. Thus Ω = C∞ is ϕ-communicating.

The theorem seems very technical, but here is a simple toy problem that
illustrates it. Let W be an arbitrary connected open subset of Rd, and take
W to be the state space of a Markov chain. Fix ε > 0, define K(x, · ) to be
the uniform distribution on the ball of radius ε centered at x, and define

P (x,A) = [1−K(x,W )]I(x,A) +K(x,W ∩A).

This is a special case of the Metropolis algorithm, described in Section 5.5
below. The Markov chain can be described as follows. We may take X1 to be
any point of W . When the current state is Xn, we “propose” Yn uniformly
distributed on the ball of radius ε centered at Xn. Then we set

Xn+1 =

{
Yn, Yn ∈W
Xn, otherwise

(6)

Since W is a separable metric space it is second countable. Thus con-
dition (a) of the theorem is satisfied. Let ϕ be Lebesgue measure on W .
Then condition (b) of the theorem is satisfied. Let x ∈W and let B be the
open ball of radius less than or equal to ε/2 centered at x and contained
in W . Then Pr(Yn ∈ B | Xn ∈ B) > 0 and the conditional distribution of
Yn given Xn ∈ B and Yn ∈ B is uniformly distributed on B. Since Yn ∈ B
implies Yn ∈W and Xn+1 = Yn, the conditional distribution of Xn+1 given
Xn ∈ B and Yn ∈ B is uniformly distributed on B. This implies B is
ϕ-communicating, and that establishes condition (c) of the theorem.

3.5 Variable at a Time Samplers

Here is another toy example that illustrates general issues. As in the
example in the preceding section, we let the state space be a connected
open set W in Rd, and we show the Markov chain is ϕ-irreducible where
ϕ is Lebesgue measure on W . This time, however, we use a variable at a
time sampler. Fix ε > 0. Let Xn(i) denote the i-th coordinate of the state
Xn of the Markov chain (which is a d-dimensional vector). The update of
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the state proceeds as follows. Let In be uniformly distributed on the finite
set {1, . . . , d}. Let Yn(j) = Xn(j) for j 6= In, and let Yn(In) be uniformly
distributed on the open interval (Xn(In)−ε,Xn(In)+ε). Then we define Xn

by (6). This is a special case of the variable-at-a-time Metropolis algorithm,
which is not described in general in this handout (see Geyer, 2011).

In order to apply Theorem 3 to this example it only remains to be shown
that every point of W has a ϕ-connected neighborhood, where ϕ is Lebesgue
measure on W . Since W is open, every point contains a box

Bδ(x) = { y ∈ Rd : |xi − yi| < δ, i = 1, . . . , d }

such that Bδ(x) ⊂ W and δ < ε. Fix y ∈ Bδ(x) and C ⊂ Bδ(x) such
that C has positive Lebesgue measure. We claim that P d(y, C) > 0. The
probability that Ik = k, k = 1, . . . , d is (1/d)d > 0. When this occurs, we
have Pr(Xk+1 6= Xk) > (δ/ε) > 0, k = 1, . . . , d. And when this occurs, we
have the conditional distribution of Xd conditional on Xd ∈ Bδ(x) uniformly
distributed on Bδ(x). Hence we have

P d(y, C) ≥
(
δ

εd

)d
· ϕ(C)

ϕ(Bδ(x))

and this is greater than zero.

3.6 Countable State Spaces

If the state space of the Markov chain is countable, then irreducibility
questions can be settled by looking at paths. A path from x to y is a finite
sequence of states

x = x1, x2, . . . , xn = y

such that
P (xi, {xi+1}) > 0, i = 1, . . . , n− 1.

If there exists a state y such that there is a path from x to y for every x ∈ Ω,
then the kernel is ϕ-irreducible with ϕ concentrated at y. If there does not
exist such a state y, then the kernel is not ϕ-irreducible for any ϕ.

Suppose the kernel is ϕ-irreducible with ϕ concentrated at y. Let S
denote the set of states z such that there exists a path from y to z. We
claim that counting measure on S is a maximal irreducibility measure ψ.
Clearly, there is a path x → y → z for any x ∈ Ω and z ∈ S. Thus ψ is an
irreducibility measure. Conversely, if w /∈ S, then there is no path y → w.
Hence no irreducibility measure can give positive measure to the point w.
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4 Stochastic Stability

4.1 Transience and Recurrence

Let NA denote the number of visits to A made by a Markov chain (this
is a random variable, different for each realization of the chain). A set A is
called recurrent if

Ex(NA) =∞, x ∈ A.

A set A is called uniformly transient if there exists a real number M such
that

Ex(NA) ≤M, x ∈ A.

For a countable state space Markov chain and A a singleton set, these defini-
tions reduce to the usual ones (Hoel, et al., 1986, Theorem 1 of Chapter 1).
But for uncountable state spaces, especially for continuous distributions,
looking at single points makes no sense. If the distribution of the Markov
chain is continuous, then every point has probability zero and Ex(N{y}) = 0,
for every point y.

For a ψ-irreducible Markov chain the behavior is simple. Either every
ψ-positive set is recurrent, in which case we say the chain is recurrent, or
there exists a countable cover of the state space by uniformly transient sets,
in which case we say the chain is transient (Meyn and Tweedie, 2009, The-
orem 8.0.1). This is the transience-recurrence dichotomy: every irreducible
Markov chain is either transient or recurrent.

For a transient chain we can say more about which sets are uniformly
transient, but this gets us a bit ahead of ourselves. Petite sets are defined
in Section 6.1 below, and an easily used criterion for petiteness is given
in Section 6.2 below (every compact set is petite under certain regularity
conditions that hold for many Markov chains, and every subset of a petite
set is petite, so for such chains every bounded set is petite). Theorem 8.0.1
in Meyn and Tweedie (2009) adds that for a transient chain every petite set
is uniformly transient.

The definitions of transience and recurrence work in opposite directions.
For recurrence, we might be concerned that a set is too little to be hit
infinitely often, but the theorem cited above says no ψ-positive set, no matter
how little, fails to be recurrent. For transience, we might be concerned that
a set is too big to be hit only finitely many times, but the theorem cited
above says every petite set, no matter how big, is uniformly transient.

We will learn more about transience and recurrence in the next section
and also in Sections 6.6 and 6.7 below.
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4.2 Subinvariant and Invariant Measures

A measure is said to be sigma-finite (also written σ-finite) if there is a
countable partition of the state space such that the measure of each element
of the partition is finite. A measure is said to be strictly positive if it is
positive and not the zero measure.

For every irreducible Markov kernel P there exists a strictly positive,
sigma-finite measure µ such that µ ≥ µP , meaning

µ(A) ≥
∫
µ(dx)P (x,A), A ∈ A.

where (Ω,A) is the state space (Meyn and Tweedie, 2009, Theorem 8.0.1,
Theorem 10.0.1, and Proposition 10.1.3). Such a measure µ is called subin-
variant.

If a subinvariant measure actually satisfies µ = µP , then it is called
invariant. If a subinvariant measure is not invariant, then it is called strictly
subinvariant.

