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1 Introduction

We start more or less following Hoel, Port, and Stone (1986, hereinafter
HPS), changing what needs to be changed to allow for vector parameters.
We are studying second order processes X(t), where now t denotes a vector.
But other than that everything stays the same: for each t in the domain T ,
we have a random variable X(t). (I don’t really like the vectors are boldface
convention, but we will use it in this handout.)

We use the same notation as HPS

µX(t) = E{X(t)}
rX(s, t) = cov{X(s), X(t)}

We say the process is weakly stationary or translation invariant if

µX(t + h) = µX(t)

rX(s + h, t + h) = rX(s, t)

for all h, s, and t for which the expressions make sense. The first implies that
µX is actually a constant function, and the second implies that rX(s, t) is a
function of s− t only, so (again following HPS) we can define the covariance
function as a function of one variable rather than two

rX(t) = rX(0, t)

As in the one-dimensional case, a covariance function must be a positive
definite function, that is for any scalars a1, . . . , ak and vectors t1, . . . , tk

k∑
i=1

k∑
j=1

aiajrX(ti, tj) ≥ 0

when rX is the covariance function of a (not necessarily translation invariant)
second order process, and

k∑
i=1

k∑
j=1

aiajrX(ti − tj) ≥ 0
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when rX is the covariance function of a translation invariant second order
process.

Bochner’s theorem says that rX is the covariance function of a translation
invariant process if and only if t 7→ rX(t)/rX(0) is the characteristic function
of a random vector having a distribution symmetric about zero.

So far, everything is the same as in the one-dimensional carrier case
except for some boldface for vectors instead of lightface for scalars. Now
comes the different part, but to introduce that we first ask why we would
assume translation invariance. The reason is to simplify the model making it
easier to estimate when we are doing statistical inference (we won’t discuss
statistical inference for Gaussian processes in this course, but that is a large
part of spatial statistics).

We say a translation invariant process X is isotropic or rotationally in-
variant if rX(t) is a function of ‖t‖ only, where ‖ · ‖ denotes the Euclidean
norm. This is something new that we do not see in the one-dimensional
case. There are no rotations in one dimension.

We follow Section 2.3 of Chilés and Delfiner (1999) with some additions
from other sources. Write

rX(t) = cX(‖t‖) (1)

so we are studying the properties of the function cX of one nonnegative real
variable. We will call the one dimensional covariance functions like cX radial
covariance functions. Bochner’s theorem still applies: cX is a valid radial
covariance function if

t 7→ cX(‖t‖)
cX(0)

is a valid d-dimensional covariance function. As in the one dimensional case

var{X(t)} = cX(0), for all t.

The first issue we deal with is that if c(r) is a valid radial covariance
function for processes on Rd, then it is also a valid radial covariance function
for processes on Rm for m ≤ d, but is not necessarily valid for processes on
Rn for n > d. For example, the radial covariance function

c(r) =

{
1− r

a , 0 ≤ r ≤ a
0, otherwise

is valid for processes on R1 but is not valid for higher dimensions.
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I could not find simple general conditions for validity of radial covariance
functions. There are however, some well known simple examples that are
valid in all dimensions. One is the squared exponential or Gaussian radial
covariance function

c(r) = A exp

(
−r

2

a2

)
(2)

for constants A > 0 and a > 0. Another is the exponential radial covariance
function

c(r) = A exp
(
−r
a

)
(3)

Here are some more complicated models that are also valid for all dimensions

c(r) = A
(

1 +
r

a

)
exp

(
−r
a

)
c(r) = A

(
1 +

r

a
+

r2

3a2

)
exp

(
−r
a

)
and another with much lighter tails that is also valid for all dimensions,
which is called the generalized Cauchy radial covariance function,

c(r) = A

(
1 +

r2

a2

)−α
where here, as in all of the above, we have A > 0 and a > 0 but how also
have another parameter α > 0.

There is one more quite complicated covariance function that has re-
ceived some attention in the literature. This is also valid in all dimensions
and is called the K−Bessel radial covariance function by Chilés and Delfiner
(1999) and the Matérn radial covariance function by others (Wikipedia,
2014b)

c(r) =
A

2ν−1Γ(ν)

(r
a

)ν
Kν

(r
a

)
where here, as in all of the above, we have A > 0 and a > 0 but how also
have another parameter ν ≥ 0. Here Γ(ν) denotes the gamma function
and Kν(x) denotes the modified Bessel function of the second kind of order
ν (Wikipedia, 2014a). For those not familiar with Bessel functions, they
should just be thought of a another kind of special function, like sines and
cosines, exponentials and logarithms, and gamma functions. They are cal-
culated by the besselK function in R. Part of the reason for the interest in
this class of radial covariance functions is that it includes some of the others.
The case ν = 1/2 is the exponential radial covariance function (3), and as
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ν → ∞ it converges to the squared exponential radial covariance function
(2).

A Gaussian process with Matérn radial covariance function has sam-
ple paths that are bν − 1c times differentiable. A Gaussian process with
exponential radial covariance function has sample paths that are nowhere
differentiable. A Gaussian process with squared exponential radial covari-
ance function has sample paths that are infinitely differentiable.

2 Prediction

Suppose we observe a Gaussian process at locations t1, . . . , tk and we
want to predict the value at another location t0 where we have not observed
the value of the process.

The best prediction if best means squared error loss is the conditional
expectation, and the best prediction if best means absolute error loss is the
conditional median, but the conditional distribution is normal for which the
mean is equal to the median, so the conditional expectation is best for either
case.

