Stat 8501 Lecture Notes Convergence in Probability and Almost Surely Charles J. Geyer February 16, 2014

Let X_1, X_2, \ldots be a sequence of random variables and X another random variable, all defined on the same probability space. We say X_n converges in probability to X, written

$$X_n \xrightarrow{P} X$$
 (1)

if for every $\varepsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| \ge \varepsilon) = 0.$$

We say X_n converges almost surely to X, written

$$X_n \xrightarrow{\text{a.s.}} X \tag{2}$$

if there exists a set A having probability one such that

$$\lim_{n \to \infty} X_n(\omega) \to X(\omega), \qquad \omega \in A.$$
(3)

Define

$$B_{\varepsilon n} = \{ \omega \in \Omega : |X_n(\omega) - X(\omega)| \le \varepsilon \},\$$

so (1) is equivalent to $P(B_{\varepsilon n}) \to 1$ as $n \to \infty$ holding for every $\varepsilon > 0$. Also define

$$C_{\varepsilon mn} = \bigcap_{i=m}^{n} B_{\varepsilon i}.$$

where n is allowed to be any integer greater than m or is allowed to be ∞ . Then $C_{\varepsilon mn} \downarrow C_{\varepsilon m\infty}$ as $n \to \infty$. So by continuity of probability

$$\lim_{n \to \infty} P(C_{\varepsilon mn}) = P(C_{\varepsilon m\infty}).$$
(4)

Then define

$$C_{\varepsilon\infty\infty} = \cap_{m=1}^{\infty} C_{\varepsilon m\infty}.$$

Then $C_{\varepsilon m\infty} \downarrow C_{\varepsilon \infty \infty}$ as $n \to \infty$. So by continuity of probability

$$\lim_{m \to \infty} P(C_{\varepsilon m \infty}) = P(C_{\varepsilon \infty \infty}).$$
(5)

The limit in (3) holds for some ω if and only if for every $\varepsilon > 0$ there exists an *m* such that $\omega \in C_{\varepsilon k\infty}$ for all $k \ge m$. Hence the limit in (3) holds for some ω if and only if for every $\varepsilon > 0$ we have $\omega \in C_{\varepsilon \infty \infty}$. So (2) is equivalent to $P(C_{\varepsilon \infty \infty}) = 1$ holding for every $\varepsilon > 0$.

By (4) and (5) we have $P(C_{\varepsilon \infty \infty}) = 1$ if and only if

$$\lim_{m \to \infty} \left[\lim_{n \to \infty} P(C_{\varepsilon m n}) \right] = 1.$$

Since $P(C_{\varepsilon mn})$ can be calculated using only finite-dimensional distributions, this gives a characterization of almost sure convergence that does not involve infinite-dimensional sample paths.