If P is irreducible and recurrent, then every subinvariant measure is
actually invariant and is unique up to multiplication by a positive scalar
(Meyn and Tweedie, 2009, Theorem 10.4.4). If the invariant measure is
finite, in which case it can be renormalized to be a probability measure,
then we say the chain is positive recurrent. Otherwise, we say the chain is
null recurrent. If P is irreducible, then it is positive recurrent if and only
if it has a finite invariant probability measure (Meyn and Tweedie, 2009,
Theorems 10.1.1 and 10.4.4).

If P is irreducible and transient, then P has a strictly subinvariant mea-
sure, which need not be not unique (Meyn and Tweedie, 2009, Proposi-
tion 10.1.3). It may or may not have invariant measures, and the invariant
measures, if they exist, may or may not be unique. An invariant measure, if
it exists cannot be finite (otherwise the chain would be positive recurrent).

Thus we can use invariant and subinvariant measures to classify irre-
ducible Markov chains. The chain is positive recurrent if and only if an
invariant probability measure exists. The chain is transient if and only if a
strictly subinvariant measure exists. The left over case is null recurrent.

Another useful fact is that any subinvariant measure is a maximal ir-
reducibility measure (Meyn and Tweedie, 2009, Proposition 10.1.2). This
takes some of the mystery out of maximal irreducibility measures.
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4.2.1 Example: AR(1) Time Series

An AR(1) time series is defined by

Xn = ρXn−1 + σYn, (7)

where Y1, Y2, . . . are IID standard normal and independent of X0. It is clear
that the conditional distribution of Xn given the past history only depends
on Xn−1, so this is a Markov chain.

The AR in the name stands for auto-regressive, the idea being that (7)
looks something like the specification for simple linear regression except that
the series is being regressed on itself (the Xi play the role of response on the
left hand side and the role of predictor on the right hand side). The 1 in
the name indicates that there is just one “predictor.” An AR(k) time series
for k > 1 has additional terms ρ2Xn−2, ρ3Xn−3, and so forth. But these are
not Markov chains, so we ignore them (they are discussed in the time series
class).

By independence of Xn−1 and Yn we have

var(Xn) = ρ2 var(Xn−1) + σ2.

Suppose an AR(1) time series is a stationary Markov chain. Then we have
var(Xn) = var(Xn−1). Hence

var(Xn) =
σ2

1− ρ2
(8)

provided ρ2 < 1 (otherwise, the right hand side clearly cannot define a
variance). In case (8) does define a variance, call it τ2.

We guess that a normal distribution is invariant and we check that.
Clearly, if E(Xn−1) = 0, then E(Xn) = 0, too. This, together with our
derivation of (8) and the fact that the sum of independent normal random
variables is normal, tells us that Normal(0, τ2) is an invariant distribution
when ρ2 < 1.

Clearly this Markov chain is irreducible, Lebesgue measure being an
irreducibility measure, because the conditional distribution of Xn+1 given
Xn gives positive probability to every set having positive Lebesgue mea-
sure. Thus we now know Normal(0, τ2) is the unique invariant probability
distribution and the Markov chain is positive recurrent (when ρ2 < 1).

It is also fairly clear that λP is proportional to λ when λ is Lebesgue
measure by symmetry of the normal distribution. Let’s calculate that. For
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any Lebesgue measurable set A,

(λP )(A) =

∫ ∞
−∞

P (x,A) dx

=

∫ ∞
−∞

dx

∫
ρx+σy∈A

φ(y) dy

=

∫ ∞
−∞

φ(y) dy

∫
ρx+σy∈A

dx

= λ(ρ−1A)

∫ ∞
−∞

φ(y) dy

= λ(ρ−1A)

= |ρ|−1λ(A)

where φ is the PDF of the standard normal distribution, where in the last
three lines we are assuming ρ 6= 0, and where ρ−1A means multiplying
every point of A by ρ−1. The third equality is interchanging the order of
integration, which is also valid in measure theory (this is called the Fubini
theorem or the Tonelli theorem). The last equality is translation invariance
of Lebesgue measure.

In case ρ2 < 1 so |ρ|−1 > 1 we do not find that Lebesgue measure is
subinvariant. In case ρ2 = 1 so |ρ|−1 = 1 we find that Lebesgue measure
is invariant. In case ρ2 > 1 so |ρ|−1 < 1 we find that Lebesgue measure
is strictly subinvariant. Hence we have found that the Markov chain is
transient in case ρ2 > 1. In case ρ2 = 1 we have found that there is an
invariant measure that is not a finite measure, so we have ruled out positive
recurrence, but we still do not know whether the chain is transient or null
recurrent.

We will settle this open issue and find out more about AR(1) Markov
chains in Sections 6.7.1 and 6.8.1 below.

4.3 Stationary Markov Chains

A stochastic process is strictly stationary if the distribution of a block of
consecutive random variables only depends on the length of the block, that
is, the distribution of Xn+1, . . . , Xn+k depends only on k (does not depend
on n). A Markov chain is stationary if it is a strictly stationary stochastic
process.

A Markov chain is stationary if it has an invariant probability measure
π that is its initial distribution. Then π = πP says that π is the marginal
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distribution of Xn for all n. Since π and P determine the finite-dimensional
distributions of the Markov chain (Section 2 above), this implies the joint dis-
tribution of Xn+1, Xn+2, . . . , Xn+k does not depend on n. Conversely, if the
Markov chain is a strictly stationary stochastic process, then the marginal
distribution of Xn does not depend on n, hence this marginal distribution
π satisfies π = πP .

Stationary implies stationary transition probabilities, but not vice versa.

4.4 Harris Recurrence

A Markov chain is Harris recurrent if it is irreducible with maximal irre-
ducibility measure ψ and for every every ψ-positive set A the chain started
at x hits A infinitely often with probability one. Writing this out in mathe-
matical formulas is complicated (Meyn and Tweedie, 2009, p. 199), and we
shall not do so, since one never verifies Harris recurrence directly from the
definition.

We will learn more about Harris recurrence in Sections 5.8 and 6.7 below.

4.5 The Law of Large Numbers

The strong law of large numbers (LLN) for IID sequences of random
variables says the following. Let X1, X2, . . . be a sequence of IID random
variables having expectation µ, and define

Xn =
1

n

n∑
i=1

Xi, (9)

then
Xn

a.s.−→ µ, (10)

this being known as the law of large numbers.
We want to discuss the LLN for Markov chains, but if X1, X2, . . . is a

Markov chain, the X1 need not be real-valued, so expectation need not even
be defined. Hence we introduce the notion of functionals of Markov chains.

Suppose X1, X2, . . . is a Markov chain and f is a real-valued function
on the state space of the Markov chain, then we say the stochastic process
f(X1), f(X2), . . . is a functional of this Markov chain.

Suppose X1, X2, . . . is a positive Harris recurrent Markov chain, π is its
unique invariant distribution, and f is a real-valued function on the state
space such that

µ = Eπ{f(X)} =

∫
f(x)π(dx) (11)
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exists. Define

µ̂n =
1

n

n∑
i=1

f(Xi) (12)

then
µ̂n

a.s.−→ µ (13)

(Meyn and Tweedie, 2009, Proposition 17.1.7), this being known as the
Markov chain law of large numbers.