If a partitioned random vector(
X1

X2

)
(4)

is multivariate normal with mean vector(
µ1

µ2

)
and variance matrix (

Σ11 Σ12

Σ21 Σ22

)
then the conditional distribution of X1 given X2 is multivariate normal with
mean vector

µ1 − Σ12Σ
−1
22 (X2 − µ2) (5)

and variance matrix
Σ11 − Σ12Σ

−1
22 Σ21 (6)

(Anderson, 2003, Theorem 2.5.1). This notation assumes that the distri-
bution of X2 is nondegenerate (so Σ22 is invertible). If not, then X2 is a
linear function of some set of its components that do have a nondegenerate
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distribution (Anderson, 2003, Theorem 2.4.4 and the rest of Section 2.4), in
which case we can rewrite (4) as X1

X3

X4


where X3 has a nondegenerate distribution and X4 is a deterministic func-
tion (actually a linear function) of X3, then the conditional distribution of
X1 given X2 is the same as the conditional distribution of X1 given X3 is
the same as and is multivariate normal with mean vector (5) with subscript
2 replaced by 3 and variance matrix (6) with subscript 2 replaced by 3.

So all we need to do prediction is the vector µ and the matrix Σ for the
random vector with components X(ti), i = 1, . . . , k. The vector µ has i-th
component µX(ti), and the matrix Σ has i, j-th component rX(ti, tj). So
we are done with prediction.

3 Integration

Now suppose we want to predict the average of the process over a
bounded set A. which we denote

X(A) =
1

m(A)

∫
A
X(t) dt

where m(A) is Lebesgue measure of the set A

m(A) =

∫
A
dt

(which is finite because we assumed A is bounded). Again, we use the
observations at ti, i = 1, . . . , k. We already know the means, variances,
and covariances for the X(ti). All we need to determine is the mean and
variance of X(A) and its covariance with each of the X(ti).

As in Section 5.2 of HPS, this is done by interchanging the order of
integration.

E{X(A)} = E

{
1

m(A)

∫
A
X(t) dt

}
=

1

m(A)

∫
A
E{X(t)} dt

=
1

m(A)

∫
A
µX(t) dt
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Denote that µX(A). Then

var{X(A)} = E

{[
1

m(A)

∫
A
X(t) dt− µX(A)

]2}

= E

{[
1

m(A)

∫
A

[X(t)− µX(t)] dt

]2}

= E

{
1

m(A)2

∫
A

∫
A

[X(s)− µX(s)][X(t)− µX(t)] ds dt

}
=

1

m(A)2

∫
A

∫
A
E{[X(s)− µX(s)][X(t)− µX(t)]} ds dt

=
1

m(A)2

∫
A

∫
A
rX(s, t) ds dt

and

cov{X(A), X(ti)} = cov

{
X(ti),

1

m(A)

∫
A
X(t) dt

}
= E

{
[X(ti)− µX(ti)]

1

m(A)

∫
A

[X(t)− µX(t)] dt

}
= E

{
1

m(A)

∫
A

[X(ti)− µX(ti)][X(t)− µX(t)] dt

}
=

1

m(A)

∫
A
E{[X(ti)− µX(ti)][X(t)− µX(t)]} dt

=
1

m(A)

∫
A
rX(ti, t) dt

These integrals are not usually easy to do and may need to be done by nu-
merical integration. But they are what has to be done to do this prediction.

4 Differentiation

Now we look at derivatives, when they exist. The first issue is that when
t is multivariate, the first derivative is a vector, the second derivative a
matrix, the third derivative a three-dimensional tensor, and so forth. So we
only look at first derivatives.

We usually think of the first derivative vector as the vector whose compo-
nents are the partial derivatives, but this is an oversimplification. The cor-
rect definition of multivariate differentiation (Browder, 1996, Definition 8.9)
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is that f is differentiable at x if there exists a linear function l such that

lim
h→0

f(x + h)− f(x)− l(h)

‖h‖
= 0 (7)

in which case l is uniquely defined and has the form

l(h) = vTh

for some vector v, which we call the derivative of f at x, usually written
f ′(x) or ∇f(x).

If f is differentiable at x, that is, if there exists l such that (7) holds,
then all partial derivatives exist at x, and the ∇f(x) is the vector of par-
tial derivatives (Browder, 1996, Theorem 8.21). The converse is not true.
More is needed than existence of partial derivatives to make the function
differentiable. If all partial derivatives exist and are continuous on an open
neighborhood of x, then the function is differentiable (Browder, 1996, The-
orem 8.23).

We will ignore this distinction between differentiability and existence of
partial derivatives in what follows, mostly because we do not have sharp
conditions for existence of derivatives. A sharp condition for almost sure
existence and continuity of partial derivatives of any order is given by Adler
and Taylor (2007, Theorem 1.4.2) but seems complicated.

Staying at the level of HPS, we can consider a partial derivative to be
the same as the total derivative of the function restricted to a line, so the
results of Section 5.3 in HPS hold. Let us write

Xi(t) =
∂X(t)

∂ti

(assuming this exists). Each Xi(t) is a Gaussian process. From equation 14
of Chapter 5 of HPS we get

µXi(t) =
∂

∂ti
µX(t)

Then (15) and (16) of Chapter 5 in HPS become

rY Xi(s, t) =
∂

∂ti
rY X(s, t)

rXiY (s, t) =
∂

∂si
rXY (s, t)
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from which we get (like (20) and (21) of HPS)

rXXj (s, t) =
∂

∂tj
rX(s, t)

rXiXj (s, t) =
∂2

∂si∂tj
rX(s, t)

so that characterizes the first derivative process (or d processes, one for each
dimension).
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