The similarity of (10) and (13) is made clearer if we define Yi = f(Xi)
so the left hand side of (13) is the sample mean Y n. There is a difference
that in (13) µ is not the expectation of the Yi (indeed, if the Markov chain
is not stationary, they may all have different expectations), rather µ is the
analogous expectation with respect to the invariant distribution.

4.6 Reversibility

A kernel K is said to be reversible with respect to a signed measure η if∫∫
f(x, y)η(dx)K(x, dy) =

∫∫
f(y, x)η(dx)K(x, dy) (14)

for any bounded measurable function f .
The name comes from the fact that if K is a Markov kernel and η is

a probability measure, then the Markov chain with transition probability
kernel K and initial distribution η looks the same running forwards or back-
wards in time, that is, (Xn+1, Xn+2, . . . , Xn+k) has the same distribution as
(Xn+k, Xn+k−1, . . . , Xn+1) for any positive integer k.

If a Markov kernel P is reversible with respect to a probability measure
π, then π is invariant for P . To see this substitute IB(y) for f(x, y) in (14),
which gives ∫

π(dx)P (x,B) =

∫∫
IB(y)π(dx)P (x, dy)

=

∫∫
IB(x)π(dx)P (x, dy)

=

∫
IB(x)π(dx)

= π(B)

which is π = πP .
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4.7 Total Variation Norm

The total variation norm of a signed measure λ on a measurable space
(Ω,A) is defined by

‖λ‖ = sup
A∈A

λ(A)− inf
A∈A

λ(A) (15)

Clearly, we have
|λ(A)| ≤ ‖λ‖

and hence
sup
A∈A
|λ(A)| ≤ ‖λ‖.

Conversely,

sup
A∈A

λ(A) ≤ sup
A∈A
|λ(A)|

− inf
A∈A

λ(A) ≤ sup
A∈A

[
−λ(A)

]
≤ sup

A∈A
|λ(A)|

so
‖λ‖ ≤ 2 sup

A∈A
|λ(A)|.

In summary,
sup
A∈A
|λ(A)| ≤ ‖λ‖ ≤ 2 sup

A∈A
|λ(A)|.

For this reason one sometimes sees supA∈A|λ(A)| referred to as the total
variation norm of λ, but this does not agree with the definition used in
many other areas of mathematics, which is (15).

4.8 Geometric Ergodicity

The following definition is given by (Meyn and Tweedie, 2009, p. 363). A
Markov chain with transition probability kernel P and invariant distribution
π is geometrically ergodic if it is Harris recurrent and there exists a real
number r > 1 such that

∞∑
n=1

rn‖Pn(x, · )− π( · )‖ <∞, x ∈ Ω. (16)

(Note that r does not depend on x.)
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One often sees an alternative definition: a positive Harris recurrent
Markov chain with transition probability kernel P and invariant distribu-
tion π is geometrically ergodic if there exists a real number s < 1 and a
nonnegative function M on the state space Ω such that

‖Pn(x, · )− π( · )‖ ≤M(x)sn, x ∈ Ω. (17)

It is obvious that (16) implies (17), but the reverse implication is almost as
obvious. If we assume (17), then

∞∑
n=1

rn‖Pn(x, · )− π( · )‖ ≤
∞∑
n=1

rnM(x)sn

≤ M(x)

1− rs
so long as rs < 1, and this proves (16) for any r such that 1 < r < 1/s.

4.9 The Central Limit Theorem

The central limit theorem (CLT) for IID sequences of random variables
says the following. Let X1, X2, . . . be a sequence of IID random variables
having expectation µ and standard deviation σ, and define Xn by (9), then

√
n(Xn − µ)

D−→ Normal(0, σ2) (18)

this being known as the central limit theorem (in case σ = 0, the right hand
side is interpreted as the degenerate normal distribution concentrated at
zero).

We want to discuss the CLT for Markov chains, so again we have to go
to functionals and again use the notation (11) and (12). Suppose X1, X2,
. . . is a geometrically ergodic Markov chain, π is its invariant distribution,
and f is a real-valued function on the state space such that

Eπ{|f(X)|2+ε} =

∫
|f(x)|2+ε π(dx) (19)

exists for some ε > 0. Then
√
n(µ̂n − µ)

D−→ Normal(0, σ2), (20)

where µ̂n and µ are given by (12) and (11), where

σ2 = γ0 + 2

∞∑
k=1

γk (21)
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and where
γn = covπ{f(Xi), f(Xi+n)}, (22)

the notation covπ indicating covariances with respect to the stationary
Markov chain having π as its initial distribution (Chan and Geyer, 1994,
Theorem 2).

If we change assumptions for the theorem stated above slightly, adding
reversibility to the assumptions and weakening (19) by only requiring it
hold for ε = 0, then the conclusions still hold (Roberts and Rosenthal,
1997, Theorem 2.1, combined with a central limit theorem for rho-mixing
stationary stochastic processes, Peligrad, 1986, Theorem 2.2, Remark 2.2,
and Theorem 2.3, combined with the fact that any rho-mixing Markov chain
is rho-mixing exponentially fast Bradley, 1986, Theorem 4.2). This theorem
is, qualitatively, no worse than the CLT for IID. Both say the CLT holds
for all functionals having second moments. Without reversibility we need a
little bit more than second moments.

Geometric ergodicity is not necessary for a CLT. There are a lot of
Markov chain CLT in the literature, but unlike the geometrically ergodic
ones stated above, they do not provide any simple condition for which func-
tionals (which f) have the CLT and which do not. They are thus not very
usable in practice.

5 Monte Carlo

“Monte Carlo” is a cutesy name for the practice of learning about a
probability distribution by simulating it. The term was coined in the 1950’s
when gambling was illegal almost everywhere (no legal gambling anywhere
in the United States except in Las Vegas) and the casino at Monte Carlo
was the most famous in the world. And gambling has something to do
with randomness hence the term. It was a weak joke, now it is a colorless
technical term designating a method in applied mathematics.

5.1 Ordinary Monte Carlo

Suppose there is a probability distribution π and there is an expectation
µ given by (11) that is analytically intractable: we cannot calculate it either
with pencil and paper methods or with a computer algebra system (like
Mathematica or Maple).

The ordinary Monte Carlo (OMC) method says to simulate IID realiza-
tions X1, X2, . . . from the distribution π and use µ̂n given by (12) as an
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estimator (or Monte Carlo approximation) of (11).
Then the LLN (13) says our Monte Carlo approximation converges al-

most surely to the quantity we want to calculate as n goes to infinity, and
the CLT says the difference between our Monte Carlo approximation and
the quantity we want to calculate, which we call the Monte Carlo error,
converges to a normal distribution at a root n rate.

So there is no mystery to OMC. It is just the most elementary of statis-
tics: using the sample mean to estimate the population mean and using the
law of large numbers and the central limit theorem for justification and error
analysis. One difference is that since n is how many realizations we have
the computer generate, we can always have n very large.

In order to avoid confusion when applying the Monte Carlo method to
problems arising in statistics, we always emphasize that n is the Monte Carlo
sample size, the number of simulations done by the computer, rather than
anything else called “sample size” in the statistical problem being done.

OMC has only two drawbacks, one major and one minor. The major
one is that it is very difficult to simulate IID realizations of any complicated
multivariate distribution. Univariate distributions are easy to simulate. De-
vroye (1986) has hundreds of recipes that have appeared in the literature.
They allow simulation of just about any univariate distribution that can be
described. But there are almost no recipes for multivariate distributions:
uniform on a box, uniform on a ball, and multivariate normal are the only
multivariate distributions that are easy to simulate.

The minor drawback is that the “square root law” (the root n in the
CLT) means that only limited precision is possible. To get 10 times the
accuracy, one needs 100 times the Monte Carlo sample size. To get 100
times the accuracy, one needs 10,000 times the Monte Carlo sample size. At
some point one just gives up. Arbitrary precision is not practical.

5.2 Markov Chain Monte Carlo

The Markov chain Monte Carlo (MCMC) method says to simulate an ir-
reducible positive recurrent Markov chain X1, X2, . . . having π as its unique
invariant distribution. We still use (12) as the estimator of (11).

We have now left the realm of elementary statistics. For justification we
need a LLN and CLT for Markov chains, which are completely missing from
many statistics programs.

It is important to emphasize that the LLN and CLT for geometrically
ergodic Markov chains do not depend on the initial distribution (if the LLN
holds for any initial distribution, then it holds for every initial distribution,
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and similarly for the CLT Meyn and Tweedie, 2009, Proposition 17.1.6)
because in practice we never use the stationary distribution as the initial
distribution. If we knew how to generate even one sample from the station-
ary distribution, we could do that over and over and do OMC.

So in MCMC the samples X1, X2, . . . are usually neither independent nor
identically distributed and their distribution is not the distribution of inter-
est. If the samples were independent, then they actually are IID and MCMC
is in this case actually OMC. If the samples are identically distributed, then
the Markov chain is stationary, but this is never possible to arrange unless
one can produce IID samples from the distribution of interest. So in prac-
tice MCMC provides a not independent, not identically distributed, sample
from the distribution of interest.

MCMC has only two drawbacks, one major and one minor. The minor
one is the same one that OMC has. MCMC obeys the square root law too,
so only limited precision is practical. The major drawback is very different.
MCMC easily simulates any multivariate distribution (Section 5.5 below),
so it does not have the major drawback of OMC.

The major drawback of MCMC is that you are never quite sure that
it has worked. This is a bit hard to explain, so let us consider a very
special case. What is the probability that an OMC calculation estimates
probability zero for an event A having true probability π(A)? This problem
is solvable by intro statistics students: it is just the multiplication rule and
the complement rule, and the answer is [1− π(A)]n. What is the answer to
the same question for MCMC rather than OMC? Let TA denote the hitting
time for A (first time after time zero that the chain enters A). If the chain
is geometrically ergodic, then there exist r > 1 such that

Eπ{rTA} <∞

(Nummelin, 1984, Proposition 5.19). Thus by Markov’s inequality, there
exists a constant M <∞ such that

Pπ(TA ≥ n) ≤Mr−n

which says the same thing as our answer for OMC except that we usually
have no sharp bounds for M and r. With OMC we know that M = 1 and
r = 1/[1 − π(A)] will do. With MCMC we only know that some M < ∞
and r > 1 will do.

This is not of merely theoretical concern. In practical situations, it may
take a very large number of iterations to get a sample that is reasonably
representative of the invariant distribution, and there is usually no simple
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calculation that tells us how many iterations are required. Theorems do
exist that give bounds on how many iterations are required (Rosenthal,
1995;  Latuszyński and Niemiro, 2011;  Latuszyński, et al., 2013), but these
bounds are very sloppy except in the simplest problems. In most practical
MCMC applications, such bounds are useless if they can be computed at
all.

In summary, OMC has the major drawback that you can’t do it for
complicated multivariate problems, and MCMC has the major drawback
that you are never quite sure it has worked.

5.3 Unnormalized Probability Densities

We say h is an unnormalized density of a random vector X with respect
to a positive measure µ if

∫
h dµ is nonzero and finite. Then the (proper,

normalized, probability) density of X with respect to µ is f = h/c, where
c =

∫
h dµ.

The notion of an unnormalized density provides many master’s level
probability theory homework problems of the form given h find f , but it
is also very very useful in Bayesian inference and spatial statistics. Bayes
rule can be phrased: likelihood times prior equals unnormalized posterior.
Thus one always knows the unnormalized posterior but may not know how
to normalize it. In spatial statistics and other areas of statistics involving
complicated stochastic dependence amongst components of the data it is
easy to specify models by unnormalized densities, because it is easy to make
up functions of the data and parameters that are integrable, but it may
be impossible to give closed-form expressions for those integrals and hence
impossible to specify the normalized densities of the model.

The following two sections give algorithms for MCMC samplers for prob-
ability models specified by unnormalized densities.

5.4 The Gibbs Sampler

The Gibbs sampler was introduced by Geman and Geman (1984) and
popularized by Gelfand and Smith (1990). Why is it named after Gibbs if
he didn’t invent it? It was originally used to simulate Gibbs distributions in
thermodynamics, which were invented by Gibbs, and it was only later real-
ized that the algorithm applied to any distribution. Given an unnormalized
density of a random vector, it may be possible to normalize the conditional
distribution of each component given the other components when it is an-
alytically intractable to normalize the joint distribution. These conditional
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distributions are called the full conditionals.
In a random scan Gibbs sampler each step of the Markov chain pro-

ceeds by choosing one of the full conditionals uniformly at random and then
simulating a new value of that component of the state vector using the full
conditional (the remaining components do not change in this step).

In a fixed scan Gibbs sampler each step of the Markov chain proceeds
by simulating new values of each component of the state vector using the
full conditional for each (in each such simulation the remaining components
do not change in that substep). The components are simulated in the same
order in each step of the Markov chain. More precisely, let Xn denote the
state vector and Xni its components, and let fi denote the full conditionals.
Then one step of the Markov chain proceeds as follows

Xn+1,i1 ∼ fi1( · | Xni2 , . . . , Xnid)

Xn+1,i2 ∼ fi2( · | Xn+1,i1 , Xni3 . . . , Xnid)

Xn+1,i3 ∼ fi2( · | Xn+1,i1 , Xn+1,i2 , Xni4 . . . , Xnid)

...

Xn+1,id−1
∼ fid−1

( · | Xn+1,i1 , . . . Xn+1,id−2
, Xnid)

Xn+1,id ∼ fid( · | Xn+1,i1 , . . . Xn+1,id−1
)

where d is the dimension of Xn and (i1, . . . , id) is a permutation of (1, . . . , d)
that remains fixed for all steps of the Markov chain.

It is obvious that each substep involving the update of one coordinate
preserves the distribution of interest (the one having the full conditionals
being used) because if the joint distribution of all the components is the
distribution of interest before the substep, then it is the same distribution
afterwords (marginal times conditional equals joint). Thus a Gibbs sampler,
if irreducible, simulates the distribution of interest.

A random scan Gibbs sampler is reversible: if the i-th component is
simulated, then Xn+1,i and Xni both have the same distribution given the
rest of the components (which are the same in both Xn+1 and Xn), and this
implies reversibility.

A fixed scan Gibbs sampler is not reversible (the time-reversed chain
simulates components in the reverse order). If one wants to do fixed scan
and also wants reversible, one can use a so-called palindromic fixed scan (the
same forwards and backwards), such as 1, 2, 3, 2, 1 for d = 3.
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5.5 The Metropolis-Hastings Algorithm

Suppose h is an unnormalized density with respect to a positive measure
µ on the state space and for each x in the state space q(x, · ) is a properly
normalized density with respect to µ chosen to be easy to simulate (multi-
variate normal, for example). The Metropolis-Hastings algorithm (Metropo-
lis, Rosenbluth, Rosenbluth, Teller and Teller, 1953; Hastings, 1970) repeats
the following in each step of the Markov chain.

(i) Simulate Yn from the distribution q(Xn, · ).

(ii) Calculate a(Xn, Yn) where

r(x, y) =
h(y)q(y, x)

h(x)q(x, y)
(23)

and
a(x, y) = min

(
1, r(x, y)

)
. (24)

(iii) Set Xn+1 = Yn with probability a(Xn, Yn), and set Xn+1 = Xn with
probability 1− a(Xn, Yn).

In order to avoid divide by zero in (23) it is necessary and sufficient that
h(X1) > 0. Proof: q(Xn, Yn) > 0 with probability one because of (i), and
h(Yn) = 0 implies a(Xn, Yn) = 0 implies Xn+1 = Xn with probability one,
hence (conversely) Xn+1 6= Xn implies h(Xn+1) > 0.

Since the Metropolis-Hastings update is undefined when h(Xn) = 0, in
theoretical arguments we must consider the state space to be the set of points
x such that h(x) > 0. This is permissible, because, as was just shown, we
always have h(Xn) > 0 even though there is no requirement that h(Yn) > 0.

Terminology: Yn is called the proposal, (23) is called the Hastings ratio,
(24) is called the acceptance probability, substep (iii) is called Metropolis
rejection, and the proposal is said to be accepted when we set Xn+1 = Yn in
step (iii) and rejected when we set Xn+1 = Xn in step (iii).

In the special case where q(x, y) = q(y, x) for all x and y the proposal
distribution q is said to be symmetric and this special case of the Metropolis-
Hastings algorithm is called the Metropolis algorithm. In this special case
(23) becomes

r(x, y) =
h(y)

h(x)
(25)

and is called the Metropolis ratio or the odds ratio. There is little advantage
to this special case. It only saves a bit of time in not having to calculate
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q(Xn, Yn) and q(Yn, Xn) in each step. It only gets a special name because it
was proposed earlier. The Metropolis algorithm was proposed by Metropo-
lis, et al. (1953), and the Metropolis-Hastings algorithm was proposed by
Hastings (1970).

Theorem 4. The Metropolis-Hastings update is reversible with respect to
the distribution having unnormalized density h.

Thus a Metropolis-Hastings sampler, if irreducible, simulates the distri-
bution of interest (it does not matter what the proposal distribution is).

Proof. The kernel for the Metropolis-Hastings update is

P (x,A) = m(x)I(x,A) +

∫
A
q(x, y)a(x, y)µ(dy), (26)

where

m(x) = 1−
∫
q(x, y)a(x, y)µ(dy).

Let η be the measure having density h with respect to µ. Then∫∫
f(x, y)η(dx)P (x, dy) =

∫∫
f(x, y)h(x)P (x, dy)µ(dx)

=

∫∫
f(x, y)m(x)I(x, dy)µ(dx)

+

∫∫
f(x, y)h(x)q(x, y)a(x, y)µ(dx)µ(dy)

=

∫
f(x, x)m(x)µ(dx)

+

∫∫
f(x, y)h(x)q(x, y)a(x, y)µ(dx)µ(dy)

Clearly, the first term on the right side is unchanged if the arguments are
interchanged in f(x, x). Thus to show reversibility we only need to show
that the value of ∫∫

f(x, y)h(x)q(x, y)a(x, y)µ(dx)µ(dy) (27)

is not changed if f(x, y) is changed to f(y, x), and this is implied by

h(x)q(x, y)a(x, y) = h(y)q(y, x)a(y, x) (28)
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holding for all x and y except for those in a set making no contribution to
(27) because the integrand is zero. Thus we may assume

h(x) > 0 and q(x, y) > 0 and a(x, y) > 0, (29)

which implies r(x, y) > 0 and also implies (29) with x and y swapped.
For (x, y) satisfying both (29) and (29) with x and y swapped, neither the
numerator nor the denominator in (23) is equal to zero, and

r(x, y) =
1

r(y, x)
.

The proof of the claim (28) now splits into two cases. First, if r(x, y) ≥ 1,
so a(x, y) = 1, then r(y, x) ≤ 1, so a(y, x) = r(y, x), and

h(y)q(y, x)a(y, x) = h(y)q(y, x)r(y, x)

= h(y)q(y, x)
h(x)q(x, y)

h(y)q(y, x)

= h(x)q(x, y)

= h(x)q(x, y)a(x, y)

The second case is exactly the same as the first except that x and y are
exchanged.

5.6 One Variable at a Time Metropolis-Hastings

A variant of the Metropolis-Hastings algorithm has elementary updates
that update one variable at a time. These updates are then combined in a
fixed or random scan like with the Gibbs sampler. We will not write out the
details; see Geyer (2011, Section 1.12.5).

Nowadays we use the term “Metropolis-Hastings algorithm” to refer to
the procedure described the preceding section and must use some long-
winded term like that in the title of this section to refer to this algorithm.
However, this is historically inaccurate. The original example in Metropolis,
et al. (1953) was a sampler of the type described in this section not the type
described in the preceding section.

The Gibbs sampler is a special case of the algorithm described in this
section (Geyer, 2011, Section 1.12.6).

The algorithm described in this section is a special case of the algorithm
described in the following section.

27



5.7 The Metropolis-Hastings-Green Algorithm

Many other MCMC algorithms have been put in the literature. They
are all (as far as I know) special cases of the Metropolis-Hastings-Green al-
gorithm (Green, 1995), which is just like the Metropolis-Hastings algorithm
except that is allows proposals from distributions not defined by probabil-
ity density functions and hence is inherently measure theoretic. We do not
describe it here; see Geyer (2011, Section 1.17).

5.8 Harris Recurrence

For the most commonly used MCMC algorithms there are three theo-
rems that say irreducibility implies Harris recurrence. Corollaries 1 and 2
of Tierney (1994) show this for Gibbs samplers and Metropolis-Hastings
samplers that update all variables simultaneously. Theorem 1 of Chan and
Geyer (1994) shows this for Metropolis-Hastings samplers that update one
variable at a time (the latter requires irreducibility not only of the given
Markov chain but also of all Markov chains that fix any subset of the vari-
ables).

Of course, the literature contains many other MCMC algorithms. For
those one must verify Harris recurrence directly.

5.9 Variance Estimation

In order to estimate the accuracy of Monte Carlo approximations, we
must estimate the asymptotic variance in the CLT (21). There are many
methods of doing this (Geyer, 1992, Section 3; Geyer, 2011, Section 1.10).
We will only discuss the simplest, which use the method of batch means.

A “batch” is a consecutive part of a time series such as a functional of a
Markov chain. If f(X1), f(X2), . . . is a functional of a Markov chain, then
f(Xi+1), f(Xi+2), . . . , f(Xi+b) is a batch of length b, and

µ̂ib =
1

b

b∑
j=1

f(Xi+j)

is the corresponding batch mean. The Markov chain CLT says

√
b(µ̂ib − µ)

D−→ Normal(0, σ2)

and this holds regardless of i, so we expect

b(µ̂ib − µ̂n)2 (30)

28



to be a good estimate of σ2 when 0� b� n, where� means “a lot greater
than.” We need 0 � b in order for the CLT to hold at size b and we need
the b � n in order for the randomness in µ̂n to be much less than the
randomness in µ̂ib so (30) is a good approximation to

b(µ̂ib − µ)2.

The method of batch means has several subvarieties. The method of
overlapping batch means uses all of the batches of length b.

σ̂2
olbm =

b

n− b+ 1

n−b+1∑
i=1

(µ̂ib − µ̂n)2

The method of nonoverlapping batch means uses only nonoverlapping and
abutting batches of length b.

σ̂2
nolbm =

b

bn/bc

bn/bc∑
k=1

(µ̂(k−1)b+1,b − µ̂n)2

The overlapping batch means estimator is somewhat more efficient (Meketon
and Schmeiser, 1984), but not necessarily enough to be worth the extra
computer time and storage (Geyer, 2011, Section 1.10, last paragraph). So
we consider only the latter.

There is another distinction between the method of consistent batch
means (CBM), which requires both b and n/b to go to infinity at a certain
rate as n goes to infinity (Jones, et al., 2006), and the method of inconsistent
batch means (IBM), which fixes the number of batches so the batch length
is bn/mc if there are m batches. It can then be shown (Geyer, 1992, Sec-
tion 3.2) that the batches are asymptotically IID normal with mean µ and
variance σ2 so an ordinary t confidence interval gives a valid confidence in-
terval for the quantity µ being approximated by MCMC. So the only penalty
of IBM versus CBM is that one uses a t critical value rather than a z crit-
ical value in constructing the confidence interval. So long as the number
of batches is moderately large (greater than 30), this penalty is negligible.
CBM has the virtue that it is consistent (of course), so it can be easily used
as a component of more complicated procedures (Jones, et al., 2006) but
it requires stronger regularity conditions than the CLT itself. IBM has the
virtue that it it valid whenever the CLT holds.
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6 Drift Conditions

6.1 Small and Petite Sets

A subset C of the state space (Ω,A) is small if there exists a nonzero
positive measure ν on the state space and a positive integer n such that

Pn(x,A) ≥ ν(A), A ∈ A and x ∈ C. (31)

It is not obvious that small sets having positive irreducibility measure ex-
ist. That they do exist for any irreducible kernel P was proved by Jain
and Jamison (1967) under the assumption that the state space is countably
generated (this is why that assumption is always imposed).

Recall the notion of the kernel Pq derived from a kernel P by subsampling
introduced in Section 3.3 above. A subset C of the state space (Ω,A) is
petite if there exists a nonzero positive measure ν on the state space and a
subsampling distribution q such that

Pq(x,A) ≥ ν(A), A ∈ A and x ∈ C. (32)

Clearly every small set is petite (take q such that qn = 1). So petite sets
exist because small sets exist.

Meyn and Tweedie (2009) show that a finite union of petite sets is petite
and there exists a sequence of petite sets whose union is the whole state space
(their Proposition 5.5.5).

6.2 T-Chains

In this section we again use topology. A topological space is locally com-
pact if every point has a compact neighborhood. The main example is Rd,
where for any x every closed ball centered at x is a compact neighborhood of
x. Following Meyn and Tweedie (2009, Chapter 6), we assume throughout
this section that the state space is a locally compact Polish space (a Polish
space is a complete separable metric space, and again Rd is an example).

A function f on a metric space is lower semicontinuous (LSC) if

lim inf
y→x

f(y) ≥ f(x), for all x.

A continuous component T of a kernel P having state space (Ω,A) is a
substochastic kernel such that the function

x 7→ T (x,A)
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is LSC for any A ∈ A and there is a probability vector q such that

Pq(x,A) ≥ T (x,A), x ∈ Ω andA ∈ A.

We also say a Markov chain having P as its transition probability kernel has
a continuous component T if T is a continuous component of P .

A Markov chain is a T -chain if it has a continuous component T such
that

T (x,Ω) > 0, for all x ∈ Ω.

For a T -chain every compact set is petite and, conversely, if every com-
pact set is petite, then the chain is a T -chain (Meyn and Tweedie, 2009,
Theorem 6.0.1).

Theorem 5. A Gibbs sampler is a T -chain if all the full conditionals are
LSC functions of the variables on which they condition.

Partial Proof. Since the notation for the Gibbs sampler is so messy, we do
only the three-component case. The general idea should be clear. For both
kinds of Gibbs sampler, take the continuous component T to be P itself.

For a three-component random scan Gibbs sampler, the kernel is

P (x,A) =
1

3

∫
I
(
(y, x2, x3), A

)
f1(y | x2, x3) dy

+
1

3

∫
I
(
(x1, y, x3), A

)
f2(y | x1, x3) dy

+
1

3

∫
I
(
(x1, x2, y), A

)
f3(y | x1, x2) dy

and this is an LSC function of x for each fixed A by Fatou’s lemma. For a
three-component fixed scan Gibbs sampler that updates in the order 1, 2,
3, the kernel is

P (x,A) =

∫∫∫
I(y,A)f3(y3 | y1, y2)f2(y2 | y1, x3)f1(y1 | x2, x3) dy

and this is an LSC function of x for each fixed A by Fatou’s lemma.
(For state spaces of other dimensions, the general idea is that one writes

down the kernel, however messy the notation may be, and then says “and
this is an LSC function of x for each fixed A by Fatou’s lemma.”)

Theorem 6. An irreducible Metropolis-Hastings sampler is a T -chain if
the unnormalized density of the invariant distribution is continuous and the
proposal density is separately continuous.
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Proof. As noted in Section 5.5 we must define the state space of the Markov
chain to be the set W = {x : h(x) > 0}. The assumption that h is continuous
means W is an open set.

We take the continuous component to be the part of the kernel corre-
sponding to accepted updates, that is,

T (x,A) =

∫
A
q(x, y)a(x, y) dy, (33)

where we define

a(x, y) =

{
1, h(y)q(y, x) ≥ h(x)q(x, y)
h(y)q(y,x)
h(x)q(x,y) , otherwise

(note that our definition of a(x, y) avoids the problem of divide by zero when
q(x, y) = 0, because then the first case in the definition is chosen).

Fix y and consider a sequence xn → x with x ∈ W . It is clear that if
q(x, y) > 0, then

a(xn, y)q(xn, y)→ a(x, y)q(x, y)

by the continuity assumptions of the theorem. In case q(x, y) = 0, we have

0 ≤ a(xn, y)q(xn, y) ≤ q(xn, y)→ 0

by the continuity assumptions of the theorem and our definition of a(x, y).
The integrand in (33) being an LSC function for each fixed value of the

variable of integration, so is the integral by Fatou’s lemma. It remains only
to be shown that T (x,W ) > 0 for every x ∈ W , but if this failed for any x
this would mean that the chain could never move from x to anywhere and
hence this chain is would not be irreducible, contrary to assumption.

6.3 Periodicity

Suppose C is a small set satisfying (31) and also satisfies ν(C) > 0, which
is always possible to arrange (Meyn and Tweedie, 2009, Proposition 5.2.4).
Define

EC = {n ≥ 1 : (∃δ > 0)(∀A ∈ A)(∀x ∈ C)(Pn(x,A) ≥ δν(A)) }

Let d be the greatest common divisor of the elements of EC . Meyn and
Tweedie (2009, Theorem 5.4.4) then show that there exist disjoint measur-
able subsets A0, . . . , Ad−1 of the state space Ω such that

P (x,Ai) = 1, x ∈ Aj and i = j + 1 mod d,
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where j + 1 mod d denotes the remainder of j + 1 when divided by d, and

ψ
(
(A0 ∪ · · · ∪Ad−1)c

)
= 0,

where ψ is a maximal irreducibility measure.
If d ≥ 2 we say the Markov chain is periodic with period d. Otherwise,

we say the Markov chain is aperiodic. We use the same terminology for the
transition probability kernel (since whether the Markov chain is periodic or
not depends only on the kernel not on the initial distribution).

For an obvious example of a periodic chain, consider a chain with state
space 0, . . . , d− 1 and deterministic movement: Xn = x then Xn+1 = x+ 1
mod d.

In MCMC the possibility of periodicity is mostly a nuisance. No Markov
chain used in practical MCMC applications is periodic.

Theorem 7. A positive recurrent Markov kernel of the form

P (x,A) = m(x)I(x,A) +K(x,A)

is aperiodic if
∫
mdπ > 0, where π is the invariant probability measure.

Note that (26), the kernel for a Metropolis-Hastings update has this
form, where m(x) is the probability that, if the current position is x, the
proposal made will be rejected. In short, a Metropolis-Hastings sampler
that rejects with positive probability at a set of points x having positive
probability under the invariant distribution cannot be periodic.

Proof. Suppose to get a contradiction that the sampler is periodic with
period d and A0, . . . , Ad−1 as described above. We must have π(Ak) = 1/d
for all k because π(Ak) = π(Ak+1 mod d). Hence we have for the stationary
chain

Pr(Xn ∈ Ak andXn+1 ∈ Ak) ≥
∫
Ak

π(dx)m(x)

and the latter is greater than zero, contradicting the periodicity assumption
because Ak is π-positive.

Theorem 8. An irreducible Gibbs sampler is aperiodic.

Proof. The proof begins with the same two sentences as the preceding proof.
Any Gibbs update simulates X given hi(X) for some function hi (for a tra-
ditional Gibbs sampler hi is the projection that drops the i-th coordinate).
That is, hi(Xn+1) = hi(Xn) and the conditional distribution of Xn+1 given
hi(Xn+1) is the one derived from π.

33



First consider a random scan Gibbs sampler. Write In for the random
choice of which coordinate to update. Then conditional on hIn(Xn) the two
random elements Xn and Xn+1 are conditionally independent. Hence

Pr
(
Xn+1 ∈ Ak | Xn ∈ Ak, hIn(Xn)

)
= Pr

(
Xn+1 ∈ Ak | hIn(Xn)

)
(34)

In order for the sampler to be periodic, we must have

Pr(Xn+1 ∈ Ak | Xn ∈ Ak)
= E

{
Pr
(
Xn+1 ∈ Ak | Xn ∈ Ak, hIn(Xn)

)
| Xn ∈ Ak

}
equal to zero, and this implies (34) is zero almost surely with respect to
π, but this would imply Pr(Xn+1 ∈ Ak) = 0, when it must be 1/d. That
is the contradiction. Since whether the chain is periodic or not does not
depend on the initial distribution, this finishes the proof for random scan
Gibbs samplers.

For a fixed scan Gibbs sampler, the argument is almost the same. Now
there are no choices In and we need to consider the state between substeps.
Suppose without loss of generality the scan order is 1, . . . , k. Consider again
the stationary chain, write Y0 = Xn and let Y1 be the state after the first
substep, Y2, after the second, and so forth. Then conditional on h1(Y0),
h2(Y1), . . . , hk(Yk−1) the two random elements Xn = Y0 and Xn+1 = Yk are
conditionally independent. Hence

Pr
(
Xn+1 ∈ Ak | Xn ∈ Ak, h1(Y0), . . . , hk(Yk−1)

)
= Pr

(
Xn+1 ∈ Ak | h1(Y0), . . . , hk(Yk−1)

)
holds and contradicts the assumption of periodicity in the same way as
before. Since whether the chain is periodic or not does not depend on the
initial distribution, this finishes the proof for fixed scan Gibbs samplers.

6.4 The Aperiodic Ergodic Theorem

The following is Theorem 13.3.3 in Meyn and Tweedie (2009).

Theorem 9. For a positive Harris recurrent chain with transition probabil-
ity kernel P , initial distribution λ, and invariant distribution π

‖λPn − π‖ → 0, n→∞.

This says the marginal distribution of Xn, which is λPn, converges to
π in total variation, which is a much stronger form of convergence than
convergence in distribution.
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Corollary 10. For a positive Harris recurrent chain with transition proba-
bility kernel P and invariant distribution π

‖Pn(x, · )− π( · )‖ → 0, n→∞,

for any x in the state space.

This is just just the special case of Theorem 9 where λ is concentrated at
the point x.

6.5 Drift Conditions in General

An abstract state space (Ω,A) where Ω is just a set having no other
properties gives us little to work with in studying transience and recurrence.
The chain is transient when it moves off to infinity (sort of), but on a bare
set there is no direction toward infinity.

The idea of drift functions is to impose directions on a bare set. A drift
function is just a nonnegative-valued function V on the state space; it may
have extra restrictions, but different ones in different applications. Uphill
on the drift function is toward infinity. Downhill on the drift function is
toward the center.

Drift conditions work by comparing the functions V and PV . The latter
is (by definition)

(PV )(x) =

∫
P (x, dy)V (y) = E{V (Xn+1) | Xn = x}.

If V is unbounded, the integral (conditional expectation) need not exist, in
which case we say the value (in the loose sense) is +∞, which always makes
sense because V is nonnegative.

To simplify notation, we write PV (x) instead of (PV )(x). The former
seems less clear, but it can only mean the latter, since we have no definition
of a kernel multiplied on the right by a number (rather than by a function).

A notion that is useful in describing some drift functions is the following.
We say a nonnegative function V is unbounded off petite sets if the level sets

{x ∈ Ω : V (x) ≤ r }

are petite for each real number r (Meyn and Tweedie, 2009, Section 8.4.2).
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6.6 The Drift Condition for Transience

Part of Theorem 8.0.2 in Meyn and Tweedie (2009) says the following.
Suppose P is ψ-irreducible. Then a Markov chain with transition probability
kernel P is transient if and only if there exists a bounded drift function V
and a ψ-positive set A such that

PV (x) ≥ V (x), x ∈ Ac

and the set {
x ∈ Ω : V (x) > sup

y∈A
V (y)

}
is ψ-positive.

Meyn and Tweedie (2009) do not give any examples of using this drift
condition, and I do not know of any. So we will not illustrate it here

6.7 The Drift Condition for Harris Recurrence

The following is Theorem 9.1.8 in Meyn and Tweedie (2009). (See Sec-
tion 6.5 for the meaning of PV and the definition of unbounded off petite
sets.)

Theorem 11. Suppose for an irreducible Markov chain having transition
probability kernel P there exists a petite set C and a nonnegative function
V that is unbounded off petite sets such that

PV (x) ≤ V (x), x /∈ C, (35)

holds. Then the chain is Harris recurrent.

6.7.1 Example: AR(1) Time Series, Continued

Meyn and Tweedie (2009, Section 8.5.2) use this theorem to show that
the AR(1) time series with ρ = 1 is Harris recurrent. Since their proof
is rather complicated (it goes on for a page and a half), we won’t try to
duplicate it here.

Because of the symmetry of the normal distribution, if X0, X1, X2, . . .
is an AR(1) Markov chain with ρ = −1 and σ = s started at X0 = x, then
X0, X2, X4, . . . is an AR(1) Markov chain with ρ = 1 and σ = s

√
2 started

at X0 = x. Hence recurrence of the latter implies recurrence of the former.
This settles the case left open in Section 4.2.1 above. In case ρ2 = 1, the

AR(1) Markov chain is null recurrent.
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6.8 The Drift Condition for Geometric Ergodicity

Recall the definition of “unbounded off petite sets” from Section 6.5.
The following is part of Theorem 15.0.1 in Meyn and Tweedie (2009).

Theorem 12. Suppose for an irreducible, aperiodic Markov chain having
transition probability kernel P and state space Ω there exists a petite set C,
a real-valued function V satisfying V ≥ 1, and constants b < ∞ and λ < 1
such that

PV (x) ≤ λV (x) + bI(x,C), x ∈ Ω, (36)

holds. Then the chain is geometrically ergodic.

The function V is referred to as a drift function and (36) as the drift
condition for geometric ergodicity.

Theorem 12 has a near converse, which is another part of Theorem 15.0.1
in Meyn and Tweedie (2009).

Theorem 13. For an geometrically ergodic Markov chain having transition
probability kernel P , invariant distribution π, and state space Ω, there exists
an extended-real-valued function V satisfying V ≥ 1 and π

(
V (x) < ∞

)
=

1, constants b < ∞ and λ < 1, and a petite set C such that (36) holds.
Moreover, there exist constants r > 1 and R <∞ such that

∞∑
n=1

rn‖Pn(x, · )− π( · )‖ ≤ RV (x), x ∈ Ω.

This shows that the function M in (17) can be taken to be a positive
multiple of a drift function V . Taking expectations with respect to π of both
sides of (36) and using π = πP , we get

(1− λ)Eπ{V (X)} ≤ bπ(C),

which shows that a function satisfying the geometric drift condition is always
π-integrable. Thus we can always take the function M in (17) to be π-
integrable.

The fact that any solution V to the geometric drift condition is π-
integrable gives us a way to find at least some unbounded π-integrable
functions: any random variable g(X) satisfying |g| ≤ V has expectation
with respect to π.

There is an alternate form of the geometric drift condition that is often
easier to verify (Meyn and Tweedie, 2009, Lemma 15.2.8).
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Theorem 14. The geometric drift condition (36) holds if and only if V is
unbounded off petite sets and there exists a constant L <∞ such that

PV ≤ λV + L. (37)

6.8.1 Example: AR(1) Time Series, Continued

Here we show that an AR(1) process with ρ2 < 1 is geometrically ergodic.
First it is a T -chain because the conditional probability density function for
Xn+1 given Xn is a continuous function of Xn. Thus every compact set is
petite and the function V defined by V (x) = 1 + x2 is unbounded off petite
sets. Now

PV (x) = E(1 +X2
n+1 | Xn = x) = 1 + ρ2x2 + σ2

and hence we have the alternate geometric drift condition (37) with λ = ρ2

and L = 1− ρ2 + σ2.

6.8.2 Example: A Gibbs Sampler

Suppose X1, . . . , Xn are IID Normal(µ, λ−1) and we suppose that the
prior distribution on (µ, λ) is the improper prior with density with respect
to Lebesgue measure

g(µ, λ) = λ−1/2.

We wish to use a Gibbs sampler to simulate this (actually the joint posterior
distribution can be derived in closed form, but for this example we ignore
that).

The unnormalized posterior is

λn/2 exp

(
−λ

2

n∑
i=1

(xi − µ)2

)
· λ−1/2

= λ(n−1)/2 exp

(
−nλ

2

[
vn + (x̄n − µ)2

])
where

x̄n =
1

n

n∑
i=1

xi

vn =
1

n

n∑
i=1

(xi − x̄n)2
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Hence the posterior conditional distribution of λ given µ is Gamma(a, b),
where

a = (n+ 1)/2

b = n
[
vn + (x̄n − µ)2

]
/2

and the posterior conditional distribution of µ given λ is Normal(c, d) where

c = x̄n

d = n−1λ−1

We use a fixed scan Gibbs sampler updating first λ then µ in each it-
eration, that is, we simulate the Markov chain (µt, λt), t = 1, 2, . . . (we
use t rather than n for the time because we already have another n in this
problem) as follows

λt+1 ∼ fλ|µ( · | µt)
µt+1 ∼ fµ|λ( · | λt+1)

where ∼ means “is simulated from the distribution.”
Again, we know the conditional distributions are continuous functions of

the conditioning variables so the chain is a T -chain and every compact set
is petite.

We try a drift function

V (µ, λ) = 1 + (µ− x̄n)2 + ελ−1 + λ

where ε > 0 is a constant to be named later.
Clearly, this is unbounded off compact sets of the state space which is

R× (0,∞). The term ελ−1 makes V (µ, λ) go to infinity as λ goes to zero.
First

E{V (µt+1, λt+1) | λt+1, µt, λt} = E{V (µt+1, λt+1) | λt+1}
= 1 + n−1λ−1

t+1 + ελ−1
t+1 + λt+1

= 1 + (ε+ n−1)λ−1
t+1 + λt+1

so, using the facts that if X is Gamma(a, b) then

E(X−1) =
b

a− 1

E(X) =
a

b
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(the first requires a − 1 > 0, otherwise the expectation does not exist), we
obtain

E{V (µt+1, λt+1) | µt, λt} = E{E[V (µt+1, λt+1) | λt+1, µt, λt] | µt, λt}
= 1 + (ε+ n−1)E(λ−1

t+1 | µt) + E(λt+1 | µt)

= 1 +
(ε+ n−1)n

[
vn + (x̄n − µt)2

]
/2

(n+ 1)/2− 1

+
(n+ 1)/2

n
[
vn + (x̄n − µt)2

]
/2

≤ 1 +
(nε+ 1)

[
vn + (x̄n − µt)2

]
n− 1

+
n+ 1

nvn

= 1 +
(nε+ 1)vn
n− 1

+
n+ 1

nvn
+

(nε+ 1)(x̄n − µt)2

n− 1

≤ ρV (µt, λt) + L,

where

ρ =
nε+ 1

n− 1

L = 1 +
(nε+ 1)vn
n− 1

+
n+ 1

nvn

Thus we satisfy the geometric drift condition if we can make ρ < 1, which
we can if n > 2 and ε < 1/n.
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